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A New Hot-Tearing Criterion

M. RAPPAZ, J.-M. DREZET, and M. GREMAUD

A new criterion for the appearance of hot tears in metallic alloys is proposed. Based upon a mass
balance performed over the liquid and solid phases, it accounts for the tensile deformation of the
solid skeleton perpendicular to the growing dendrites and for the induced interdendritic liquid feed-
ing. This model introduces a critical deformation rate ( p,max) beyond which cavitation, i.e., nucleationzε
of a first void, occurs. As should be expected, this critical value is an increasing function of the
thermal gradient and permeability and a decreasing function of the viscosity. The shrinkage contri-
bution, which is also included in the model, is shown to be of the same order of magnitude as that
associated with the tensile deformation of the solid skeleton. A hot-cracking sensitivity (HCS) index
is then defined as . When applied to a variable-concentration aluminum-copper alloy, this HCSz21εp,max

criterion can reproduce the typical ‘‘L curves’’ previously deduced by Clyne and Davies on a
phenomenological basis. The calculated values are in fairly good agreement with those obtained
experimentally by Spittle and Cushway for a non-grain-refined alloy. A comparison of this criterion
to hot cracks observed in ring-mold solidification tests indicates cavitation depression of a few kilo
Pascal and tensile stresses in the coherent mushy zone of a few mega Pascal. These values are
discussed in terms of those obtained by other means (coherency measurement, microporosity obser-
vation, and simulation). Even though this HCS criterion is based only upon the appearance of a first
void and not on its propagation, it sets up for the first time a physically sound basis for the study
of hot-crack formation.

I. INTRODUCTION

DURING solidification, a metal experiences tempera-
ture differences which induce convection in the liquid re-
gion and deformation in the solid. The first phenomenon
involves very large displacements but low stresses, whereas
the opposite occurs for the second one. This drastically dif-
ferent behavior is due to the very large change of viscosity
of a metal when it undergoes the liquid-to-solid transition
(twenty orders of magnitude or more[1]). The transition is
made more complicated for an alloy because the presence
of the mushy zone somehow ‘‘mixes’’ the two behaviors:
the deformation of the dendritic network strongly depends
on its coherency state and the flow of liquid now occurs in
a porous solid phase.

Two major defects related to a lack of feeding can be
encountered in alloys: porosity and hot tears. As pointed
out clearly by Campbell,[2] the first defect is associated with
a hydrostatic depression in the mushy zone combined with
segregation of gaseous solute elements (hydrogen, nitrogen,
and carbon monoxide). This depression is associated with
the suction of the liquid in the porous dendritic region due
to shrinkage. The models developed for the prediction of
microporosity formation are, therefore, based on the solu-
tion of the Darcy equation coupled with a mass balance and
a microsegregation model of gaseous elements.[2–5] The for-
mation of hot tears is also linked to a lack of feeding in
the mushy zone, but only for specific regions where the
dendritic network is submitted to shear or tensile
stresses.[2,6–14] These stresses are induced by differential
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thermal contraction upon cooling. When the dendritic net-
work is coherent,* it can sustain and, as a matter of fact,

*Coherency of the dendritic network is related to the links between the
fragments of solid. The notion of coherency is a function of the
deformation mode (shearing, compression, or tension). Therefore, the
coherency temperature, i.e., the temperature at which coherency is
reached, strongly depends upon the mechanical test being used. For some
authors,[15] coherency, as measured by a shearing torque device, is attained
when the dendritic mush fills the space. Other authors have used an
indentation test to determine coherency, i.e., mainly by compression.[16] In
the present case, the word ‘‘coherency’’ is used for a dendritic network
that can oppose some mechanical resistance to tensile stresses. It has been
measured, for example, by Ackermann et al.[17] using an in situ tensile
experimental device plunged into a molten alloy.

also transmit stresses. Above the coherency temperature,
liquid still present in between the dendrites is continuous,
since the solid dendrite arms have not yet coalesced. De-
formation induced by thermal stresses can, therefore, pull
these arms apart quite easily. If the interdendritic liquid
flow can feed such regions, almost nothing is noticed, ex-
cept maybe some local inverse segregation (‘‘healed’’ hot
tears).[2] However, deep in the mushy zone, where the per-
meability of the mush is very small, an opening of the non-
coherent dendritic network by tensile deformation cannot
be compensated for by the liquid, and hot tears form.

Due to the complexity of the mechanisms involved in
hot-tearing formation, the models developed so far are rel-
atively simple. Most of them are based upon the
consideration of the solidification interval:[2] the larger the
solidification interval of the alloy, the more sensitive it is
to hot tearing. Using a lever-rule approximation, a binary
alloy exhibits a maximum hot-cracking sensitivity (HCS)
for a nominal composition equal to that of the maximum
solubility of the solid. With a Scheil approximation, the
eutectic temperature is always reached and, thus, the HCS
is a monotonically decreasing function of the composition.
The most sophisticated models use a back-diffusion
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Fig. 1—(a ) through (f ) Microscopy observations of a succinonitrile-
acetone alloy, which has been directionally solidified in a Bridgman-type
apparatus (redrawn from a micrograph of Kurz[18]).

model,[1] for which the maximum HCS is dictated by the
Fourier coefficient in the solid phase. Clyne and Davies[6]

have recognized that hot cracking is due to an opening of
the mushy zone in a ‘‘vulnerable’’ region where the den-
drite arms can be pulled apart easily. They introduced a
HCS criterion equal to tv /tr, where tv is the time spent by
the mushy zone in the vulnerable region and tr is a nor-
malization time during which stresses in the mushy zone
can be relaxed. These authors have chosen tv as the time
difference separating the instants at which a volume frac-
tion of solid of 0.9 and 0.99 is reached. Using a totally
different approach, Feurer[8] has focused mainly on the
feeding of the mushy zone: similarly to what has been done
for microporosity formation, he has calculated the depres-
sion in the mushy zone associated with shrinkage. As
pointed out by Campbell,[2] feeding is also important in hot-
tearing formation, but the driving mechanism is uniaxial
tensile deformation and not hydrostatic depression due to
shrinkage.

In the present contribution, a simple two-phase model is
derived for the formation of hot tears. It tries to combine
the deformation of the coherent solid network, feeding of
the mushy zone, and a criterion at which initiation of a hot
tear in the interdendritic liquid region occurs.

II. CRITICAL REGION OF THE MUSHY ZONE

In order to illustrate the problem of hot-cracking for-
mation, the aspect of a mushy zone of a succinonitrile-
acetone organic alloy is shown in Figure 1.[18] This alloy
was directionally solidified between two glass plates using
a Bridgman-type experiment,[19] and the formation of the
dendrites was observed by transmission light microscopy at
various stages. The time indicated at the top of each figure
has been calculated from the relationship (x* 2 x )/vT,

where vT is the solidification rate or the speed of the iso-
therms, x* is the dendrite tip position, and x is the location
of the figure. For each figure, the volume fraction of solid
(fs) has been estimated by visual inspection. Various stages
can be distinguished. In Figure 1(a), the dendritic network
is very open and the interdendritic liquid can flow without
difficulty (this is the region of importance for convection-
induced macrosegregation). The fraction of solid rapidly
increases due to microsegregation (Figure 1(b)), but the
dendrite arms have not yet coalesced or bridged, even at
fs 5 0.82 (Figure 1(c)). At much longer times and, thus,
deeper in the mushy zone,* the volume fraction of solid

*The succinonitrile-acetone system does not form a eutectic.

has increased only slightly, but isolated pockets of liquid
now remain in between dendrite arms which have coalesced
(Figures 1(d) through (f)). This region of the mush can
resist and deform plastically when subject to tensile
stresses.

As pointed out by Clyne and Davies,[6] the critical region
for hot tearing in an alloy corresponds to the zone of Figure
1(c): in this region, the film of interdendritic liquid is con-
tinuous and can open easily if thermal stresses are induced
and transmitted by the coherent mush located underneath.
The only resistance this film can oppose is the pressure of
‘‘cavitation,’’ i.e., the pressure at which nucleation of a first
void, possibly leading to a crack, will start. On the other
hand, any opening of this continuous interdendritic liquid
film in this zone can hardly be compensated for by feeding
from the upper region of the mush, because of the high
volume fraction of solid (i.e., low permeability).

In the following section, a simple hot-tearing criterion
based upon deformation of the mush and liquid feeding is
derived.

III. HOT-TEARING MODEL

Figure 2 is a schematic diagram of the columnar den-
dritic growth seen in Figure 1. The dendrites are assumed
to grow in a Bridgman-type configuration, i.e., in a given
thermal gradient (G) and with a velocity (vT) equal to the
speed of the liquidus isotherm. This velocity points toward
the right and, therefore, the liquid has to flow from right to
left in order to compensate for shrinkage, the specific mass
of the solid being larger than that of the liquid for most
metallic alloys. If the dendritic network is submitted to a
tensile deformation rate perpendicular to the growth direc-
tion ( p), the flow should also compensate for that defor-zε
mation if no hot tears form. The pressure in the
interdendritic liquid is schematically represented at the bot-
tom of Figure 2: it decreases from the metallostatic pressure
(pm) near the dendrite tips. If the pressure falls below a
cavitation pressure (pc), a void may form (black region in
Figure 2) and give rise to a crack. Therefore, a hot tear will
form at the critical pressure (pmin),

p 5 p 2 Dp 2 Dp 5 p ormin m « sh c [1]
Dp 5 Dp 1 Dp 5 Dp 5 p 2 pmax « sh c m c

The terms Dpε and Dpsh are the pressure drop contributions
associated with deformation and shrinkage, respectively
(taken as positive values). In order to calculate these two
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Fig. 2—Schematics of the formation of a hot tear in between columnar
dendrites as a result of a localized strain transmitted by the coherent
dendrites below. The pressure in the interdendritic liquid is also indicated.

Fig. 3—Schematics of the mass balance performed at the scale of a small
volume element over which liquid can enter through the vertical faces in
order to compensate shrinkage and uniaxial deformation of the solid
skeleton along the vertical direction.

contributions, a mass balance is performed at the scale of
a small volume element shown in Figure 3. In a reference
frame attached to the isotherms and under steady-state con-
ditions, this mass balance can be written as

],r.
div ,rv. 2 v 5 0 [2]T ]x

where the notation ‘‘^.&’’ is used to indicate values locally
averaged over the liquid and solid phases.[20] The average
specific mass ^r& 5 rs fs 1 rl fl is the mean specific mass of
the solid and liquid phases, and ^rv& 5 rs fsvs 1 rl flvl is the
average mass flow. The volume fraction of liquid (fl) is
equal to (1 2 fs), and the specific masses of the two phases
(rs and rl) are assumed to be constant, but not equal. Con-
sidering that the fluid moves along the x-axis only, whereas
the solid deforms in the transverse direction, one has

](r f v ) ](r f v )l l l, x s s s, y1
]x ]y [3]

](r f ) ](r f )s s l l2 v 1 5 0T @ #]x ]x

Taking fs as a function of x only, Eq. [3] can be rewritten
in the form

d (f v ) dfl l ,x sz1 (1 1 b) f « 2 v b 5 0 [4]s p Tdx dx

where the deformation rate of the solid along the y-direction

( 5 ) has been introduced, together with the shrinkage
]vs,yzεp ]y

factor b 5 2 1 (b . 0). The integration of Eq. [4] over
rs

rl

the distance x gives

zf v 1 (1 1 b) * f « dx 2 v b f 5 f vl l,x s p T s l l,x [5]
1 (1 1 b) E(x) 2 v b f 5 CT s

The entity E(x ) is the deformation rate times the volume
fraction of solid, cumulated over the distance x of the
mushy zone. The integration constant C, appearing in Eq.
[5], can be determined from the velocity of the fluid at x
5 L, where L is the length of the mushy zone (Figure 2).
Indeed, at the tip of the dendrites (i.e., fl 5 1), the velocity
of the fluid ([vl,x]x5L) must compensate for the shrinkage and
the cumulated deformation of the whole mushy zone if no
void forms. The shrinkage of the whole mushy zone, given
by the mass conservation equation, is identical to that of a
planar front and equals 2vTb. The cumulated deformation
within the mushy zone is equal to 2(1 1 b) E(L). Intro-
ducing these two expressions in Eq. [5] gives the following
condition for the constant C:

[v ] 5 2v b 2 (1 1 b) E(L)l,x T
x5L [6]

5 2(1 1 b) E(L) 1 C or C 5 2v bT

Replacing, then, C* in Eq. [5] finally gives the velocity of

*Please note that this value of C is consistent with the boundary
conditions imposed at the roots of the dendrites: at fs 5 1, vl,x 5 0, and
E 5 0. And, thus, C 5 2vTb. However, the presence of eutectic near fs

5 1 might make this condition more complicated. This is why C has been
deduced from the boundary condition at the tip of the dendrites.

the liquid at any point of the mushy zone;

f v 5 2 (1 1 b) E(x) 2 v b f [7]l l,x T l
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In the absence of deformation (E 5 0), it is interesting to
note that the actual velocity of the fluid (vl,x) is constant
and equal to 2vTb at any point of the mushy zone. The
left-hand-side term of Eq. [7] can be related to the pressure
gradient in the liquid via the Darcy equation,[3–5,8]

K dp
f v 5 2 [8]l l,x m dx

where K is the permeability of the mushy zone and m is
the viscosity of the liquid. Please note that the contribution
of gravity has been neglected in this equation. Combining
Eqs. [7] and [8] and integrating over the whole length of
the mushy zone finally gives the pressure drop between the
tips and roots of the dendrites,

Dp 5 Dp 1 Dp 5 p 2 pmax « sh L 0 [9]
L L

E fl5 (1 1 b)m * dx 1 v bm * dxTK K0 0

zwith E(x) 5 * f « dx [10]s p

The first term on the right-hand side of Eq. [9] is the con-
tribution to the pressure drop associated with the defor-
mation of the solid skeleton, whereas the second one is the
shrinkage contribution also found in microporosity mod-
els.[3,4,5] Please note that the permeability, is also a function
of x or fs. Using the Carman–Kozeny approximation,[3,4,5]

2 3l (1 2 f )2 sK 5 [11]
2180 f s

where l2 is the secondary dendrite arm spacing, one finally
gets

Dp 5 p 2 p 5max L 0

TL

2180 (1 1 b)m E(T) f (T)s* dT [12]
2 3l G (1 2 f (T))2 sTS

TL

2180 v bm f (T)T s1 * dT
2 2l G (1 2 f (T))2 sTS

Please note that the integrals over x have been replaced by
integrals over the temperature, thus introducing the tem-
perature gradient, G, fs and E being two functions of T. The
terms TL and TS are the liquidus temperature and the tem-
perature at the end of solidification, respectively. As can be
seen, the contribution of shrinkage to the pressure is pro-
portional to the ratio vT /G, a factor which was already de-
duced by Niyama et al.[21] for his criterion of microporosity
formation.* Furthermore, the volume fraction of solid has

*In the well-known ‘‘Niyama criterion’’ for microporosity formation,
the velocity of the isotherm vT is replaced by /G, where is the cooling

z z
T T

rate. Thus, the pressure drop Dpsh becomes proportional to /G2 and the
z

T
criterion is usually expressed as a function of G / 1/2.

z
T

been assumed to be related only to the temperature field,
even though it can depend also on the cooling rate due to
back-diffusion.[1] The expression used for the relationship
fs(T ) in Eq. [13] is due to Kurz and Fisher:[1]

*122a ks

k 2 11 T 2 Tmf (T) 5 1 2 [13]s * @ #T 2 T@ #1 2 2a k m Ls

where k is the partition coefficient, Tm is the melting point
of the pure metal, and is related to the Fourier number*as

as via the relationship

* 21 21a 5 a [1 2 exp (2a )] 2 0.5 exp (2 0.5 a )s s s s [14]
2with a 5 D t /ls s f 2

where Ds is the diffusion coefficient in the solid that tf is
the solidification time.

In aluminum alloys, the coefficient as is small (0.01 to
0.03) and ' as (i.e., a situation close to a Scheil-type*as

model). Under these conditions, the model of Clyne and
Kurz is similar to that of Brody and Flemings.[1]

Combining Eqs. [1] and [12] allows one, then, to obtain
the maximum deformation rate ( p,max) that can be sustainedzε
by the mushy zone before a hot tear nucleates at the root
of the dendrites,

2l G b2zF(« ) 5 Dp 2 v H [15]p,max c T180 (1 1 b)m 1 1 b

TL

2E(T) f (T)szwith F(« ) 5 * dT ;p 3(1 2 f (T))sTS [16a]
1 zE(T) 5 * f (T) « (T) dTs pG

TL

2f (T)sand H 5 * dT [16b]
2(1 2 f (T))sTS

IV. RESULTS AND DISCUSSION

In the previous section, the expressions for the pressure
drop contributions associated with deformation and shrink-
age were derived (Eqs. [9] and [12]). In a first step, it is
assumed that the deformation rate is homogeneous over the
entire length of the mushy zone, i.e., that in Eq. [5] iszεp

independent of T (or x ). Under these conditions, the cu-
mulated deformation rate (E(T)) and the two other integrals
appearing in Eq. [16] depend only on the solidification path
fs(T ), this last relationship being given by Eq. [13]. Assum-
ing a constant cooling rate ( 5 21 K/s) and a uniformzT
strain rate of 1024 s21, the shrinkage and mechanical con-
tributions to the depression in the interdendritic liquid have
been calculated for an Al-Cu 1.4 wt pct alloy. The solidi-
fication path, given by Eq. [13], has been calculated with
the parameters listed in Table I. The two contributions (Dpε

and Dpsh) are plotted separately in Figure 4 as a function
of the position x in the mush. For both of them, the maxi-
mum depression occurs at the roots of the dendrites (x 5 0),
as could be expected. It should be pointed out that these
two contributions are on the same order of magnitude under
the present conditions. It is interesting to note that a com-
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Table I. List of Parameters Used in the Calculation of
Figure 4

Viscosity m 1 z 1023 Pa s
Cavitation depression Dpc 2 z 103 Pa
Shrinkage factor b 0.06 —
Velocity of the isotherms vT 1 z 1024 m s21

Thermal gradient G 1 z 104 K m21

Cooling rate
z

T 21 K s21

Rate of heat extraction
z

H 26 z 103 J kg21 s21

Secondary arm spacing l2 100 z 1026 m
Back-diffusion coefficient as 0.01 —

Fig. 4—Profile of the shrinkage, Dpsh, and mechanical, Dpε, pressure drop
contributions in the mushy zone for an Al-Cu 1.4 wt pct alloy ( 5 21 K/s

z
T

and 5 1024 s21).zεp

Fig. 5—Concentration dependence of the shrinkage, Dpsh, and mechanical,
Dpε, pressure drop contributions at the roots of the dendrites for the Al-
Cu system ( 5 21 K/s and 5 1024s21).

z zT εp

pressive, instead of a tensile, strain rate of 1024 s21 in the
mush would almost exactly compensate for the solidifica-
tion shrinkage, thus eliminating liquid suction in that case.

Under the same assumptions ( 5 21 K/s andzT
5 1024 s21), the maximum shrinkage and mechanicalzεp

contributions to the pressure drop found at the roots of the
dendrites were calculated for different alloy compositions
in the binary Al-Cu system. They are plotted in Figure 5.
Both components of the depression exhibit a maximum at
1.4 wt pct Cu, where the solidification interval is at a max-
imum.

Figure 4 has clearly shown that the shrinkage and defor-
mation contributions to the pressure drop in the interden-
dritic liquid are on the same order of magnitude and are
both maximum at the roots of the dendrites. These maxi-
mum values have been then plotted in Figure 5. Adding the
two contributions of Figure 5 would already give an indi-
cation of the HCS of the alloy, in a way similar to that used
by Niyama to describe the sensitivity to pore formation.
However, if one wants to separate the deformation contri-
bution from the shrinkage part, it is better to describe the

HCS index of the alloy in terms of the maximum strain rate
that can be sustained by the deepest part of the mush before
a void forms (Eq. [15]). This is, then, equivalent to calcu-
late p,max, such that Dpmax 5 Dpε 1 Dpsh 5 Dpc, where Dpc

zε
is the cavitation depression of the liquid and Dpmax is the
total depression in the interdendritic liquid at the roots of
the dendrites. The HCS index is then assumed to be pro-
portional to 1/ p,max.zε

This HCS index, normalized between zero and unity, was
calculated for the two thermal conditions defined by Clyne
and Davis:[6] mode 1 corresponds to a constant cooling rate
( and mode 2 to a constant rate of heat extraction ( ,z zT) H)
( 5 cp 2 L s, where cp and L are the specific heat andz z zH T f
latent heat of fusion, respectively). The resulting HCS index
is compared in Figure 6 with the measurements of Spittle
and Cushway for different compositions (c ) of non-grain-
refined Al-Cu alloys.[22] These authors have used ‘‘dog-
bone’’ shaped cylindrical molds to cast these alloys. The
electrical resistance of the specimens was then measured
after solidification and converted into a HCS index varying
from 0 to 1. Also reported in Figure 6 are the Clyne and
Davis criterion for modes 1 and 2 and a criterion which is
simply proportional to the solidification interval of the
mushy zone, as calculated with the help of Eq. [13] (i.e.,
including back-diffusion). It is to be noted that the criterion
of Clyne and Davis and the present one both assume that
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Fig. 6—Concentration dependence of the HCS criterion defined by z21εp,max

and normalized to unity, where p,max is the maximum strain rate that canzε
be sustained by the mushy zone before reaching a fixed cavitation
depression Dpc (Eq. [15] and list of parameters in Table I). The theoretical
curves calculated for Al-Cu alloys and a constant cooling rate (mode 1)
or constant heat extraction rate (mode 2) are compared with the
measurements of Spittle and Cushway,[22] with the criteria of Clyne and
Davis[6] and with the solidification interval criterion.[2]

interdendritic bridging occurs at a solid fraction of about
98 pct if the eutectic temperature is not yet reached. This
means that the lower integration limit in Eqs. [13] and [14]
(TS) is equal to either T( fs50.98) if less than 2 pct eutectic
forms or to TE at higher concentrations, where TE is the
eutectic temperature.

The L-shaped-curve, typical of hot tearing, is well re-
produced by the present criterion for both modes; the rapid
increase at a low solute content and the maximum at a
composition of around 1.4 wt pct Cu, predicted by the cri-
terion, are in relatively good agreement with the measure-
ments of Spittle and Cushway. Please note that the
maximum of the HCS curves is very close to the maximum
of the solidification interval, as pointed out by Campbell.[2]

The decrease between 1.4 and 3 pct is somewhat too steep
in the present model, but the vanishing values obtained at
concentrations higher than 3 pct are again close to the ex-
perimental ones. On the other hand, the criterion of Clyne
and Davis for mode 1 surprisingly does not reproduce the
increase of the HCS at a low concentration and was dis-
carded by these authors.* The same criterion computed for

*This is rather surprising, since fs(T ) is a weakly dependent function of
T at the roots of the dendrites ( 5 cp ), which means that both modes

z z
H T

should yield comparable results.

mode 2 yields a too-wide L curve and overestimates the
HCS values as compared with experiments, especially at
higher concentrations. Finally, the model based simply on
the solidification interval predicts an even slower decrease
past the maximum.

It should be pointed out that the measurements of Spittle
and Cushway correspond to an overall cracking length of
the specimens; their HCS index is, therefore, an indication
of the propagation of hot tears. The present model is only
a criterion for the appearance (initiation) of the first hot
tear in the interdendritic liquid and not of its propagation.
However, in the steady-state conditions considered in the
present model, there are no reasons for an initiated hot tear
to stop propagating unless the deformation rate decreases.

It is also well possible that, as for microporosity for-
mation,[3,4,5] the minimum pressure at which nucleation of
a first void occurs is influenced by the initial concentration
and microsegregation of dissolved gases. The influence of
the Cu concentration on these phenomena has been ne-
glected, and Dpc was considered constant. On the other
hand, the undercooling of the eutectic, which is usually
substantially larger than that of the dendrite tips, has also
not been considered here: it will delay the decrease of the
HCS curves. The influence of a eutectic precipitation on
the dendrite coherency is also unknown. Furthermore, the
density of the eutectic is much larger than that of the pri-
mary phase and has been shown to induce a substantial
suction of liquid deep in the mush.[23]

The assumption of a homogeneous deformation rate over
the entire length of the mushy zone can also be put into
question: up to which fraction of solid is the strain rate of
the coherent solid skeleton effectively transmitted in the
mushy zone? Two other assumptions were tried in order to
test this issue: in the first one, the strain rate is homoge-
neous in the mush above a 40 vol pct fraction of solid and
is zero for 0 ≤ fs ≤ 0.4; in the second, the strain rate vanishes
to zero in the mushy zone as ( fs) 5 p,o fs, where p,o is thez z zε ε εp

deformation rate at the roots of the dendrites. It was verified

that these two assumptions did not substantially affect the
shape of the L curves. Indeed, the depression in the inter-
dendritic liquid occurs mainly in the deepest part of the
mushy zone and does not depend much on the flow near
the dendrite tips. On the other hand, the fraction of solid
at which interdendritic bridging is assumed to occur (0.98)
has a great influence on the position of the peak of the L
curves: when this value tends toward unity, the concentra-
tion of the HCS maximum tends toward zero. This is due
to the singularity of the permeability function when
fs → 1. In the present calculations, the cavitation depression
was set to 2 kPa: it is an unknown key value of the model
but, nevertheless, it is relatively close to the depression
computed by Ampuero et al.[5] for microporosity formation
in an Al-4.5 pct Cu alloy. It is also on the order of mag-
nitude of the value of 1 kPa set by Drezet and Rappaz[14]

in the study of ring-mold test experiments performed on an
Al-4.5 wt pct Cu alloy. These authors determined this cav-
itation depression after estimating the value of p,max from azε
combination of thermomechanical computations of the ring-
mold tests and experimental observations of the extent of
hot tears.

Finally, it was also confirmed by experimental observa-
tions[2] that, for a given alloy composition and for both
modes, the maximum sustainable strain rate before hot tears
form is an increasing function of the thermal gradient and
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of the permeability and a decreasing function of the vis-
cosity.

V. CONCLUSIONS

As a conclusion, the present criterion is only an indicator
of the appearance (or initiation), and not of the propagation,
of hot tears. Therefore, it is certainly not straightforward to
compare 1/ p,max to the crack length measured in real spec-zε
imens. Further refinements of the model can also be envis-
aged, such as more complex cooling conditions, accounting
of gas segregation, equiaxed instead of columnar structures,
etc. The model for the first appearance (initiation) of a hot
tear is also rather crude: it corresponds to instantaneous
nucleation at a critical depression. More sophisticated mod-
els, in which the time would appear (i.e., nucleation rate),
could also be used to predict hot-tear formation. The model
was intentionally made simple so that the mechanisms
clearly appear. Unlike the model of Feurer,[8] the contri-
butions of shrinkage and uniaxial deformation are both con-
sidered in the present approach. It is believed that the
physically sound framework established in the present
model should allow one to extend this two-phase approach
in the direction of crack propagation.
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