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Abstract 
A new flux splitting and limiting technique which 
yields one-point stationary shock capturing is pre- 
sented. The technique is applied to  the full Navier- 
Stokes and Reynolds Averaged Navier-Stokes equa- 
tions. Calculations of laminar boundary layers at 
subsonic and supersonic speeds are presented to- 
gether with calculations of transonic flows around 
airfoils. The results exhibit very good agreement 
with theoretical solutions and existing experimen- 
tal data. It is found that. the proposed scheme im- 
proves the resolution of viscous flows while main- 
taining excellent one-point shock capturing charac- 
teristics. 
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1 Introduction 
Accurate and robust viscous solvers for compress- 
ible flows require the implementation of non- 
oscillatory discrete schemes which combine high ac- 
curacy with high resolution of shock waves and 
contact discontinuities. These schemes must also 
be formulated in such a way that they facili- 
tate the treatment of complex geometric shapes. 
One of the greatest challenges of building accurate 
and robust Navier-Stokes solvers rests on the fact 
that  shock capturing requires the construction of 
schemes which are numerically dissipative, a re- 
quirement which could affect the global accuracy 
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of the solution of the physical viscous problem. 
Recently we have analyzed a large class 

of schemes including High Resolution Switched 
schemes, Symmetric Limited Positive (SLIP) and 
Upstream Limited Positive (USLIP) schemes [5, 
171. SLIP and USLIP schemes were implemented 
and tested using several forms of flux-splitting in- 
cluding scalar, characteristic, and Convective Up- 
stream Split Pressure (CUSP) schemes. Care- 
ful comparisons with analytical results for laminar 
boundary layers clearly indicate that the limiting 
process plays a greater role than the flux-splitting 
in determining the quality of viscous results. How- 
ever, new trade-offs between the different forms 
of flux-splitting arise whenever crisp resolution of 
shocks becomes important. 

Roe has shown that characteristic splitting can 
yield an optimal discrete shock resolution with only 
one interior point [15]. More recently Jameson [7, 
81 has shown that a discrete shock structure with a 
single interior point can, in general, be supported 
by artificial diffusion which both: 

1. produces an upwind flux if the flow is deter- 
mined to be supersonic through the interface 
between the left and the intermediate state, 

2. satisfies a generalized eigenvalue problem for 

These two conditions can be satisfied by both the 
characteristic and CUSP schemes whereas scalar 
diffusion fails to satisfy the first condition. 

The present work focus on the development of 
CUSP based schemes which combine perfect one- 
point shock capturing of stationary shocks with 

the exit from the shock. 
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high resolution of boundary layers 

2 Alternative Forms of Flux 
Splittings 

For simplicity we consider only the general one di- 
mensional conservation law for a system of equa- 
tions which can be expressed as 

aw a - + -f(w) = 0. 
at ax 

Here the state and the flux vectors are 

w =  (;;), f =  ( p u p + p  

where p is the density, u is the velocity, E is the 
total energy, p is the pressure, and H is the stag- 
nation enthalpy. If y is the ratio of specific heats 
and c is the speed of sound then 

In a steady flow H is constant. This remains true 
for the discrete scheme only if the numerical dif- 
fusion is constructed so that it is compatible with 
this condition. 

It is well known that when the flow is smooth it 
can be represented by the quasi-linear form 

aw 8 W  - + A(w)- = 0, 
at ax 

where A(w) = g, and the eigenvalues u,  71 + c 
and u - c of the Jacobian matrix A are the wave 
speeds for the three characteristics. Depending on 
the initial data, there may not be a smooth solution 
of the conservation law (1). Nonlinear wave inter- 
actions along converging characteristics may lead 
to the formation and propagation of shock waves, 
while contact discontiniiities may also appcar. 

The conservation law (1) is approximated over 
the interval (0 ,L)  on a mesh with an interval A x  
by the semi-discrete scheme 

where w j  denotes the value of the discrete solution 
in cell j ,  and hi++ is the numerical flux between 
cells j and j + 1. 

The numerical flux can be taken as 

1 
2 (3) hj++ = -(fj+l + fj) - dj++, 

where f j  denotes the flux vector f(wj) evaluated 
for the state w j ,  and dj+ is a diffusive flux which 

continuities without producing oscillations in the 
discrete solution. 

A rather general form for the diffusive flux is 

is introduced to  enable t k e scheme to resolve dis- 

where the matrix B,++ controls the numerical dif- 
fusion and determines the properties of the scheme, 

vcnience. Notice that since wj+l - wJ approxi- 
mates A z e ,  the diffusive flux introduces an error 
proportional to  the mesh width, whence, all these 
schemes will be first order accurate unless compen- 
sating anti-diffusive terms are introduced. 

With this notation, scalar diffusion is produced 
by setting 

while the characteristic upwind scheme is produced 
by setting 

and the scaling factor aj+q is included for con- u 

Bj++ = I ,  (4) 

In equation ( 5 ) ,  Aj++(wj+l,wj) is an estimate of 
the Jacobian matrix obtained by Roe lineariza- 
tion, with the property that the equation 

f j + l - f j = A j + + ( w j + l  -wj)  

is satisfied exactly, and T is a similarity transfor. 
mation such that 

Aj++ =TAT-'. (6 )  
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- Thus, the columns of T are the eigenvectors of 
Aj+$, and A is a diagonal matrix containing its 

eigenvalues. The symbol IAj+i I is used to repre- 
sent the matrix obtained by replacing the eigenval- 
ues by their absolute values. 

In this paper we are interested in an intermediate 
class of schemes which can he formulated by defin- 
ing the first order diffusive flux as a combination of 
differences of the state and flux vectors 

where the factor c is included so that a* is di- 
mensionless. Schemes of this class are fully up- 
wind in supersonic flow if one takes aj++ = 0 and 
P,+* = sign(M) when the absolute value of the 
local Mach number satisfies [MI > 1. In order t o  
support a stationary discrete shock structure with 
a single interior point, a* and p cannot he chosen 
independently. It turns out that  once a* is chosen, 
p is uniquely determined by the equilibrium at the 
exit of the shock, leading to a one parameter family 
of schemes satisfying the relation 

a* = (1 +/3)(1 - M )  d 
when M > 0 [7]. The choice /3 = M corresponds 
to the Harten-Lax-Van Leer (HLL) scheme [4, 21, 
which is extremely diffusive. 

We will develop schemes of this class based on 
a decomposition of the flux vector f obtained by 
setting 

where 
f = uw + fp, (8)  

Then 

fj+1-f, = G ( W j + l  - W j ) + a ( u j + l  -"j)+fpj+l-fpj, 
(10) 

where and U are the arithmetic averages 

2.1 E-CUSP formulation 
Suppose that the diffusive flux is defined by equa- 
tion (7). If the convective terms are separated by 
splitting the flux according to  equations (8), (9) 
and (lo), then the total effective coefficient of con- 
vective diffusion is 

ac = a*c + pc. 
The choice ac = G leads to  low diffusion near a 
stagnation point, and also leads to  a smooth con- 
tinuation of convective diffusion across the sonic 
line since a* = 0 and /3 = 1 when IMI > 1. The 
scheme must also be formulated so that  the cases of 
u > 0 and u < 0 are treated symmetrically. Using 
the notation M = f ,  A* = u f c, this leads to  the 
diffusion coefficients 

a = /MI (11) 

+ m a x ( O , s )  i f O L M 5 1  

8 ;  - m a x ( O , s ) )  if - 1 5 ~ 5 0  
sign(M) if [MI 2 1. 

(12) 

eo 

i 
Near a stagnation point LY may be modified to  a = 

The expression for p in subsonic flow can also be 
expressed as 

5 1 (a0 + u) if IM/ is smaller than a threshold ao. 

max(0,2M-1)  if O < M < l  
B = (  min (0,2M + 1) if - 1 5 M 5 0 

Equation (12) remains valid when the CUSP 
scheme is modified as described below in Section 2.2 
to allow solutions with constant stagnation en- 
thalpy. The coefficients a ( M )  and P ( M )  are dis- 
played in figure 1 for the case when ao = 0. The 
cutoff of 0 when IMI < $, together with a ap- 
proaching zero as IMI approaches zero, is also ap- 
propriate for the capture of contact discontinuities. 

An important property of this scheme can be il- 
lustrated by introducing a Roe linearization and by 
rewriting the diffusive flux as 

) 
1 
2 

1 a = 5 (Wj+l + W j )  d j+$  = - (a'cI+ PAj++ (w3+1 - w j ) .  
1 
2 

This corresponds to the wave particle splitting of 
Rao and Deshpande [14]. Two alternative formu- 
lations of the resulting CUSP schemes are presented 
next. 

9 i  = - ("j+l + Uj) , 
Introducing the characteristic decomposition (Q, 
the diffusive flux can naw be represented as 

dJ+$ = RMR-'(Wj+l - W j )  
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M I '6"'- &. Y... Y".".. I I "... 

if IMI < i { 1 1 1 1  if IM 2 1 
/ L ~ =  n + B  i f + < M < l  

if jMI < 

if Id41 2 1 
i f i < A f < l  

lM - 11 
Tlicse values arc displayed in fig~irc 2. 

In the region \MI 5 4, / L I  = j1.2 = 11.3 = I A f I ,  
whilc in tlic region IM < 1 / L Z  < In4 + 11 , / I ,: ,  < 
IM - 11. Thus t,lic sclieme has lowcr diffusion t,hrtn 
tlic standard charactcristic upwind S ~ I C I I I C .  St,rict 
positivity is iiot cnforccd, but a,t a, shock 

A f = AAw = SAm 

where S is the shock spccd. Thus A7u must bo an 
cigcnvector corrcsponding t,o OIIC of t,lic cigcnv;~l~~as 
71% c, and positivity is cnforccd for tlic w r r c s p m ~ l -  
ing charactcristic varialile. 

2.2 H-CUSP formulation 
111 steady flow thc st.agnation ent,halpy H is con- 
stant, corrcsponding to the fact that thc vncrgy 
and mass cqiia,tions are consistcnt whcii t,hv coil- 
stant factor H is removed froin thc cilergy i!qii:i- 

tion. Discrctc alld semi-discrctc scheincs do not 
iicccss;irily sat.isfy t,liis propcrt,y. In t,lic r a w  o f  i i  

Figure 2: Eigcnvaliics of diffusion matrix 

scini-discrct,c schcine cxprcsscd in viscosity form - 
qiiations (2) and (3) - a solution with constant H 
is admitted if the viscosity for the energy cquation 
rcdiicos to the viscosity for the continuity equation 
with p replaccd by p H .  Iscnthalpic formulations 
liavc I)ccn considorcd by Veuillot and Viviand [18], 

111 ordcr t.o extend the CUSP formiilation to  allow 
for isciithalpic solutions, wc iiit,rodilcc the lineariza- 
t.ioii 

u &11d Lytt,on 1111. 

flt - fl. = A ( 7 W L , ,  - w,,). 
wlirrc  TU,, is a rriodifictl satc vector with p H  replac- 
iiig ()E. Thc matrix A,, may be calculated in the 
same way as thc staridard Roc lincarization. In 
p;irt,ii:iilar, by int,rodiicing thc vector 

a l l  quantit,ics i n  Iioth f and 7u/, are products of the 
forni I J ~ ~ J ~  wliicli Iiavc t.hc property that a finite dif- 
fcrrilcc A ( V ~ ~ J & )  bct,wccn Icft and right states can 
bc <~sprcsscd as 

A(vjvk) = CjAvk + v1A.j 

wlicre 5; is thc a.ritlirrictic mean $(vjx + v ~ L ) .  
Tllcrcforc, 

Aw = BA,,J, A f  = CAv = CB-'A~IJ,  
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d 
where B and C can be expressed in terms of appro- 
priate mean values of the quantities wj. Thus, by 
defining 

and 

it follows that 

Y 

0 1 

-uH H u 

The eigenvalues of Ah are u, A+ and A- where 

Note that  A+ and A- have the same sign as u + c 
and u - c, and change sign at  the sonic line u = ic. 
The corresponding left and right eigenvectors of Ah 
can he computed, and are given in [7]. 

Using the modified linearization the CUSP 
scheme can be reformulated as follows to admit 
isenthalpic steady solutions. The diffusive flux is 
expressed as 

d 

1 1 
2 2 

dj++ = - c ~ ' c A w ~  + -pAf ,  

where A denotes the difference from j + 1 to j. The 
split is redefined as 

f = u w h + f p )  

where 

f p =  ( a )  
and the diffusive flux can he exuressed as 

.. 

W' 

3 Implementation of limiters 
In the case of a scalar conservation law, high reso- 
lution schemes which guarantee the preservation of 
the positivity or monotonicity of the solution can 
be constructed by limiting the action of higher or- 
der or anti-diffusive terms, which might otherwise 
cause extrema to  grow. Typically, these schemes, 
such as both the symmetric and upstream limited 
positive (SLIP and USLIP) [6], compare the slope 
of the solution at nearby mesh intervals. The fluxes 
appearing in the CUSP scheme have different slopes 
approaching from either side of the sonic line, and 
use of limiters which depends on comparisons of the 
slopes of these fluxes can lead to a loss of smooth- 
ness in the solution at  the entrance to supersonic 
zones in the flow. This problem can he avoided in 
the implementation of the CUSP scheme by form- 
ing the diffusive flux from left and right states at  
the cell interface. These are interpolated or extrap- 
olated from nearby data, subject to limiters t o  pre- 
serve monotonicity. In a similar manner to  the re- 
construction of the solution in Van Leer's MUSCL 
scheme [9], the following construction is used. 

Define the limiter 

where q is a positive power which is set equal t o  
two in the present study. Clearly R(u, v) = 0 when 
u and w have opposite sign. Also define the limited 
average 

(15) 
1 
2 

L(u,v) = -R(u,w)(u+w). 

Let w(') denote the kth element of the state vec- 
tor w. Now define left and right states for each 
dependent variable separately as 

where As before, LY and p are defined by equations (11) 
and (12), using the modified eigenvalues A*  defined Awj+; = ~ j + i  - ~j 

equation (13). This splitting corresponds to  the Then 
Liou-Steffen splitting [lo, 191, and will be denoted 
as the H-CUSP scheme. wg) - wif;) = A ~ P )  ~ ( a w j . : ~ ,  adk) 3--1 ) 3 + &  - 
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which in the c a e  of a scalar equation rednces to  
the SLIP formulation [6]. 

For the CUSP schemes the pressures pr, arid PR 
for the left and right states are determined from 
wL and wR. Then the diffusive flux is calculated 
by substituting W L  for w; and WR for w ; + ~  to give 

d;+$ = ‘CT*C(WR - WL) + ‘p(.f(wR) - . f (wL)).  2 2 

The alternative reconstruction: 

wF)  = Wjk) + R ( A ~ ~ . ~ + ) ~ , A W , - + ) A ~ , _ ,  (k) ( k )  

wg) = w; ( k )  - R ( A ~ ( . ~ )  3 + $ ’  A ~ ~ ~ ~ ) A ~ ~ ~ ~  

has been found to yield essentially identical results 
for calculations of steady flows. 

4 Numerical Results 
Extensive numerical tests have been perfoimed 
with the the E and H-CUSP schemes to verify their 
properties [7]. Results for inviscid flow calculated 
with the program FL082 verify the one-point cap- 
turing of shocks. An example of an inviscid result 
is presented in figure 3, where the computed pres- 
sure distribution for two grid densities is plotted 
together with the respective convergence histories 

In this section we report the results obtained for 
two and three dimensional viscous flows. The two- 
dimensional calculations were performed with the 
program FL0103, which uses a cell-centered finite 
volume scheme to  discretize the full Navier-Stokes 
equations. The three-dimensional calculations were 
performed with FL0107, which is the three dirnen- 
sional extension of the original algorithm. 

Time integration is carried out by a five-stage 
scheme which requires re-evaluation of the dissipa- 
tive operators only at alternate stages [12]. This 
scheme couples the desirable feature of a wide sta- 
bility region along both the imaginary and thr real 
axis with good high frequency damping. The ef- 
ficiency of the scheme was enhanced by using an 
implicit residual averaging scheme with variable co- 
efficients, and an effective multigrid strategy which 
utilizes a W-cycle. 

In this study it was found that 100 Multigrid 
Cycles were sufficient to achieve a convergenre to a 

steady state of two dimensional viscous flows with 
a final level of the averaged density residuals of the 
order of 10W4, where the initial level is the order of 
1. 

4.1 Flat-plate laminar boundary 
layer 

A laminar boundary layer developing over a flat- 
plate at zero incidence was chosen as the first test 
case to validate the scheme for the viscous flow 
problems. The computational domain is a rectangle 
with the inflow boundary located two plate lengths 
upstream of the leading edge, and the downstream 
boundary located at the plate trailing edge. The 
upper boundary is located at a distance of four 
plate lengths. The mesh points are clustered in the 
streamwise direction near the leading edge, in order 
to provide adequate resolution of the flow near the 
stagnation point. The finest grid contains a total 
of 512 cells in the streamwise direction with 384 
cells placed along the plate. Within the boundary 
layer, the grid is equally spaced in the boundary 
layer coordinate in the direction perpendicular t o  
the plate. This ensures a constant level of resolu- 
tion for all the boundary layer profiles. It also en- 
sures that an identical resolution is achieved inde- 
pendently of the Reynolds number. Outside of the 
boundary layer the grid is exponentially stretched 
toward the far field. The finest grid contains a to- 
tal of 128 cells in the direction normal to  the plate, 
half of which are within the boundary layer. Three 
coarser grids containing respectively 8, 16, 32 cells 
within the boundary layer were obtained by elim- 
ination of alternate points, and they were used in 
the grid refinement study. 

Previous studies have shown that 32 cells are 
generally sufficient to resolve the viscous layer [12]. 
Figure 4 shows the result of a grid refinement study 
on boundary layer velocity profiles, which was car- 
ried out to investigate the accuracy of the proposed 
scheme especially on coarse grids. A low value 
of the incoming flow Mach number ( M m  = .15), 
well within the incompressible regime, was cho- 
sen to make a comparison with a Blasius solu- 
tion meaningful. Also, this flow condition tests the 
numerical scheme toward its limit of applicability 
as A4, + 0, and the flow becomes incompress- 
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ible. The Reynolds number of the incoming flow is 
100,000. The results at four streamwise locations 
are overplotted to verify the self similarity of the 
computed flow. It can be seen that both of the 
computed tangential and transverse components of 
the velocity follow the self similarity law, and give 
an excellent agreement with the Blasius solution 
even on the coarsest grid with 8 cells in the bound- 
ary layer. Figure 5 shows the errors of the com- 
puted skin friction, as well as the displacement and 
momentum thicknesses from the Blasius solution. 
While the errors decrease according to the grid re- 
finment, the values themselves are very small even 
in the case of the coarsest grid. 

The set of calculations presented in Figure 6 is 
aimed at investigating the behavior of the scheme 
as the Mach number increases into the supersonic 
regime. Results are presented for a Reynolds num- 
ber of 100,000, on a grid with 32 cells in the hound- 
ary layer. The supersonic result is scaled by using 
the Illingworth - Stewartson transformation [16], 
and again compared with the Blasius solution. The 
result shows that the scheme also accurately repro- 
duces the boundary layer properties in the super- 
sonic regime. 

4 

4.2 Two-dimensional turbulent flows 
The first set of calculations in this section is de- 
signed to investigate the behaviour of the scheme 
for a turbulent flow over a two dimensional airfoil. 
The RAE2822 test Case 6 was selected [3]. Two 
meshes were used for the computations. The first 
consists of a total of 512 x 64 mesh cells with 385 
points fitted on the airfoil, while in the second one 
the number of cells in the normal direction has been 
doubled to 128. The minimum distance from the 
airfoil surface of the first coordinate line is 2 x 
chords which corresponds to a value of y+ < 5 
for the assigned Reynolds number. Transition was 
fixed at the experimental location of the trip wire. 
Also the outer boundary was placed at a distance 
of 18 chords. A Baldwin and Lomax turbulence 
model (11 has been used for this grid refinement 
study because the flow field was expected to he at- 
tached, and the hehaviour of the solution predicted 
by this model is reasonably well understood. 

Figure 7 shows a comparison of the computed 

pressure coefficient along the airfoil for the two 
grid densities. The experimental results are also 
plotted as a reference. It can be seen that the 
computed pressure distribution is well converged 
on the 512 x 64 grid. The computed skin friction 
coefficient, normalized hy the free stream dynamic 
pressure, is also is plotted in figure 7, and shows 
that grid independent results are obtained on the 
512 x 64 mesh. 

The next test case consists of a RC(4)-10 air- 
foil with a freestream Mach number of 0.59, and 
a Reynolds number of 7.5 million. The airfoil was 
designed for application to  the inboard region of 
a helicopter main rotor blade [13]. This case was 
chosen to investigate further the applicability of the 
scheme to solve practical transonic turbulent flow 
problems. The turbulence mode! used here is again 
a simple algebraic Baldwin and Lomax. A C-type 
mesh consisting of a total of 512 x 64 mesh cells 
was used in the computations. The norma! mesh 
spacing at the wall is 0.00002 chords, resulting in 
cells with aspect ratios of the order of 250:l along 
the airfoil. 

Figure 8 shows a comparison of the surface pres- 
sure distribution between the computed result and 
the experimental data at angle of attack of 3.41 de- 
grees. The agreement is very good, including the 
shock location where the critical pressure coefficient 
for this particular Mach number is -1.36. The com- 
puted lift, drag, and pitching moment coefficients 
in terms of the angle of attack are shown in Fig- 
ure 8 in comparison with experimental data. The 
agreement is again fairly good except a t  the higher 
angle of attack where steadiness of the flow is ques- 
tionable. 

4.3 Three-Dimensional 
Computations 

The next test case consists of a 747-200 Wing-Body 
configuration. The geometry, the grid generator, 
and the test conditions were kindly provided by J. 
Yu of the Boeing Commercial Airplane Company. 
A calculation was run by using a relatively coarse 
C-H grid made up of 192 x 64 x 48 cells. The free 
stream Mach number was set to M = ,855, the wing 
was set at an angle of attack of 2.7'. Since the flow 
is expected to be attached, a Baldwin and Lomax 
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turbulence model was used. The pressure distribu- 
tion computed with the H-CUSP scheme is shown 
in figure 9. It can be noticed that the scheme pro- 
duces a very crisp resolution of the shock stru[:ture 
on the top surface of the wing. The improvement 
over the standard scalar diffusion can be appreci- 
ated by comparing the computed pressure distri- 
butions at the wing mid-span 10. An identical grid 
was used for the two calculations. Again the H- 
CUSP scheme proved to yield superior results. 

5 Concluding Remarks 
A new flux splitting and limiting scheme has been 
developed and applied to  the solution of the com- 
pressible Navier-Stokes equations. The calcula- 
tions performed so far indicate that the scheme, 
which was originally tailored for non-oscillatory 
shock capturing, yields accurate solutions for vis- 
cous flows. It leads to an improvement of the over- 
all computational efficiency by allowing the use of 
coarser grids. Preliminary three-dimensional vis- 
cous calculations seems to confirm this fact. 
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