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Abstract 

Structural shape and topology optimization using level set functions is becoming 

increasingly popular. However, traditional methods do not naturally allow for new 

hole creation and solutions can be dependent on the initial design. Various 

methods have been proposed that enable new hole insertion, however the link 

between hole insertion and boundary optimization can be unclear. The new 

method presented in this paper utilizes a secondary level set function that 

represents a pseudo third dimension in 2-d problems to facilitate new hole 

insertion. The update of the secondary function is connected to the primary level 

set function forming a meaningful link between boundary optimization and hole 

creation. The performance of the method is investigated to identify suitable 

parameters that produce good solutions for a range of problems. 

 

Keywords: Topology optimization, Level set method, Hole insertion, Compliance 

minimization. 

 

1 Introduction 
Structural topology optimization aims to provide solutions that are independent of 

the initial design. This enables great potential for finding optimal designs with 

potentially novel configurations. The early approaches to topology optimization 

for continuum structures split the design domain into discrete elements [1, 2]. The 

design variables become the amount of material within each element, enabling 

dramatic changes in shape and topology. However, solutions produced by element 

based methods often possess checkerboard patterns, which are regarded as 

numerical artifacts and not realistic arrangements of material [3, 4]. Various 

methods have been proposed to eliminate checkerboard patterns. However, 

solutions can dependent on the introduction of additional constraints [5], 

computational cost is increased by using higher order elements [3, 4], or a 

heuristic sensitivity smoothing scheme is employed [6]. Another drawback of 

element based methods is that solutions often contain “fuzzy” unclear boundaries 

and require post processing to extract a practical design [7, 8]. 

 

Boundary based methods are an alternative approach to topology optimization. 

This paradigm inherently produces designs with clearly defined boundaries and 

solutions do not possess checkerboard patterns [9, 10, 11]. The bubble method is a 

boundary based topology optimization method that extends spline based shape 

optimization by introducing a criterion to insert new holes [12]. However, shape 

optimization and hole insertion are performed consecutively. Thus, the bubble 

method is inefficient as a topology optimization method, as topology can only be 

changed after the shape of the current design has converged. Furthermore, 

topology optimization often involves large movement of boundaries and merging 

or splitting of holes. When using splines, special methods are often required to 



2 

split and merge holes [11, 13]. Large boundary movement can cause control point 

bunching, or spreading, leading to a poorly represented boundary [13]. An 

alternative method for boundary representation is to use a discretized implicit 

function. This naturally allows for complex topology changes and large boundary 

movements, without requiring special treatment or additional methods [9, 10]. 

 

The level set method is currently a popular method for optimizing structures 

defined by an implicit function. The level set method was originally developed as 

a flexible and robust computational tool to track the motion of interfaces [14, 15]. 

The direct approach to level set based optimization is to update the implicit 

function using a velocity function derived from shape sensitivity analysis, such 

that the design iteratively progresses towards an optimum [9, 10]. However, the 

direct level set optimization method cannot create new holes during optimization, 

at least for two dimensional problems. This is a significant limitation for topology 

optimization, as the solution can be dependent on the initial design, or number of 

holes. 

 

Various methods have been proposed to enable hole creation for the direct level 

set method. Topological derivatives are a popular mechanism for this, as they 

indicate the change in objective when a small hole is inserted into the design. 

Several methods have been proposed to introduce topological derivatives into the 

level set method. One approach is to add a forcing term to the implicit function 

update step, allowing new holes to emerge in favourable locations during 

optimization [16, 17]. However, the strength of the forcing term can affect 

efficiency and stability. Also, if the implicit function is initialized as a signed 

distance function, it is more difficult for holes to emerge further away the 

boundary. Indeed, topological derivatives can be exclusively employed to update 

the implicit function, without considering shape derivatives [18,19].  

 

However, by far the most common approach is to create a small hole during 

optimization of the existing boundaries via the front-tracking algorithm. One 

approach is to use topological derivatives to indicate the locations of new holes 

after a number of boundary updates have been performed [20]. Noting that 

topological derivative is proportional to local strain energy, a similar hole creation 

approach has been presented where new holes are created in low strain energy 

regions at every specified number of iterations [21]. However, the number of 

iterations between hole creations is arbitrary and this can lead to a slow 

convergence and/or even sub-optimal solutions. An alternative approach has been 

formulated where a hole is created in areas of low stress [22]. The adaptive inner 

front method creates holes by removing a specified volume of material again with 

low strain energy [23]. Whilst these criteria of strain energy or stress offers a 

mechanism that is easy to understand in terms of where to create a hole, it is 

difficult to establish when it is more optimal to create a hole or to continue with 

boundary updates. Numerical parameter(s) is often introduced to control the hole 

creation but the selection of these values is usually problem dependent and 

arbitrary. This can result in a mismatch of optimalities between the existing 

boundaries and new holes and this inconsistency can lead to a sub-optimal 

solution.  

 

The discretized implicit function can be approximated using radial basis functions 

(RBFs). The design variables become the expansion coefficients of the RBFs at 
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each discrete point or node. If sensitivities are computed at each node then holes 

can emerge naturally when the coefficients are updated [24]. Holes can also 

emerge near the boundary in an RBF type approach if a volume integral method is 

used to compute shape sensitivities within a narrow band around the boundary 

[25]. The spectral level set method uses a finite Fourier series to reduce the 

number of design variables [26]. Design variables are the coefficients of the 

Fourier series that can be freely altered during optimization to change topology 

and introduce new holes. However, the topology and number of holes is restricted 

by the number of the function coefficients. 

 

Despite the different level set and implicit function optimization approaches, the 

direct approach is still attractive, as there are robust and efficient numerical 

procedures readily available that have been developed for various applications of 

the level set method [14, 15]. However, most existing hole creation techniques for 

the direct method focus mainly on finding optimal locations to create new holes 

and do not consider whether creating a new hole is more beneficial than updating 

the boundary in that iteration. This is because there is no clear link between shape 

and topology optimization and holes are inserted at arbitrary times during the 

optimization. The need for a connection between shape and topological 

derivatives has also been recognized by other researchers, e.g. [27]. 

 

This paper introduces a novel hole insertion technique for the direct level set 

based optimization method when solving two dimensional problems. The method 

is derived from the observation that holes can be naturally created in three 

dimensional problems by intersection of two approaching level set surfaces. Our 

approach utilizes this phenomenon by introducing a pseudo third dimension into 

the two dimensional problem. The paper is organized as follows. First the direct 

level set structural optimization method is presented, including shape sensitivity 

analysis. Next, details of our numerical implementation of the direct approach are 

presented. Then the new hole creation method is introduced, including its 

numerical implementation, followed by investigations of its performance using 

classic compliance minimization examples. 

 

2 Level set based structural optimization 
This section introduces the minimization of compliance problem and briefly 

reviews how the problem can be solved using the level set method. First the 

structure is defined by an implicit function φ(x), so that its zero level set coincides 

with the boundary: 

 

φ(x)> 0, x ∈Ω
S

φ(x) = 0, x ∈ Γ
S

φ(x)< 0, x ∉Ω
S

%

&

'
'

(

'
'

       (1) 

 

where ΩS is the domain of the structure and ΓS is the boundary of the structure. 

The compliance of the structure, C(u, φ) is minimized subject to an upper limit on 

structural volume: 
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Minimize:C(u,φ) = Eε(u)ε(u)H φ( )dΩ
Ω

∫

Subject to: H φ( )
Ω

∫ dΩ≤Vol*

E
Ω

∫ ε(u)ε(v)H φ( )dΩ = bvH (φ)dΩ+ fvdΓS

ΓS

∫
Ω

∫

u
ΓD
= 0 ∀v ∈U

   (2) 

 

where Ω is a domain larger than ΩS such that ΩS ⊂ Ω, Vol
*
 is the limit on material 

volume, E is the material property tensor, ε(u) the strain tensor under 

displacement field u, U is the space of kinematically permissible displacement 

fields, v is any permissible displacement field, b are body forces, f are surface 

tractions and H(φ) is the Heaviside function: 

 

H (φ) =
1, φ ≥ 0

0, φ < 0

"

#
$

%
$

       

 (3) 

 

The key principle of level set based optimization is to use shape sensitivity 

analysis to define a velocity function that progresses the structure towards an 

optimum. This update process is usually performed by solving a Hamilton-Jacobi 

type equation: 

 

∂φ(x, t)

∂t
+∇φ(x, t)

dx

dt
= 0        (4) 

 

where t acts as a fictitious time domain. Equation (4) can be discretized and 

rearranged to produce a convenient update formula for optimization: 

 

φ
i

k+1
= φ

i

k − Δt∇φ
i

k
V
n,i

         (5) 

 

where Vn,i is a discrete value of the velocity function acting normal to the 

boundary at point i, Δt is a discrete time step and k is the current iteration. 

 

The shape derivative for the compliance objective function, Equation (2), is [10]: 

 

C' u,φ( ) = Eε(u)ε(u) − 2
∂( fu)

∂n
+κ( fu) + bu

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Vn

ΓN

∫ dΓN

− Eε (u)ε (u)VndΓD
ΓD

∫
   (6) 

 

where Vn is a velocity function normal to boundary and a positive velocity moves 

the boundary inward, n is the unit normal vector, κ is the mean curvature and Γ = 

ΓN ∪ ΓD. For practical reasons the portion of the boundary subject to surface 

tractions and displacement boundary conditions is often fixed during optimization. 

Therefore, the ΓN part of boundary is split so that ΓN = ΓF ∪ Γ0, where ΓF is the 
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part subject to surface tractions and Γ0 the free part of the boundary that is 

permitted to move during optimization. To fix ΓF and ΓD during optimization the 

velocity function is defined to be zero along those parts of the boundary. Under 

this condition the shape derivative, Equation (6), simplifies to: 

 
C' u,φ( ) = Eε(u)ε(u) − 2bu( )Vn

Γ0

∫ dΓ
0      (7) 

 

The shape sensitivity, ς(u) of the compliance function along the free boundary is 

defined here as: 

 

ς(u) = Eε(u)ε(u) − 2bu        (8) 

 

The goal of the optimization problem is to minimize the compliance function, 

Equation (2). Thus, the velocity function can be simply defined from the shape 

sensitivity to produce a negative sign of the shape derivative, Equation (7):  

 

V
n
= −ς (u) = −Eε(u)ε(u)+ 2bu       (9) 

 

The velocity function is then used to update the implicit function using Equation 

(5), thus improving the structure with respect to the objective. However, the 

velocity function does not account for the volume constraint. The most common 

approach to handle constraints is to transform the constrained problem into an 

unconstrained one using the Lagrange multiplier method. The unconstrained 

compliance problem is then: 

 

Minimize:C(u,φ) = Eε(u)ε(u)H φ( )dΩ
Ω

∫ +λ H φ( )dΩ
Ω

∫     (10) 

 

where λ is a positive Lagrange multiplier. The shape derivative of the second part 

of the unconstrained problem can be easily evaluated and the shape derivative for 

Equation (10) is:  

 
C ' u,φ( ) = ς(u) − λ( )Vn

Γ0

∫ dΓ
0       (11) 

 

Therefore the velocity function can be simply redefined as:  

 

V
n
= λ − ς(u)          (12) 

 

3 Numerical Implementation 
This section presents our numerical implementation of the direct level set method 

to solve the compliance problem, Equation (2). First the design domain is 

discretized using equal sized square elements, with edge length h. The implicit 

function φ(x), Equation (1), is discretized at nodes of these elements and 

interpolated using bilinear shape functions. The initial values of φ(x) are defined 

as a signed distance function, such that their sign is defined by Equation (1) and 

their magnitude is equal to the distance from the grid node to the nearest boundary 

point. The elements are also used to perform the finite element analysis (FEA) 

required to compute displacements and sensitivities. This fixed mesh approach to 

FEA is popular in level set structural optimization due to its simplicity and 
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efficiency compared with the fitted mesh approach. However, fixed elements can 

be intersected by the boundary. 

 

A popular and efficient method to handle intersected elements is to approximate 

their stiffness using the area fraction of material within the element: 

 

K
A
=
α
A

α
I

K
I
         (13) 

 

where KA is the stiffness matrix of an approximated element, KI is the stiffness 

matrix of an element completely filled with material, αI is the area of the complete 

element and αA is the area of material within the approximated element. The 

elements used in our implementation are plane four node bilinear elements [28]. 

However, the area fraction weighted fixed grid approach can have a destabilizing 

effect on optimization due to poor computation of boundary sensitivities [29-32]. 

Therefore, sensitivity computation is improved by employing a weighted least 

squares technique [33]. 

 

The time step in Equation (5) is constrained by the Courant–Friedrichs–Lewy 

condition for stability: Δt = h / 2 |Vn,i|max. The velocity function defined in 

Equation (12) is only applicable to the points along the boundary. In order to 

update the level set function using Equation (5), discrete velocity values, Vn,i, are 

required at all grid points. This is achieved using a velocity extension technique 

that extrapolates velocities away from the boundary [34]. This method ensures the 

preservation of the signed distance property by using the fast marching method to 

solve the following equation for extension velocities, Vext: 

 

∇φtemp∇Vext = 0         (14) 

 

where φtemp is a temporary signed distance implicit function. Preserving the signed 

distance property of the implicit function is desirable as it promotes stability in the 

level set method. 

 

Further efficiency is gained by combining the extension velocity method with the 

narrow band approach, so that extension velocities are only computed within a 

local region around the boundary and not over the entire domain [35]. This local 

region is fixed until the boundary approaches its limits, then a new narrow band 

region is defined. However, the signed distance function is only maintained within 

the narrow band. Thus, before a new region is defined, the implicit function is 

reinitialized to a signed distance function over the entire design domain to 

maintain stability. The reinitialization approach adopted in this work is to use the 

current zero level set as a starting point to solve the eikonal equation using the fast 

marching method [34]: 

 

∇φ =1         (15) 

 

The upwind finite difference scheme for gradient calculation of φ in Equation (5) 

is often employed by level set methods due to its favorable stability [14]. This 

scheme is utilized here where each gradient component is approximated using the 
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higher order Weighted Essentially Non-Oscillatory method (WENO) [36] that 

improves the stability and accuracy of the scheme. 

 

When employing the Lagrange multiplier approach to handle the volume 

constraint a fixed value of λ can be used [10], but this does not necessarily 

guarantee constraint satisfaction. An alternative is to compute λ each iteration, 

assuming the volume of the structure is conserved during boundary propagation 

[9]. However, this approach can encounter difficulties as preserving volume or 

mass using the level set method can be problematic [37]. We introduce a robust 

approach for handling the volume constraint by using an algorithm to compute a λ 

value that exactly satisfies the constraint each iteration. As we found the 

relationship between λ and volume change is often approximately linear, the value 

of λ is efficiently calculated at each iteration using Newton’s method and a 

numerical approximation for the boundary integral that defines volume change. 

 

A simple termination criterion is employed, based on the maximum change in 

objective function over the previous ten iterations: 

 

ΔC
k
=
C
max

m
−C

min

m( )
C
max

m
+C

min

m( )
, m ∈ k − 9,k[ ]      

 (16) 

 

where C
k
 is the compliance computed at iteration k and the optimization process is 

stopped if ΔC
k
 < γ, where γ is a small positive number. The algorithm used to 

solve the minimization of compliance problem, Equation (2), is illustrated in 

Figure 1. 

 

 
Figure 1. Level set optimization algorithm flowchart. 

 

4 Hole insertion method 

4.1 Concept overview 

It has been observed that new holes can emerge naturally in 3-d problems when 

two zero level set surfaces cross without breaking the connectivity of the shape or 

void. It is proposed to exploit this phenomenon to facilitate natural hole creation 

in 2-d problems. To mimic the hole insertion mechanism that occurs in 3-d 

problems, a secondary implicit level set function is introduced, φ (x), to represent a 
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pseudo third dimension for the 2-d continuum. The pseudo third dimension acts as 

a fictitious thickness for the 2-d structure. However, it is assumed that the 

thickness is sufficiently small compared to the dimensions of the 2-d structure, 

allowing thickness effects to be ignored. The secondary implicit level set function 

is initialized to an artificial height, h  above the structure domain: 

 

φ 0
(x) =

+h, x ∈Ω
S

−h, x ∉Ω
S

%

&
'

(
'

       (17) 

 

The values of the initialization also define the upper and lower bounds of the 

secondary implicit function: - h  ≤ φ (x) ≤ h . An update of the secondary implicit 

function during each iteration of the optimization is performed in a similar manner 

as the primary level set function, Equation (5): 

 

φ
i

k+1
= φ

i

k
−ΔtV

n,i
        (18) 

 

where velocity values are computed at internal nodes from sensitivity values in 

the same manner as boundary velocities: 

 

V
n
= λ −ς (u)          (19) 

 

where ς (u) is the sensitivity used to update the secondary implicit function.   

 

The link between the shape and topological updates are established by using the 

same shape sensitivity for the primary level set function as the secondary 

function, ς (u) = ς (u) . This completes the analogy of the emergence of a hole as 

shape optimisation in 3-d. This is also consistent with the basis of existing 

methods that identify that the shape and topological derivatives are proportional to 

each other [23, 27]. However, the key difference in this method is that a hole is 

created only when it is more optimal to do so compared to updating the existing 

boundaries. 

 

The consistent definition of sensitivities for the update of both implicit functions 

forms a meaningful link between boundary shape optimization and topological 

optimization via new hole creation. This link is further strengthened by using a 

consistent velocity function definition by setting λ  = λ in Equation (19). Using 

the same Lagrange multiplier in both velocity functions ensures that the algorithm 

treats both aspects of the optimization, shape of the boundary and topology, 

equally. Therefore, this approach allows the objective to progress smoothly to an 

optimum solution, as the holes will only appear when favourable compared with 

boundary shape optimization. This is demonstrated with the numerical examples 

in Section 5. 

  

A new hole is created when φ (x)  becomes negative within the region of ΩS and 

the new hole is added to the primary level set function by simply copying φ (x) 

onto φ(x) within ΩS. The progression of the secondary implicit function is linked 

to the primary one by using a common value for Δt in Equations (5) and (18) and 

a consistent velocity definition by setting λ  = λ in Equation (19) and by using the 



9 

same sensitivity definition. Therefore, shape and topology optimization is 

inherently connected and holes are created when they are beneficial compared 

with boundary shape optimization. 

 

4.2 Numerical implementation 

In practice some care is required when utilizing the secondary implicit function as 

a device for new hole insertion. Firstly the choice of the initial artificial height, h  

in Equation (17) affects the ease and frequency that holes can emerge. A larger 

value of h  represents a thicker structure causing holes to emerge more gradually, 

whereas a smaller h  value allows holes to emerge more frequently. 

In the narrow band region, the primary implicit function is updated using 

extension velocities derived from boundary movement. Therefore, the implicit 

function value may be updated by either the primary or secondary implicit 

function within the narrow band. This choice of update is removed by limiting 

hole insertion to the part of ΩS that is not part of the narrow band region. 

 

The primary implicit level set function is unlikely to remain a signed distance 

function when a new hole is created, as values are simply copied from the 

secondary function. Thus, gradients of the primary implicit function may become 

too flat or steep around newly created holes, which can adversely affect the 

stability of the method. This is avoided by reinitializing the primary implicit 

function to be a signed distance function after a new hole is inserted. It was also 

found beneficial to reinitialize the secondary implicit function using Equation 

(17), whenever the primary function is reinitialized. 

 

The velocity function used to update the secondary implicit function, Equation 

(19), is based on the derivative of the objective function. Therefore, the 

emergence of new holes through secondary implicit function update is similar to 

the gradient descent method. Hence, a move limit is introduced to prevent large 

steps occurring during optimization. A limit, β is applied to the maximum volume 

of material removed from the structure when new holes are inserted. If this limit is 

exceeded, then the value of λ  is re-computed so that the limit is satisfied. This 

computation is performed iteratively using a numerical estimate on new hole 

volume. 

 

The volume of material removed due to hole insertion is numerically estimated for 

a trial value of λ . First, a temporary updated secondary implicit function, φ 
t  is 

computed using Equations (18), (19) and the trial value of λ . If no value of φ 
t  

within the structure becomes negative then no new holes are created and φ 
t

becomes the updated secondary implicit function. Otherwise, the new hole 

volume is computed by summing volume estimates from each node with a 

negative φ 
t  value that lies within the structure, but outside the narrow band, using 

neighboring values, Figure 2. 
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Figure 2. Hole volume estimate for a node near the narrow band region 

 

To improve the stability of the method, it was found necessary to prevent very 

small holes being created. A small hole is identified if the four neighboring φ 
t  

values to a node with negative φ 
t  are all positive. If this occurs then small hole 

creation is prevented at the node by assigning a small positive φ 
t  value. This 

ensures that the size of the initial hole is greater than a single element. Once this 

check has been performed, new hole volume around a node, i is estimated using: 

 

Voli = 0.25h
2 Φi φt, j( )

j

∑ , j ∈ i
x−1, ix+1, iy−1, iy+1%& '(    (20) 

 

where Φ i φ t, j( ) is defined by: 

 

Φ
i
φ
t, j( ) =

φ
t,i

φ
t,i
−φ

t, j( ) , if φt, j ≥ 0

1 , if φt, j < 0

$

%
&

'
&

  (21) 

 

However, the secondary function is not copied onto the narrow band region of the 

primary function. Thus, the value for φ t, j used in Equation (21) for nodes inside 

the narrow band is the current primary function value. 

 

If the new hole volume estimated by summing values computed using Equation 

(20) for φ 
twith λ  = λ is greater than the limit, then λ  is modified to meet the 

limit using Newton's method. The iterative Newton’s method is terminated when a 

new hole volume estimate is within 1% of the limit value. 

 

If λ  is modified to meet the new hole volume limit, so that λ  ≠ λ, then the link 

between primary and secondary function update is invalidated. Thus, primary 

function update by boundary propagation, Equation (5), is not performed if λ  ≠ λ. 

Normally, if λ  = λ, then both hole insertion and boundary propagation can be 

performed during the same iteration. The complete set optimization algorithm, 

with the new hole creation method, is illustrated in Figure 3. 
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Figure 3. Level set optimization algorithm flowchart with hole insertion. 

 

5 Parameter investigations 
We investigate the numerical parameters and their influences on optimization. 

These parameters are: narrow band width, ω, new hole volume limit, β, and initial 

artificial height, h . Band width and artificial height are defined in terms of the 

element edge length, h and hole volume limit is defined as a percentage of the 

current structure volume. The effects of these parameters are investigated using 

numerical examples to identify suitable values that generally produce good 

results. 

 

5.1 Cantilever beam 

A cantilever beam with aspect ratio 2:1 is used for the investigation, Figure 4. The 

material properties are 1.0 and 0.3 for Young’s modulus and Poisson’s ratio, 

respectively. The design domain is discretized using 160 × 80 unit sized (h = 1) 

square elements and the volume constraint is set to 50% of the design domain. 

 

 
Figure 4. Cantilever beam 2:1, initial design and boundary conditions. 

 

A range of values are chosen for each parameter: h  = 0.5h, h, 2h;  β = 0.5%, 1%, 

2% of ΩS; ω = 4h, 6h. The minimization of compliance problem, Equation (2), is 
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solved using the new hole insertion optimization method, Figure 3, for each 

combination of parameter values. This produces a range of solutions, which are 

summarised in Figure 5 (ω = 4h) and Figure 6 (ω = 6h). The termination criterion, 

γ=0.5×10
-3

 was used for all problems. 

 

 
Figure 5. Cantilever beam solutions for band width, ω = 4h. Compliance values, 

(C, ×10
2
) are for final solution at the iteration (it) shown. 

 

 
Figure 6. Cantilever beam solutions for band width, ω = 6h. Compliance values, 

(C, ×10
2
) are for final solution at the iteration (it) shown. 

 

The results of the investigation show that the solution topologies are dependent on 

the parameter values. However, all topologies are reasonably similar and final 

compliance values are all within around 1%. This suggests that solutions are not 

significantly affected by the chosen parameters. However, some generalisations 

on the effect of each parameter may be drawn from this example. In general the 

larger band width, ω = 6h produces solutions with more consistent shape and 
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topology that converge in fewer iterations compared with ω = 4h. Lower values of 

the artificial height, h  allow new holes to emerge more frequently during 

optimization and, as a consequence, solutions obtained with lower values tend to 

possess more holes than solutions obtained using higher h  values. Also, smaller 

values for the new hole volume limit, β were active more often during 

optimization iterations than larger values. Furthermore, the largest limit 

considered, β  = 2% was often only active once or twice during optimization and 

not active at all for ω = 6h, h  = 1.0. Therefore, a larger limit on new hole volume 

is less likely to disrupt the optimization by having to modify the λ  value, which 

prevents update by boundary propagation. However, a limit is still required to 

prevent too much material being removed in a single iteration. 

 

5.2 Simply-supported beams 

The parameter investigation was repeated for two further examples, giving a total 

of 54 cases, and similar results were obtained. Therefore, complete results of these 

additional investigations are omitted for brevity. The overall results suggest that 

using a band width, ω = 6h, artificial height, h  = h and volume limit, β = 2% 

usually achieves smooth convergence often with fewer iterations. In our 

experience we observe this finding to be generally applicable to a wider range of 

optimization problems. 

 

The results for the two additional examples using the recommended parameter 

values are presented for demonstration. The material properties for both examples 

are 1.0 and 0.3 for Young’s modulus and Poisson’s ratio, respectively, and the 

termination criterion is γ=0.5×10
-3

. The first example is a Michell type structure, 

Figure 7a, discretized using 160 × 80 unit sized square elements and the volume 

constraint is set to 40% of the design domain. The convergence history for this 

example is shown in Figure 8. 

 

 
Figure 7. Michell structure: (a) initial design and boundary conditions; (b) design 

after 35 iterations; (c) 70 iterations; (d) converged solution after 107 iterations. 
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Figure 8. Michell structure, convergence history. 

 

The second additional example is a MBB beam. Using symmetry conditions about 

the vertical axis, only the right half of the beam is considered, Figure 9a. The 

design domain is discretized using 180 × 60 unit sized square elements and the 

volume constraint is set to 40%. The convergence history is shown in Figure 10. 

 

 
Figure 9. MBB beam: (a) initial design and boundary conditions; (b) design after 

30 iterations; (c) 50 iterations; (d) converged solution after 109 iterations. 

 

 
Figure 10: MBB beam, convergence history. 

 

The numerical investigation allowed for some general observations on the 

performance of the algorithm. Firstly, examples exhibit reasonably smooth 
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convergence with no significant oscillations or discontinuities in compliance. A 

smoother convergence is more evident with an increasing bandwidth, e.g. ω = 6h.  

A close examination of the topological changes does not show holes disappearing 

immediately after creation or significant movement of newly created holes. This 

supports that the link between hole insertion and boundary propagation, created 

through a consistent velocity function definition for the update of both implicit 

functions, is maintained throughout the optimization. The step-increases in the 

compliance value observed in the early stages of optimization coincide with the 

insertion of new holes when the new hole volume limit is active, Figures 8 and 10. 

In these incidences, the λ  value is modified but the topological evolutions do not 

show disruptions or sudden changes. Once the volume constraint is satisfied 

(around iteration 70 in Figure 8 and iteration 60 in Figure 10), compliance is 

minimised while maintaining the volume and the small peaks in compliance to 

topological changes where thin bars are eliminated because the mesh size cannot 

represent them.  

 

Most new holes are inserted during the initial stages of the optimization, before 

the volume constraint is reached. This is shown in the intermediate designs for the 

Michell structure, Figure 7b and c, and MBB beam, Figure 9b and c. After the 

constraint is reached, often only a few iterations are required to obtain the final 

solution. This suggests that new holes are created in optimal locations and are 

retained in the final solution. 

 

6 Further Numerical examples 

6.1 Cantilever beam with different initial designs 

The cantilever beam example, Figure 4, is optimized again using different initial 

designs with and without hole insertion. Three different initial designs are chosen 

and the solutions obtained are shown in Figure 11. The convergence criterion for 

all solutions is γ=10
-3

. 

 

 
Figure 11. Cantilever solutions with different initial designs. Compliance values, 

(C, ×10
2
) are for final solutions at the iteration (it) shown. 
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As expected, solutions obtained without the hole insertion method are highly 

dependent on the initial design and there is a difference of up to 20% in final 

compliance values. In contrast, solutions obtained with hole insertion are more 

consistent and there is only about a 1% difference in the final compliance values, 

Figure 11. This demonstrates that the proposed hole insertion method reduces the 

dependency on the initial design, thus improving the reliability of the direct level 

set optimization method. 

 

6.2 Multiple load cases 

This section employs the level set method with the proposed hole insertion 

method to solve a minimization of compliance problem subject to multiple load 

cases. First the multiple load case problem is stated as: 

 

Minimize:C(u,φ) = w
i
Eε(u

i
)ε(u

i
)H φ( )dΩ

Ω

∫
i=1

m

∑

Subject to: H φ( )
Ω

∫ dΩ≤Vol*
    (22) 

 

where m is the number of separate load cases and wi is the weight for load case i. 

If there are no body forces then ui is the solution to the following static 

equilibrium equation: 

 

E
Ω

∫ ε(ui )ε(v)H φ( )dΩ = fivdΓS

ΓS

∫ , ui ΓD
= 0 ∀v ∈U   (23) 

 

The shape sensitivity for the multiple load case problem, ςm can be derived as 

[38]: 

 

ς
m
= w

i
Eε(u

i
)ε(u

i
)

i=1

m

∑         (24) 

 

This shape sensitivity can be used to construct velocity functions for the primary 

and secondary implicit function update in the same fashion as the single load case 

problem, Equations (12) and (19), respectively. 

 

A beam with multiple load cases is optimized using the new hole insertion 

method. The beam is shown in Figure 12a and has three load cases, fi, spaced 

equally along the bottom edge. Each load case has a magnitude of 2.0 and a 

weight of 1.0. The material properties are 1.0 and 0.3 for Young’s modulus and 

Poisson’s ratio, respectively and the termination criterion is γ=0.5×10
-3

. The beam 

is discretized using 200 × 50 unit sized square elements and the volume constraint 

is set to 40% of the design domain. The convergence history for this example is 

shown in Figure 13. 

 

The multiple load case beam converges to a solution after 144 iterations with a 

total compliance value of 4.67×10
2
, Figure 12d.  This solution is in good 

agreement with that obtained using an element based method, [1]. The 

convergence of the objective function (Figure 13) again shows a smooth 

optimization, with a few jumps early in the optimization due to hole insertion. 
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This demonstrates that the proposed hole insertion method can obtain a good 

solution for a multiple load case problem. 

 

The examples presented here are all two dimensional and the secondary implicit 

function can be thought of as describing the thickness of the structure in a third 

dimension. However, this concept can easily be extended to allow hole insertion 

for three dimensional problems, although the physical analogy of the secondary 

implicit function becomes obscure. 

 

 
Figure 12. Beam optimization for multiple load cases: (a) initial design and 

boundary conditions; (b) design after 25 iterations; (c) 40 iterations; (d) converged 

solution after 144 iterations. 

 

 
Figure 13. Beam optimization for multiple load cases, convergence history. 
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7 Conclusions 
In this paper a new technique for inserting holes when using the direct level set 

based topology optimization method is presented and investigated. Holes are 

allowed to emerge through update of a secondary implicit level set function that 

describes a pseudo thickness of a two dimensional structure. The update of the 

secondary function is linked to the primary level set function using common 

values for the time step and volume constraint Lagrange multiplier and the 

velocity function is defined using the same shape sensitivity definition. This 

approach provides a meaningful link between boundary propagation and creation 

of new holes and achieves smooth convergence to optimum solutions. 

 

Investigations using classic minimization of compliance problems show that 

solutions are not significantly affected by the choice of parameters. However, a 

suitable set of parameters is indentified that provide good solutions to the 

problems considered. It is also observed that most holes emerge during the early 

stages and are often retained in the final solution, suggesting that holes are created 

in optimal locations. Overall, the new hole insertion method is able to smoothly 

obtain optimum solutions for a range of examples and is not significantly sensitive 

to the choice parameters or the initial design. 
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