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Abstract—Tandem mass spectrometry is a powerful tool for 
studying proteins. However, an open problem for proteomics 
research is how to accurately identify proteins from the 
experimental mass spectra. De novo sequencing based protein 
identification is the only feasible approach for finding new 
proteins and studying protein post-translational modifications. 
In this paper, we describe our novel hybrid de novo sequencing 
based protein identification method. It differs from existing 
methods which rely on finding one maximum path from a 
spectrum graph. Instead, to identify peptides, our method 
applies a novel Bayesian network and dynamic programming 
hybrid algorithm to explore the sub-optimal space. Thus our 
method can better accommodate various interferences and 
artefacts present in the mass spectra. Evaluated on a large 
number of spectra, our method outperforms the most popular 
de novo sequencing methods and can significantly improve the 
accuracy of de novo sequencing based protein identification.  

Keywords-Protein identification, de novo sequencing, 
Bayesian network, dynamic programming, proteomics. 

I.  INTRODUCTION 
In recent years, tandem mass spectrometry (MS/MS) has 

become the leading technology for proteomics research [1, 
2]. In a single mass spectrometry (MS) experiment, 
thousands of proteins from multiple complex biological 
samples can be identified and their expressions accurately 
measured at nano-mol level, thus providing a high 
throughput and high sensitivity approach for proteomics 
research. In a typical MS experiment, samples are first mixed 
and treated with proteolytic enzymes (e.g., trypsin) to break 
the proteins down into shorter peptides. The peptides are 
then separated using High Performance Liquid 
Chromatography (HPLC) and injected into the mass 
spectrometer, where the peptides are fragmented into peptide 
fragments, ionised, and finally captured by the mass 
spectrometer. One experiment may generate thousands of 
MS/MS spectra, each of which theoretically corresponds to 
one of the proteins in the sample. However, mass spectra are 
usually tempered with noise and various artefacts. Thus the 
identification of proteins from mass spectra is a very 
challenging and error-prone process. Recent advances in 
mass spectrometry instruments and new fragmentation 
technologies provide unprecedented resolving power and 
mass accuracy in acquired spectra, which present a new 
opportunity to potentially identify 100% of the proteins and 
many more protein modifications than before [2 - 4]. 

However, with existing identification methods, only 50% of 
the proteins can be successfully identified and the protein 
post-translational modifications (PTM) are virtually 
unidentifiable [5 - 8]. Therefore, it has become a serious 
bottleneck for proteomics research and there is a critical need 
for more accurate protein identification methods that can 
fully utilise the resolving power of new instruments and 
identify more proteins and protein modifications. 

Existing identification methods may be roughly classified 
into two categories: the database search approach and the de 
novo sequencing approach. The database search approach 
has been widely used due to its accuracy and reliability. 
Database search methods identify proteins by generating 
theoretical spectra in silico from a given protein database and 
comparing the experimental spectra with the theoretical 
spectra to find the best match. The main difference between 
database search methods lies in the type of scoring functions 
utilised to rank-order the most probable protein matches. 
One popular scoring method is exemplified by the 
SEQUEST algorithm [9], which applies a signal processing 
technique known as cross correlation to mathematically 
determine the overlap between the theoretical spectra and the 
experimental spectra to find the best match. Another 
important scoring method is to employ a probability model 
to estimate the likelihood of a match between the 
experimental spectrum and the theoretical spectrum being a 
random event. A number of methods have been proposed 
using such an approach, including X!Tandem [10] which 
uses a hyper-geometric model, OMSSA [11] which applies a 
Poisson model, and MASCOT [12]. It is very desirable that 
the probability-based database search methods provide direct 
measurement of the statistical confidence of an identified 
protein. 

Despite the sophistication of database search methods, 
they have several limitations. Firstly, they are only effective 
if the proteins of interest are already known and the database 
used in the identification process contains the correct protein 
sequences. Unfortunately, for many scenarios this is difficult 
since many studies involve unknown proteins or proteins that 
have not been completely annotated [13]. Secondly, the 
database search methods have limited capability in detecting 
protein modifications. If the proteins in the samples are 
heavily modified, it usually leads to incorrect identifications 
for database search methods [14, 15]. Thirdly, specifying the 
enzyme used in the proteolytic digestion can also exclude the 
correct peptides from the search space and lead to 



misidentifications [16]. The de novo sequencing approach on 
the other hand is able to address these issues because it 
identifies proteins by extracting protein sequence 
information directly from experimental spectra and does not 
require any protein database. De novo sequencing methods 
are the only feasible means for applications such as finding 
novel proteins, detecting amino acid mutations, studying the 
proteome at the same time as the genome, and so on. 
However, the main obstacle for the de novo sequencing 
approach is that it usually requires relatively higher quality 
spectra. The recent development of mass spectrometry 
instruments enables the measurement of high dimensional 
mass spectra and provides unprecedented mass accuracy, and 
this has removed the main obstacle for the de novo 
sequencing approach.  

Two different de novo sequencing methods have been 
developed. The first method, such as Sherenga [17] and 
Lutefisk [18], projects the problem into graph theory and 
applies algorithms for finding maximum path lengths in a 
network topology to achieve protein identification. The 
second method applies probability models in inferring the 
proteins from the spectra, for example NovoHMM [19] and 
PepNovo [20]. However, the main idea of these two methods 
is the same: to find the longest possible peptide sequence that 
best suits the observed experimental spectrum. Because 
many peaks in the spectra corresponding to real peptide 
fragment ions cannot be detected in the presence of protein 
modifications, and ion degradation generates many intensive 
peaks that cannot be explained, the optimal path may not 
always be the correct peptide identification. Therefore, we 
propose a new Bayesian network and dynamic programming 
hybrid de novo sequencing method to infer the most likely 
peptide sequences by exploring the sub-optimal space. The 
method firstly applies a Bayesian network probability model 
to infer a number of most probable peptide sequences given 
the spectra, and then utilises a dynamic programming 
algorithm to find the most likely sequence. Evaluated on a 
large number of tandem mass spectra, our method is able to 
outperform the most popular de novo sequencing algorithms.  

II. METHOD 

A. Terminology  
A peptide P which has n amino acids can be formalised 

as: P = p1p2…pn. The total mass of the peptide therefore can 
be formalised as:  

1
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where mi  is the residue amino acid mass, and 18 is the mass 
of H2O. When peptides are subjected to fragmentation, a 
typical event is a single cleavage along the peptide’s 
backbone. For an n amino acids peptide, there will be n 
possible cleavage positions, including the case that no 
cleavage happens. As a result, a peptide may result in a 
series of different ions based on the cleavage position. The 
N-terminal fragments (also called prefix fragments) can be 
denoted as: p1, p2… pi, and the C-terminal fragments (suffix 

fragments) are then denoted as: pi+1, … pn. These peptide 
fragments will generate corresponding fragment ions with 
positive charges after ionisation, and a tandem mass 
spectrum is the collection of all detected signals of generated 
peptide fragment ions. N-terminal ions are called a-, b-, and 
c-ions, while the C-terminal ions are called x-, y-, and z-ions. 
If a cleavage happens at the ith peptide bond, it will produce 
ai, bi, ci ions and xn-i, yn-i, zn-i ions. An illustration of possible 
peptide fragmentation positions and corresponding notations 
for the fragment ions is given in Figure 1. The peptide 
fragment ions may also have neutral losses, where chemical 
groups such as water or ammonia (NH3) are separated from 
the fragment ions.  
 

 
Figure 1.  An illustration of a 4 amino acids peptide fragmentation pattern 

and notation for the fragment ions. 

 

Figure 2.  An example of identifying a peptide from a tandem mass 
spectrum using a de novo sequencing approach. The peptide precursor is 

singly charged and the spectrum is generated from an ion-trap mass 
spectrometer. 

The mass spectrum of one peptide is a list of pairs of 
mass to charge ratio (m/z) and an associated intensity (m1, 
i1), (m2, i2), … (mj, ij)  known as peaks, coupled with a parent 
(also called precursor) peptide mass M. The de novo 
sequencing problem is to infer the sequence of the peptide 
that gives rise to these peaks. Ideally each peak corresponds 
to one fragment ion, and the peptide sequence can be 
inferred from the mass difference between two adjacent 
peaks. An example is given in Figure 2. This is a very 
difficult task in reality, because spectra are very noisy and of 



complex nature. In addition, different fragment ions are not 
detected at the same probability and many fragment ions are 
hardly distinguishable from the background spectrum noise. 
For example, the signals of b- and y-ions may be up to 5 
times stronger than those of a- and x-ions; 1/5 of the b- and 
y-ions may suffer from neural losses; z-ions usually have 
very low intensities and so on [9]. 

B. Step 1: Spectrum Preprocessing 
Our method has three major steps: (1) spectrum 

preprocessing, (2) Bayesian network-based identification, 
and (3) inferring the most likely sequence. The first step is to 
preprocess the spectra peaks and normalise the peak 
intensities prior to the main de novo sequencing algorithm. 
Our method adopts the peak preprocessing procedure of 
PepNovo [20]. The method firstly determines the baseline 
intensity as the average intensity of the weakest 1/3 of the 
peaks in the spectrum. The method divides each peak’s 
intensity to the baseline intensity so that a normalised 
intensity is obtained. The normalised peak intensities are 
discretised into 4 levels: no signal, low signal, medium 
signal, and strong signal. The method then removes the low 
signal peaks by sliding a window of width h across the 
spectrum and removing all the peaks except the top k peaks. 
For our method, we use h = 15 Da and k = 3. The method 
also constrains the total number of selected peaks to be no 
more than 100. 

Because different regions of the spectrum have different 
characteristics and distributions of the peaks, our method 
organises the peaks into 5 regions based on their m/z 
positions and adds this information to the Bayesian network-
based model. Therefore, the correlation between the peptide 
fragmentation and the observed peak intensities can be better 
captured. For example, peaks are usually more intensive in 
the middle region of the spectrum because peptides are less 
likely to be cleaved at the positions near the two termini.  

C. Step 2: Bayesian Network Identification 
The second step is to infer a number of most probable 

peptide sequences using a Bayesian network probability 
model. This step involves 4 procedures. 

Procedure 1

TABLE I.  THE LIST OF ALL THE FRAGMENTIONS THAT ARE 
MODELLED;  M IS THE SUM OF THE AMINO ACID RESIDUE MASSES. 

: The method constructs a spectrum graph as 
introduced in [17]. A spectrum graph is a directed acyclic 
graph, whose vertices correspond to putative ions of the 
peptide fragmentation. Two vertices are connected by a 
directed edge from the vertex with a lower mass to the one 
with a higher mass if the mass difference between these two 
vertices approximates the residue mass of an amino acid or 
other mass offsets like ion neural losses (see Table 1 for the 
complete list of all considered mass offsets). Given a 
preprocessed mass spectrum S, we build the entire spectrum 
graph and connect all the edges given the peaks of S. Since 
the most intensive peaks in the spectrum tend to be b- and y-
ions, our spectrum graph has vertices for both 
interpretations: given a peak at mass mi, we create a vertex at 
mass mi – 1 interpreting the peak as a b-ion and also a vertex 
at mass M – mi + 1 interpreting the peak as a y-ion, where M 
is the sum of residue amino acid masses. A vertex for an 
empty peptide of mass zero and a vertex for intact peptide of 

mass M – 18 are also added to the graph. If vertices are too 
close to each other (mass difference < 0.5 Da), these peaks 
are likely to be isotopic peaks of the same ion and are 
therefore merged. DiMaggio and Floudas [16] gave 
visualisation of a spectrum graph (also see Figure 3).  

Ion Type Notation 
Mass offset Terminus 

b+
 M + 1 C-Terminus 

b+ - H2O  M – 17 C-Terminus 

b+ - NH3 M – 16 C-Terminus 

b+ - 2H2O M – 35 C-Terminus 

b+ - NH3 - H2O M – 34 C-Terminus 

b2+ (M + 2)/2 C-Terminus 

a+ M – 27 C-Terminus 

a+ - H2O M – 45 C-Terminus 

a+ - NH3 M – 44 C-Terminus 

y+ M + 19 N-Terminus 

y+ - H2O M + 1 N-Terminus 

y+ - NH3 M + 2 N-Terminus 

y+ - 2H2O M – 17 N-Terminus 

y+ - NH3 - H2O M – 16 N-Terminus 

y2+ (M + 20)/2 N-Terminus 

 
Procedure 2: Our method uses a Bayesian network model 

to calculate the probability of observing each vertex of the 
constructed spectrum graph. We adopted the fragmentation 
model proposed in [20] which incorporates several ion 
degradations (given in Table 1) and 3 additional factors into 
the model. These 3 factors are: (1) the relationship among 
different types of fragment ions; (2) the correlation between 
peptide cleavage position and the fragmentation efficiency; 
and (3) the influence of the last amino acid that is adjacent to 
the peptide terminus. Factor 1 models the strong correlation 
among a-, b- and y-ions. For instance, if a b-ion is detected, 
it is very common that its corresponding y-ion can be 
detected with high intensities, and its associated a-ion is 
usually detected. Although all ions have correlations, only a-, 
b- and y-ions regularly have strong signals therefore our 
method focuses on these ions. Factor 2 models that ions have 
different probabilities of being observed depending on the 
cleavage positions. For example, a-ions tend to be observed 
more often near the N-terminus, while b- and y-ions show 
much higher intensities in the middle region of the spectrum, 
and so on. Factor 3 models the N-terminal and C-terminal 
amino acids’ chemical effects on the peptide cleavage as 
reported in the literature [21, 22]. The rest of the vertices 
model the probabilities of observing ion degradations and 
ions carrying multiple charges. The whole Bayesian network 



is given in Figure 4. Except for the top 3 vertices, which 
represent the 3 additional factors, each vertex of the network 
contains a conditional probability table given the values of 
its parent vertices. For instance, if we use the second red path 
in Figure 4, vertex y+ holds the probability table P(y+ = ti | b+ 
= tj, region(i) = Rk, NT(i - 1 or i + 1) = {any AA}, CT(i - 1 or 
i + 1) = {any AA}), where ti is the intensity of the y+ ion, tj is 
the corresponding intensity of b+ ion, Rk is the cleavage 
region of the spectrum, and NT and CT are the effects of the 
adjacent N-terminal and C-terminal amino acids 
respectively.  
 

 
Figure 3.  Visualisation of one spectrum graph, where each vertex 

represents one possible peptide cleavage position, and one directed edge is 
added if the mass difference between 2 vertices approximates the mass of 

an amino acid or an ion neutral loss. 

 
Figure 4.  The Bayesian network model for our method. One of the two 

red paths will be randomly selected. The probabilities of the fragment ions 
are indicated by the colour of the solid paths: red > yellow > light blue > 

green. The dash paths are the additional 3 factors. 

Our model differentiates itself from the one proposed in 
[20] in that it extends the way the probability tables are 
generated by incorporating singly charged, doubly charged, 
and triply charged tandem mass spectra from a mixture of 
mass spectrometry instruments. The Seattle dataset [23], 
which contains spectra from both ion-trap and quadrupole 
time of flight (TOF) mass spectrometers, was used for 
estimating the probability tables. More details are given in 
Section III. In this way, the model becomes more robust and 
can be applied to a much wider range of experiments.  

Procedure 3

( | , , , , )
( , ) log

( | , )
real j

i j
random j

P t m S R NT CT
O m S

P t m S
=

: Each vertex of the constructed spectrum 
graph is scored using the described Bayesian network. This 
is achieved by comparing one hypothesis that the peak is a 
real fragment ion to the other hypothesis that the match is 
random. It is calculated by the likelihood ratio given in 
Equation (2):  

,                    (2) 

where Oi represents the score for vertex i, mj is the mass of 
the peak, S is the mass spectrum, t is the complete set of all 
peak intensities of S, R is the peak region, NT represents the 
N-terminal amino acid’s chemical effect, and CT represents 
the C-terminal amino acid’s chemical effect. Assume V is the 
set of the vertices in the probability network except the top 3 
vertices, then V = {b+, y+, b+ - H2O, y2+…}. For each vertex v 
of V, w(v) denotes v’s parents’ assigned intensities given the 
network topology. Preal(tv = i | w(v) = {t1, t2, …}) is the 
probability of detecting intensity i at fragment ion v given the 
intensities detected at its parents. Because all the conditional 
probability tables of the network have been obtained through 
training the Seattle dataset and vertex v is to be independent 
of the other vertices given that the values of its parents are 
known, the probability of observing ion fragment intensities t 
given that the possible cleavage occurred at mass mj in 
spectrum S can be calculated by Equation (3): 

( | , ) ( | ( ), , , , , ).real j real v jv V
P t m S P t w v m S R NT CT

∈
= ∏    (3) 

One advantage of the model is that Preal can distinguish the 
likely combinations of ions and ion degradations from 
unlikely combinations, since the conditional probability 
tables are learnt from real data. For example, the probability 
of observing a y+ ion and its neural loss y+ - NH3 is higher 
than the probability of observing a y+ - NH3 ion without 
detecting the y+ ion itself.  

Under the hypothesis that the mass matches are random 
events, each peak is therefore considered to be independent. 
The probability of Prandom(t | mj, S) can be easily calculated as 
the product of the probability of observing individual peaks 
at their mass positions. Once we have both Preal and Prandom, 
the score for each vertex can be calculated.  

Procedure 4: Given the spectrum graph and the score for 
each vertex, the method then finds several highest scoring 
asymmetric paths as the most probable peptide sequences. It 
is important to preserve the asymmetry because each peak 
from the spectrum contributes to two vertices in the 
constructed spectrum graph since we model both b- and y-
ions for each peak. Dynamic programming is able to solve 
this problem and finds the highest scoring maximum path 
that goes through every pair of vertices corresponding to the 
same peak at most once. However, it has been shown that the 
maximum path may not be the best solution [24, 25]. There 
are two reasons: (1) a certain number of vertices on the 
optimal paths may be false positives because many high 
intensive peaks in the spectrum are signals from various 



interferences, including protein modifications, unexpected 
peptide internal fragments, contaminations, etc; and (2) 
several vertices representing the real peptide fragment ions 
may not have the highest score so will not be included in the 
optimal path. It is common that real fragment ions have low 
intensive signals or even cannot be detected at all. Therefore, 
we utilise the algorithm proposed by Lu and Chen [25] to 
obtain a set of most probable peptide sequences by exploring 
the sub-optimal solutions from the spectrum graph. The 
algorithm firstly transforms the spectrum graph into a matrix 
and uses an iterative depth-first search algorithm to find the 
optimal path. Sub-optimal solutions are obtained by back-
tracking: at a certain iteration if a path showing close enough 
score to the optimal path, a sub-optimal path is then spawned 
and continued. Details of this algorithm can be found in [25]. 

D. Step 3: Inferring The Most Likely Sequence 
The third step is to infer the most likely peptide sequence 

given the optimal sequence and a set of sub-optimal 
sequences. This set of peptide sequences has two main 
characteristics: (1) the majority of these sequences will have 
identical or highly similar segments of sequences; and (2) 
certain regions or sites may have ambiguities and show 
conflicting sequences. An example is given in Figure 5. The 
highly similar segments of sequences correspond to the high 
intensity fragment ions that are very likely to be correctly 
identified, while the ambiguous segments are where the 
peaks do not match fragment ions well or the intensities of 
the ions are hardly distinguishable from baseline noise. In 
addition, these sub-optimal solutions may have different 
numbers of amino acids.  

 

 
Figure 5.  A set of sub-optimal peptide sequences generated in Step 3. The 
red regions are the highly likely regions; the yellow region is the borderline 

region; the green regions are ambiguous regions.  

Given these characteristics, the most likely peptide 
sequence can be extracted by adapting a dynamic 
programming-based algorithm similar to ClustalW [26] 
which has been used in multiple sequence alignment. In our 
case, the introduced “gaps” between the sub-optimal peptide 
sequences correspond to the ambiguous sections of the 
tandem mass spectrum. Our algorithm employs a progressive 
design and has 4 procedures in total. 

Procedure 1: The pairwise distances of the sub-optimal 
peptide sequences are calculated using the Smith-Waterman 
dynamic programming algorithm [27]. An n by n distance 
matrix is then constructed from the pairwise distances, where 
n is the number of sub-optimal peptide sequences.  

Procedure 2: A relationship for the sub-optimal peptide 
sequences is obtained given the distance matrix. The 
relationship is represented as a binary tree topology, and is 
constructed by applying the Neighbour Joining algorithm 
[28]. This algorithm is guaranteed to find the relationship 
topology that has the minimum overall distance. 

Procedure 3: The peptide sequences are progressively 
aligned following the branching order of the constructed 
binary tree representing the relationship. The alignment 
proceeds from the tips of the relationship tree toward the 
root. In this way, the closest peptide sequences are aligned 
first, while the order of the most distant peptide sequences to 
be aligned is delayed.  

Procedure 4

III. RESULTS 

: The final peptide sequence is obtained by 
identifying the highly likely segments of peptide sequences. 
Our method considers the regions highly likely if 85% or 
more of the peptide sequences agree on them. The most 
frequently appearing sequences will be used for these 
segments. The segments that are agreed by more than 55% 
(and less than 85%) of the sequences will be classified as 
borderline segments. Each amino acid in borderline 
segments will be determined based on its frequency across 
all the sub-optimal sequences. For example, if the 
frequencies for Glycine, Serine and Valine are 68%, 23% 
and 9% respectively at one site, then the algorithm will select 
one of these amino acids using the same probabilities as their 
frequencies. On the other hand, the “gaps” are interpreted as 
ambiguous sequence segments, which are denoted as 
undetermined “X” in the final identified peptide sequence.  

A. Evaluation Strategy 
As mentioned, we used the Seattle dataset [23] to learn 

the Bayesian network conditional probability tables. The 
Seattle dataset is a collection of reference mass spectra of 18 
commercial purified proteins generated by several mass 
spectrometers. We selected singly charged, doubly charged, 
and triply charged spectra to learn the conditional probability 
tables. We ignored all the quadruply charged spectra because 
they are less common and usually of poor quality. We also 
excluded all the spectra generated by the MALDI TOF mass 
spectrometers, because spectra acquired from these machines 
have low resolution.  

We compare the performance of our method with the 
most popular PepNovo and NovoHMM de novo sequencing 
methods by the criterion of identification accuracy. The 
identification accuracy is defined as the ratio of the number 
of correct amino acids to the number of identified amino 
acids. We use one large publicly available dataset to evaluate 
these 3 methods. The dataset is a collection of MS and 
MS/MS spectra of a mixture of 9 commercial purified 
proteins, generated by the Thermo Electron LTQ quadrupole 
linear ion-trap mass spectrometer. There are 3 technical 
replicas for this dataset, and in total the dataset contains 
58,081 tandem mass spectra. 



B. Evaluation Results 
Our evaluation results are presented in Figure 6. Trypsin 

digestion was specified for running all 3 methods. Two 
amino acid pairs (Q and K), (I and L) are considered 
identical, since they have identical monoisotopic masses. 
Identification of either of these amino acids is considered 
correct. For example, if the peptide sequence is QFIER, the 
identifications such as QFLER and KFIER are all considered 
to be correct. PepNovo and NovoHMM were executed at 
default parameters. For our method, we used error tolerance 
of 0.1 Da and the maximum number of sub-optimal solutions 
that are explored to generate the final result was set to 20, 
which seemed to produce the best results.  

PepNovo and NovoHMM seem to have similar overall 
performance in terms of identification accuracy. However, 
NovoHMM tends to have slightly higher accuracy in 
identifying short length peptide sequences. As shown in 
Figure 6, NovoHMM outperforms PepNovo at sequence 
lengths from 3 to 6 amino acids; while PepNovo starts to 
display better accuracy than NovoHMM for sequence length 
of 7 and onward. This may be due to NovoHMM’s Hidden 
Markov model beginning to overfit when the spectra are 
more complicated. In any case, the performance difference 
between these two methods is quite small.  

 

 
Figure 6.  The comparison of identification accuracy. The x-axis is the 

identified peptide length in number of amino acids, the y-axis is the 
accuracy. The blue bar is PepNovo, the red is NovoHMM and the green is 

our method. The last 3 bars at the right end of the graph are the average 
accuracy across all peptide lengths.   

Our method, compared to PepNovo and NovoHMM, has 
significantly better performance. It can be clearly seen from 
Figure 6 that our method on average achieved around 10% 
higher accuracy than PepNovo and NovoHMM. It is very 
promising that our method has much better accuracy in 
identifying peptide sequences of more than 7 amino acids. 
This is important because the majority of the tryptic peptides 
have 7-13 amino acids. Our evaluation results also indicate 
that our method has increasingly higher accuracy for longer 
peptides. Figure 6 shows that the accuracy improvement of 
our method at length 5 is minor, then it keeps increasing, and 
becomes almost doubled at peptide lengths of 9 and 10. This 
is probably because our method is not constrained to the 

maximum path and takes advantage of sub-optimal solutions. 
When peptides have more amino acids, the number of 
observed fragment ions may grow very quickly. Therefore, 
the likelihood that the optimal path is the correct peptide 
sequence becomes smaller and smaller. The results 
demonstrate that the exploration of sub-optimal space can 
significantly improve the identification accuracy. 

IV. DISCUSSION AND FUTURE WORK 
De novo sequencing based protein identification methods 

are commonly considered by the community as inferior to 
database search methods. This might be true for older MS 
instruments but is not the case anymore. Database search 
methods may be the first choice for low resolution spectra 
generated by older instruments; however database search 
methods render useless the resolving power of the new 
instruments. The identification coverage of database search 
methods simply cannot be significantly improved by using 
high resolution spectra. This is due to their reliance on 
protein databases, which are seldom complete. The de novo 
sequencing approach on the other hand is able to make better 
use of the high resolution spectra from new instruments and 
does not suffer from the issues of the database search 
approach. From our experiments, de novo sequencing 
methods are able to outperform typical database search 
methods on high resolution Orbitrap spectra data (results not 
shown). Therefore, the applicability of the de novo 
sequencing approach should be reconsidered and more 
research effort should be devoted to the development of new 
de novo sequencing methods.  

Due to the complicated nature of mass spectra, not only 
the optimal solution but also the sub-optimal solutions 
should be utilised in order to improve the identification 
accuracy. Several de novo sequencing methods have been 
developed, all of which apply sophisticated algorithms. 
However, the central dogma of these methods remains the 
same: to find the maximum path in a spectrum graph under a 
specific model. Unfortunately, the optimal solution may not 
always be the correct identification. There are several 
explanations. Firstly, a large portion of highly intensive 
peaks in the spectra are not the expected signals from peptide 
fragment ions. This may be due to various reasons, such as 
peptide internal fragmentation, peptide post-translational 
modifications, contamination, chemical reactions, isotopic 
interferences, machine error, and many others. Secondly, 
many fragment ions are difficult to detect and usually have 
low intensities, for example c- and z-ions are barely 
distinguishable from noise. It is possible that even the 
dominant b- and y-ions are partially missing from the 
spectra. In any case, the fragmentation patterns still are not 
fully understood today. Therefore, the sub-optimal solutions 
are of great interest. The performance of our method clearly 
demonstrates that in a large number of cases the correct 
peptide sequences are not the optimal solutions, but can be 
obtained by exploring the top ranking sub-optimal solutions. 
This creates a new research direction and it would be very 
desirable to develop more efficient algorithms for exploring 
the sub-optimal space for accurate peptide identification.  



The de novo sequencing approach has great potential for 
identifying protein modifications. One major advantage of 
our method is its ability to find the regions where the 
spectrum is difficult to explain. Many identified ambiguous 
regions turn out to be the locations where modifications tend 
to occur, especially phosphorylation. This is very interesting 
since phosphorylation is one of the most important protein 
modifications. It has been shown to activate or deactivate 
many protein enzymes and play key roles in cellular 
processes. This also indicates that protein modification is one 
important factor that greatly influences the accuracy of the 
de novo sequencing based identification. Although the 
identification of protein modifications is not the central 
concern of de novo sequencing, it remains the most effective 
approach because it infers the actual peptide sequences 
directly from the spectra rather than matching a database. If 
the de novo sequencing method has an efficient protein 
modification model, multiple protein modifications can be 
identified accurately by exploring the sub-optimal space. Our 
method may be easily extended for this purpose by 
incorporating further consideration of protein modifications 
into the Bayesian network, and this would be an interesting 
direction for future research. 
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