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ABSTRACT
This study deals with the shape recognition problem using
the Hidden Markov Model (HMM). In many pattern
recognition applications, selection of the size and
topology of the HMM is mostly done by heuristics or
using trial and error methods. It is well known that as the
number of states and the non-zero state transition
increases, the complexity of the HMM training and
recognition algorithms increases exponentially. On the
other hand, many studies indicate that increasing the size
and non-zero state transition does not always yield better
recognition rate. Therefore, designing the HMM topology
and estimating the number of states for a specific problem
is still an unsolved problem and requires initial
investigation on the test data.

This study addresses a specific class of recognition
problems based on the boundary of shapes. The paper
investigates the affect of the HMM topology on the
recognition rate. A new topology, called circular HMM,
is proposed and tested on the handwritten character
recognition problem. The proposed topology is both
ergodic and temporal. It eliminates the starting and
ending states with the circular state transitions. The
experiments indicate excellent performance compared to
the classical temporal and ergodic HMM models.

1. INTRODUCTION

Hidden Markov Model (HMM) is a widely used powerful
tool for many pattern recognition and image analysis
problems. There is a tremendous amount of variations of
HMM applications, which input various feature sets into
various HMM sizes and topologies [1]. Efficient iterative
algorithms are available for estimating the model
parameters of observation probability and state transition
matrices. However, all of the approaches presume a model
size and topology [2]-[6]. Unfortunately, there are no
effective methods for estimating the optimal number of
states and/or the nonzero state transitions for a specific
feature set. Many pattern recognition applications indicate

that the number of states should be somehow proportional
to the length of the observation sequence  and to the code
book size, for the HMM. However, higher number of non-
zero transitions does not always, provide better
recognition rates, but result in extra computational cost.

Ergodic topologies enable the revisits of each state with
probability one in finite intervals, by allowing non-zero
state transition paths between any two states. However,
they do not impose a temporal order. Therefore, when the
observation sequence has a temporal order, ergodic
models do not fully utilize the temporal information of the
data.

On the other hand, the temporal topologies do not allow
the revisits to the previous states by constraining the state
transition probabilities, aij=0 for j≥ i+k, where k is a small
integer compared to the total number of the states. This
constraint yields a sparse state transition matrix, where
the nonzero entries lie only in the few upper diagonals.
For this reason, in most of the pattern recognition
applications, it is accustomed to use, so called, left-right
model. This model eliminates estimating the initial state
probabilities because it has a single starting and
terminating state.

Experimental results of many studies indicate that left-
right topologies are more appropriate to reach the
maximum recognition rates in many applications, such as
speech and optical character recognition. However, when
the feature set consists of the quantized values of a closed
boundary, it is very difficult to identify consistent starting
and ending points on a boundary of the object to represent
the observation sequence. Therefore, in the recognition
problem based on the object boundaries, the available
HMM models yield very low recognition rates if the
feature sets do not have a geometrically meaningful
starting and terminating points.

Although, there is not an exact criterion, it is generally
accepted that the number of states is taken to be
proportional to the length of the observation sequences
and/or the number of distinct observation [6]. This fact
brings another complicated problem for size invariance:



In order to make a consistent platform for comparison of
the HMM probabilities, the sizes of the boundaries are to
be normalized for generating fixed length observation
sequences for the patterns.

In this study, a new topology, called circular HMM, is
proposed. This topology is a simple modification of left-
to-right HMM model, where the initial and terminal states
are connected through the state transition probabilities.
This connection eliminates the need to define a starting
point of a closed boundary, in the recognition problem.
The proposed HMM topology is both temporal and
ergodic. Therefore, the states can be revisited in finite
time intervals. This structure enables one to decide on the
optimal state order by simple experiments on the training
data and requires no size normalization.

The circular HMM is tested on the optical character
recognition problem based on the boundary features.
Although the computational complexity is the same, the
circular HMM has many superiorities compared to the
left-right model. First of all, the circular HMM does not
require to increase the number of states as the size of the
boundary increases. Therefore, it is size invariant.
Secondly, circular HMM does not require as many non-
zero state transition probabilities as the left-right models.
Therefore, the computational complexity of the circular
HMM is less than the left-right models or other more
complicated topologies for the same recognition rates.

In Section 2, the circular HMM and its mathematical
representation is introduced. In Section 3, an application
of circular HMM to optical character recognition problem
is presented. Finally, Section 4 concludes the paper and
gives the experimental results.

Figure 1. Circular HMM for S=8 and N=1

2. THE CIRCULAR HMM
Suppose that a shape can be characterized by its discrete
set of boundary points drawn from a finite alphabet or
from quantized vectors of a code-book. Suppose, also, that
the boundary string is the observable output of a
parametric random process. Let, O = (Ot, Ot+1, Ot+2,…,
Ot+T-1) represents the closed boundary of length T, over an
alphabet V= {v1,… vk,... vM}, with  ∀t , Ot = Ot+T .  Our
goal is to define a discrete density Hidden Markov Model,
which represents each boundary class and labels an
unknown boundary.

The circular HMM for each boundary class l =1,…,c is
represented by a three tuple  λl = {A  l, B l ,S}. The state

transition probability matrix, Al = [aij ] and the

observation probability sequence of observing the code  k

in ith  state  for 1 ≤ i, j ≤ S,    Bl = {bi(k)} satisfies the

following conditions:

1) j = i+n,     n=0,1,…,N

2) aij   = ai+S,j+S ,

3) bi(k) = bi+S(k) and

4) N<<S ,

where S represents the number of states and N represents
the maximum number of difference between i and j.
Notice that the state transition probability matrix, where
each entry, aij,  represents the probability of moving from

state i to j is still very sparse (N<<S) as in the left-right
HMM. For example for N=1, the State transition matrix
has the following form:

a11 a12 0     0       0 ...……0

0    a22  a23  0      0………0

Al  =           0    0      a33  a34  0………0     

as1  0      0………….0    ass

The probability of observing a specific boundary sequence
by a HMM is obtained as the sum of the probabilities of



observing this sequence for every possible state sequence
of the HMM, i.e.:

( ) ( )P O P O Ql l
allQ

λ λ= ∑ ,   ,

where  Q is the hidden state sequence, which generates
the given observation sequence O and λl is the HMM

model for lth  boundary class.  Adjusting the Al and Bl
parameters of a HMM model, we may obtain high P(O/λl)

probability values for observations from the true class and
low probabilities for false ones.

A popular algorithm for the parameter adjustment is the
Baum-Welch method [1] which is an iterative update and
improvement of HMM parameters according to the
training set of the coded patterns. In the recognition stage,
the probability of observing the coded patterns by every
HMM is calculated. Then, the observed string is labeled
with the class which maximizes the probability P(O/λl).

Computation of  P(O/λl) for each λl requires an iterative

process, called forward-backward algorithm [6].

Figure 2. Coding of the handwriting using freeman's chain
codes (a) binary image, (b) boundary extracted image and (c)

outer contours .

3. OPTICAL CHARACTER
RECOGNITION (OCR) WITH THE

CIRCULAR HMM
Although the proposed HMM topology is applicable to
any shape recognition problem, in this study, it is tested
on the handwritten character recognition problem, since
this problem is well defined and investigated for a long
time. There are standard handwriting databases available

to cast consistent comparison platforms. Hundreds of
research articles and patents are available in the literature
and dozens of commercially products are available in the
market. In spite of the intensive effort the Optical
Character recognition of free style hand writing problem
is not fully solved yet. Rather then developing an optical
character recognizer, the goal of this study is to show the
power of the circular HMM in the shape recognition
problems, using a HMM based shape recognizers.

First, the boundaries of characters are extracted from the
binarized document image. Then, they are coded by
Freeman’s chain code, as indicated in Figure 2. The
cursive handwriting is segmented by the algorithm
proposed in [3]. Since our goal is not to design the best
optical character recognizer, only the outer boundaries for
each character are used for recognition. However,
inclusion of the inner boundaries definitely yields better
results in the OCR problem. However, it makes no
difference in comparing the proposed HMM topology to
the other topologies, studied in the literature. The coded
boundaries are used as feature vectors of a discrete density
HMM model, with varying sizes and topologies. The
effect of changing the size and non-zero state transitions
on the recognition rates are investigated.

4. EXPERIMENTS AND CONCLUSION

The experiments are performed on the NIST-SD 7
(Special Database for Handwritten Numbers). C
programming language is used on a UNIX workstation
environment. In the preprocessing stage, the binary image
is smoothed by an averaging filter and the outer contour
of each number is coded by the Freeman's chain code.
This coding scheme yields observation sequences of the
HMM with varying length, depending on the size and
type of the number digits. Evidentially, some numbers
(like; 1's, 2's) have relatively shorter observation
sequences then the others  (like; 4's or 9's). It is observed
that the length of the observation sequence varies between
70-120 codes for  number digit in a frame of 32x32
pixels.

First, the experiments are performed on the discrete
density left-to-right HMM of various sizes and topologies.
100 samples from each class are used for training. Then
the remaining samples of NIST-SD 7 database are fed to
the recognizer. The optimal topology, which makes the
recognition rate maximum is investigated by trial and
error. For this purpose, the number of states (S) of the
HMM is increased gradually and for each S the number of
non-zero state transition probabilities (N) are increased to
reach the full rank of the state transition probability
matrix. It is observed from Table 1 that for each S, the



optimum number of the non-zero state transition is
different. For example; for S=10 states, the optimum
number of non-zero state transition is N=4 which gives
84.2% recognition rate. For N=5 the recognition rate
decreases to 79.8%. Similar trends are observed as we
increase the HMM size (See: Table 1). This result
indicates the sensitivity of the HMM recognizer to the
HMM topology. Therefore, HMM topology depends on
the number of states for the left-to-right model. As we
increase the number of states, the recognition rates
increase.  After a certain size, there is no significant
improvement on the recognition rates. For very large sizes
(N>32) of HMM the recognition rates start to gradually
decrease. The length of the observation sequence is
normalized to a fixed size for this case. The starting and
terminating points of the boundaries are manually
selected. It is observed that if the starting and terminating
point of the observation sequence are not selected
carefully or the observation sequences are not normalized
to a fixed size, the recognition rates get as low as 60%.
Table 1 indicates that the recognition rates are achieved
in between 79-92%.

The experiments performed on the circular HMM did not
pay any attention to estimate the initial points on the
boundary. The observation sequences are not normalized
to a fixed size. Therefore, it requires less preprocessing
power compared to the left-to-right HMM. For relatively
small HMM sizes (N=10, 12, 14, 16, 18), the highest
recognition rates are always for S=1, indicating the best
nonzero state transition number for each size. As we
increase the size S, the optimum topology which makes
the recognition rates maximum requires larger S,
indicating a meaningful relation between the HMM size
and number of nonzero state transition (See; Figure:3).
This result indicates the stableness of the circular HMM
to the size variations. Nevertheless, keeping S=1 and
increasing HMM size gives the most efficient method for
identifying the optimum state size S. Because, this
approach steadily increases the recognition rates with the
least amount of computational complexity. For N=1, the
recognition rates of the circular HMM varies between 86-
92% as the state size increases from S=10 to S=32.
Figure: 4 indicates the maximum recognition rates at each
HMM size for the circular HMM and the left-to right
HMM. As it is observed from this figure, circular HMM
has superior performance for all sizes except for S=24.
Note also that, the circular HMM requires less
computational complexity compared to the classical HMM
topologies because the optimal nonzero state transition for

circular HMM is always less then the optimal nonzero
state transition of the classical models.
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Figure 3. Relationship between the state size and
optimum topology.



Figure 4. Performance of the left-to right and circular HMM
for the best topology.

TABLE 1
No. of States No. of Nonzero

State Trans.
Rec. Rates in
Left-to-right

HMM

Rec. Rates
in Circular

HMM
1 82.7 86.6
2 83.1 80.1
3 84.2 77.5
4 82.3 75.6

10

5 79.8 77.1
1 88.0 89.7
2 87.6 88.7
3 84.3 77.4
4 85.0 80.4

12

5 88.4 77.1
1 84.5 89.2
2 85.7 88.1
3 87.5 83.6
4 85.3 80.6

14

5 86.4 81.8
1 87.4 89.1
2 87.7 86.7
3 87.3 85.6
4 87.4 83.4

16

5 87.3 84.2
1 85.3 88.1
2 85.4 87.6
3 86.2 85.0
4 87.7 84.9

18

5 87.5 84.8
1 87.2 86.5

20
2 87.2 88.5

3 83.1 87.4
4 83.2 87.7

20

5 87.7 87.1
1 90.8 89.8
2 89.5 90.6
3 88.1 89.3
4 88.6 90.6

24

5 90.5 90.6
1 85.8 90.7
2 89.9 90.3
3 89.5 90.2
4 87.3 91.4

28

5 89.8 91.0
1 92.0 92.1
2 90.8 91.8
3 84.6 91.7
4 86.2 92.4

32

5 88.5 90.6


