
INFORMATICA, 2022, Vol. 33, No. 3, 545–572 545
© 2022 Vilnius University
DOI: https://doi.org/10.15388/22-INFOR475

A New Hybrid Fuzzy Multi-Criteria Decision
Methodology for Prioritizing the Antivirus Mask
Over COVID-19 Pandemic

Sema Kayapinar KAYA1,∗, Dragan PAMUCAR2, Ejder AYCIN3

1 Munzur University, Department of Industrial Engineering, Tunceli, Turkey
2 University of Defense, Department of Logistics, Belgrade, Serbia
3 Kocaeli University, Department of Business Administration, Kocaeli, Turkey
e-mail: semakayapinar@munzur.edu.tr, dpamucar@gmail.com, ejder.aycin@kocaeli.edu.tr

Received: May 2021; accepted: January 2022

Abstract. During the COVID-19 pandemic, masks have become essential items for all people to
protect themselves from the virus. Because of considering multiple factors when selecting an an-
tivirus mask, the decision-making process has become more complicated. This paper proposes an
integrated approach that uses F-BWM-RAFSI methods for antivirus mask selection process with re-
spect to the COVID-19 pandemic. Finally, sensitivity analysis was demonstrated by evaluating the
effects of changing the weight coefficients of the criterion on the ranking results, simulating changes
in Heronian operator parameters, and comparing the obtained solution to other MCDM approaches
to ensure its robustness.
Key words: COVID-19, antivirus mask selection, multi criteria decision making, fuzzy best-worst
method, RAFSI-F.

1. Introduction

The COVID-19 pandemic, which is the result of the SARS-CoV-2 virus, has spread around
the world in a short time since its emergence in Wuhan, China, mobilized international
health authorities and its effect continues to be serious. The studies and reports published
by the World Health Organization on the pandemic are followed with interest and concern
by the whole world.

Studies examining the effects of the virus on China’s and the world’s economy have re-
vealed that the virus caused a loss of approximately 62 billion dollars to the Chinese econ-
omy and more than 280 billion dollars to the world economy in the first quarter (Ayittey
et al., 2020).

In line with the instructions of the World Health Organization (WHO) against this pan-
demic that threatens international public health, national administrations also take various
measures to protect public health and to get rid of the epidemic with the least damage.
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However, despite the strictness of the measures, the continuous increase in death cases
due to the impact of the epidemic and the epidemic itself causes serious concerns at the
international level.

When the reports and scientific studies published by the WHO were examined, it was
determined that the demand for healthcare materials such as protective masks and gloves
has increased worldwide since the outbreak occurred and that the prices of related health-
care materials also increased significantly due to the increase in demand (Mahase, 2020).

Fuzzy multi criteria decision-making (MCDM) methods are commonly used for
decision-making in medical and healthcare fields (Kumar et al., 2020; Omrani et al., 2018;
Otay et al., 2017; Reddy et al., 2014; Rouyendegh et al., 2019; Stević et al., 2020; Sumrit,
2020; Thakur and Ramesh, 2017; Zare et al., 2019). Yucesan and Gul (2020) proposed
an integrated fuzzy MCDM framework using the Pythagorean fuzzy-AHP and TOPSIS
methods to evaluate hospital service quality. Lee et al. (2017) aimed to explore a hybrid
evaluation model based on fuzzy AHP and fuzzy TOPSIS methods for Taiwan’s medi-
cal device manufacturers. Nilashi et al. (2019) proposed a hybrid fuzzy MCDM method
based on the Decision-Making Trial and Evaluation Laboratory (DEMATEL) and fuzzy
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to reveal the
interrelationships among the factors influencing the development of medical tourism in
Malaysia and to find the relative importance of these factors. Abdel-Basset et al. (2019) of-
fer a group decision-making approach for estimating the Smart Medical Devices (SMDs)
selection process using the TOPSIS method. Gao et al. (2020) developed a group decision-
making method based on q-rung interval-valued orthopair fuzzy VIse KriterijumsaOpti-
mizacija I Kompromisno Resenje (VIKOR) model for selecting the supplier of medical
consumption products. Yang et al. (2020) developed the MCDM method based on Sp-
NoF Bonferroni mean operator and the weighted Bonferroni mean operator for selecting
an antivirus mask during the COVID-19 pandemic. Torkayesh et al. (2021) proposed a
combination model based on best-worst method (BWM) and level based weight assess-
ment (LBWA) to estimate the rating of healthcare parameters and integrated compromise
solution (CoCoSo) method for selecting the optimal healthcare sector of eastern Euro-
pean countries. Ecer and Pamucar (2021) suggested a Measurement of Alternatives and
Ranking according to the Compromise Solution (MARCOS) approach using intuitionistic
fuzzy sets to score healthcare insurance organizations in the COVID-19 period. Ozsahin
et al. (2021) examined 24 various migraine medicines that help to regulate productive
migraine drugs in overall using TOPSIS method.

It can be clearly seen that the integrated MCDM methods based on fuzzy set theory
are widely used in the fields of medical and healthcare. However, there are limited studies
about the selection of personal protective equipment, especially antivirus masks, during
the COVID-19 pandemic.

This paper proposes an integrated approach that uses fuzzy BWM and Ranking of
Alternatives through Functional mapping of criterion sub-intervals into a Single Inter-
val (F-BWM-RAFSI) methods for antivirus mask selection process with respect to the
COVID-19 pandemic. Due to the vagueness of data and the ambiguity of decision-maker,
the involvement of the fuzzy concept into MCDM can obtain much more reliable results
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in real-life applications. The F-BWM approach which combines the fuzzy set theory and
BWM can provide more consistent comparisons. It has been demonstrated that the BWM
method performs significantly better than other MCDM methods such as AHP in terms
of consistency index, minimum violation, total deviation and conformity (Rezaei, 2015).
These advantages are indicated below (Stević et al., 2018; Zolfani et al., 2019; Ecer and
Pamucar, 2020; Luo et al., 2020): (i) AHP requires n(n−1)

2 pairwise comparisons, whereas
BWM needs (2n − 3) comparisons in general. Because a reduced number of pairwise
criterion comparisons has a direct influence on model consistency, BWM yields greater
sensitivity findings than AHP, (ii) BWM’s components weights are more realistic than
AHP approach, (iii) The data that are more reliable are acquired by the AHP model with
a lower number of pairwise comparisons by forming Best-to-Others and Others-to-Worst
vectors.

The rest of the paper is presented as follows: Section 2 presents the contribution and
novelty of this study. Section 3 introduces the detailed algorithm for hybrid F-BWM-
RAFSI methodology. Section 4 gives an illustrative example of antivirus medical mask
selection. The sensitivity analysis and the validation of the proposed model are given in
Section 5. Finally, Section 6 summarizes the conclusion, limitation and directions for fu-
ture study.

2. Contribution and Novelty of the Paper

The primary transmission route of COVID-19 is respiratory droplets and contact. During
the COVID-19 pandemic, personal protective equipment like antivirus masks has become
essential items for medical staff and people to work and travel. Therefore, selection of the
personal protective equipment such as antivirus masks are especially important. This pa-
per focuses on the selection process of the antivirus masks under the COVID-19 pandemic
situation and aims to address the following research questions (RQs):

RQ1: Which criterion is more important for selecting an antivirus mask?
RQ2: How to effectively evaluate the antivirus masks through the subjective judgment of

group experts in medicine sector?
RQ3: How to build a decision-making approach that evaluates the antivirus mask alter-

natives?

To answer these RQ’s, this study proposes a new hybrid MCDM method that will be
addressed here for the first time in order to be applied to a medical mask selection prob-
lem. One of the novel MCDM methods, called RAFSI method under a fuzzy environment,
can be easily used for solving complex problems. The novelties found in the methodolog-
ical application of this study are as follows: 1) A new extension of the BWM and RAFSI
MCDM model using fuzzy sets is introduced in this paper. The model provides a more
objective experts’ evaluation of the criteria and alternatives in a subjective environment.
The present methodology enables the evaluation of alternative solutions despite dilemmas
in the decision-making process and a lack of quantitative information. 2) Using fuzzy sets
in the RAFSI methodology instead of using a crisp value, the structure of the given data is
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exclusively used. In this way, the uncertainties present in the data are used, thus improving
the objectivity of the decision process. According to the authors, the application of fuzzy
numbers for the purpose of exploiting the uncertainty that occurs during criteria and al-
ternatives group evaluation using the BWM-RAFSI method has not been considered in
the literature so far. Fuzzy numbers allow for the transformation of the uncertainties and
inaccuracies present during the evaluation of alternatives and criteria pairwise compar-
isons.

In sum, the contributions of this paper can be highlighted as follows:

• It presents a framework that helps the selection of personal protective equipment such
as antivirus masks during COVID-19 pandemic.

• It performs a comprehensive evaluation of the antivirus mask selection process through
a new MCDM method F-BWM-RAFSI.

• Although the RAFSI technique is a powerful decision-making tool, it cannot express
fuzziness and ambiguity information. Combined with the fuzzy sets, we posit the fuzzy
RAFSI model, which can better describe decision-makers’ evaluation information.

• We extend assessments of decision-makers to the fuzzy sets to extract criteria weights
and rank the alternatives.

• F-BWM-RAFSI approach is suggested to apply to multiple criteria group decision mak-
ing (MCGDM) problems. It presents a real case study with respect to the evaluation of
the antivirus mask alternatives; and

• It performs a sensitivity analysis to validate the proposed quantitative evaluation pro-
cess.

3. Preliminaries

This study proposes a new hybrid MCDM method that will be addressed here for the first
time in order to be applied to a medical mask selection problem. Rezaei (2015) proposed
BWM, a newly developed MCDM approach for weighting criteria and alternatives based
on pairwise comparisons. The fuzzy logic extension of BWM method proposed by Rezaei
(2015), a newly developed MCDM approach for weighting criteria and alternatives based
on pairwise comparisons, can handle uncertainties and vagueness of decision-makers’
opinions in the comparison matrix better. Consequently, this feature of F-BWM which
makes the linguistic evaluations of decision-makers more effective and more flexible,
makes it superior to other similar methods. RAFSI (Pamučar and Savin, 2020; Žižović et
al., 2020) is a novel method, which can significantly eliminate rank reversal problems with
a simple mathematical formulation. RAFSI in an uncertain environment (RAFSI-F) has
been improved and adapted to deal with inaccuracy and uncertainty into antivirus mask
selection problem. Consequently, a combined method of F-BWM-RAFSI seems to be an
applicable hybrid MCDM model that can increase the validity of the model in the real-life
problem. The general framework of the integrated model is demonstrated in Fig. 1.
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Fig. 1. Systematic steps of the integrated methodology.

3.1. Triangular Fuzzy Numbers

The fuzzy set theory was introduced by Zadeh in 1965 for better reflecting on human judg-
ments and assessment in the decision-making process. Real case decision-making prob-
lems include fuzziness and uncertainty, as decision, goals, constraints, decision-maker
opinions are not completely known. For that reason, group decision maker problems prac-
tically have used fuzzy numbers (Zadeh, 1965). In this study, we prefer to use a triangular
fuzzy number that can be defined as Ã = (a1, b1, c1), where, a1, b1 and c1 denote its
lower, medium, and upper number.

Definition 1. Let Ã = (a1, b1, c1), a1 < b1 < c1 be a fuzzy set on R = (−∞,∞). It is
called a triangular fuzzy number (Carlsson and Fullér, 2001), if its membership function
is illustrated as follows (see in Fig. 2).
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Fig. 2. Triangular fuzzy numbers.

Table 1
Some triangular fuzzy operations (Carlsson and Fullér, 2001).

Summing operation Ã⊕B̃ = (a1+a2, b1+b2, c1+c2) (2)

Subtracting operation Ã�B̃ = (a1−a2, b1−b2, c1−c2) (3)

Multiplication operation Ã⊗ B̃ = (a1 ∗a2, b1 ∗b2, c1 ∗c2) (4)

Division operation Ã ÷ B̃ =
(a1

c2
,
b1

b2
,

c1

a2

)
(5)

Also, the mathematical operations of the triangular fuzzy number are formulated in
Table 1.

Assume Ã and B̃ as a triangular fuzzy number as follows:

Ã = (a1, b1, c1) and B̃ = (a2, b2, c2).

3.2. Fuzzy Best Worst Method

Fuzzy BWM method have been applied successfully in various areas such as evaluating
the sustainable supplier selection criteria (Ecer and Pamucar, 2020; Pamučar and Savin,
2020; Amiri et al., 2021), identifying challenges and barriers for development of solar
energy (Mostafaeipour et al., 2021), evaluating driver behaviour factors (Muravev and
Mijic, 2020; Malakoutikhah et al., 2021), weighting the risk parameters of FMEA (Tian
et al., 2018) plant site selection process (Luo et al., 2020), environmental performance
evaluation (Liu et al., 2021; Dwivedi et al., 2021), evaluating the green supplier selection
criteria (Wu et al., 2019), evaluating traffic parameters (Subotić et al., 2020) and hospital
performance evaluation (Liao et al., 2019).

In addition, BWM has been incorporated with a different type of fuzzy sets such as
interval type-2 fuzzy number (Wu et al., 2019; Qin and Liu, 2019), intuitionistic fuzzy
sets (Tian et al., 2018; Mou et al., 2017), triangular fuzzy numbers (Guo and Zhao, 2017;
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Hafezalkotob and Hafezalkotob, 2017; Ecer and Pamucar, 2020), Z-numbers (Aboutorab
et al., 2018), hesitant fuzzy numbers (Mi and Liao, 2019; Yazdani et al., 2021; Liao et al.,
2019), rough-fuzzy approach (Chen and Ming, 2020), Pythagorean hesitant fuzzy sets
(Liu et al., 2019).

The fuzzy pairwise comparisons are applied based on the linguistic terms given in
Table 1. Then, the linguistic evaluations are transformed into triangular fuzzy numbers.
The fuzzy comparison matrix (Ã) can be obtained as follows,

Ã =

⎡
⎢⎢⎢⎣

c1 c2 · · · cn

c1 x̃11 x̃12 · · · x̃1n

c2 x̃21 x̃22 · · · x̃2n
...

...
...

. . .
...

cn x̃n1 x̃n2 · · · x̃nn

⎤
⎥⎥⎥⎦,

where x̃ij denotes the relative fuzzy preference of criterion i to criterion j , which is a
triangular fuzzy number; x̃ij = (1, 1, 1) when i = j . In this study, we prefer to use the
steps of F-BWM in Guo and Zhao, 2017. The steps of F-BWM are shown as follows:

Step 1. Build the decision criteria system. The decision criteria system consists of a set of
decision criteria. n decision criteria set is presented as follows: {c1, c2, . . . , cn}.
Step 2. Decide the best and the worst criterion. In this step, the best and the worst criterion
is decided by experts based on the constructed criteria set in Step 1. The best and the worst
criterion are denoted as cBest and cWorst for each expert’s team.

Step 3. Implement the fuzzy reference comparisons for the best criterion (cBest). In this
step, the fuzzy preferences of the best criterion over all the other criteria are decided by
experts. Then, the fuzzy comparisons in the linguistic format are converted to triangular
fuzzy numbers. The fuzzy Best-to-Other’s vector can be obtained as follows:

ÃBO = {x̃B1, x̃B2, . . . , x̃Bn},

where x̃Bj denotes fuzzy comparison of the best criterion cBest over criterion j , j =
{1, 2, . . . , n}.
Step 4. Do the fuzzy reference comparisons for the worst criterion (cWorst). In this step,
the fuzzy preferences of all the criteria over the worst criterion are determined. The fuzzy
Others-to-Worst vector can be obtained as:

ÃOW = {x̃1W, x̃2W, . . . , x̃nW },

where x̃jW denotes the fuzzy comparison of the worst criterion cWorst, i = {1, 2, . . . , n}.
Step 5. Determine the optimal fuzzy weights (w̃∗

1, w̃
∗
2, . . . , w̃

∗
n). The optimal fuzzy weight

for each criterion is determined for each fuzzy pair w̃B/w̃j and w̃j /w̃W . It should have
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w̃B/w̃j = x̃Bj and w̃j /w̃W = x̃jW . A solution is obtained that the maximum absolute
gaps

∣∣ w̃B

w̃j
− x̃Bj

∣∣ and
∣∣ w̃j

w̃W
− x̃jW

∣∣ for all j are minimized to satisfy these conditions
for all j . w̃B , w̃j and w̃W in fuzzy BWM are triangular fuzzy numbers. In some cases,
we prefer to use w̃j = (aw

j , bw
j , cw

j ) for optimal criteria selection. The triangular fuzzy
weight of the criterion w̃j = (aw

j , bw
j , cw

j ) is transformed into a crisp value using the
graded mean integration representation (GMIR) equation in Table 4. Consequently, the
constrained optimization problem is constructed for obtaining the optimal fuzzy weights
(w̃∗

1, w̃
∗
2, . . . , w̃

∗
n) as follows Guo and Zhao (2017).

min max
j

{∣∣∣∣ w̃B

w̃j

− x̃Bj

∣∣∣∣,
∣∣∣∣ w̃j

w̃W

− x̃jW

∣∣∣∣
}

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
j=1 R(w̃i) = 1,

aw
j � bw

j � cw
j ,

aw
j � 0,

j = 1, 2, . . . , n,

(6)

where w̃B = (aw
B , bw

B , cw
B ), w̃j = (aw

j , bw
j , cw

j ), w̃W = (aw
W , bw

W , cw
W ), x̃Bj =

(aw
Bj , b

w
Bj , c

w
Bj ) and Eq. (6) is transformed to the nonlinearly constrained optimization

problem.

min θ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ w̃B

w̃j
− x̃Bj

∣∣∣ � θ,∣∣∣ w̃j

w̃W
− x̃jW

∣∣∣ � θ,∑n
j=1 R(w̃i) = 1,

aw
j � bw

j � cw
j ,

aw
j � 0,

j = 1, 2, . . . , n,

(7)

where θ = (aθ , bθ , cθ ).
Considering aξ � bξ � cξ , it is supposed that θ∗ = (k∗, k∗, k∗), k∗ � aξ then Eq. (7)

can be transferred as

min θ∗

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ (aw
B ,bw

B ,cw
B )

(aw
j ,bw

j ,cw
j )

− (aBj , bBj , cBj )

∣∣∣ � (k∗, k∗, k∗),∣∣∣ (aw
j ,bw

j ,cw
j )

(aw
W ,bw

W ,cw
W )

− (ajW , bjW , cjW )

∣∣∣ � (k∗, k∗, k∗),∑n
j=1 R(w̃i) = 1,

aw
j � bw

j � cw
j ,

aw
j � 0,

j = 1, 2, . . . , n.

(8)
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Table 2
Consistency index values for F-BWM (Guo and Zhao, 2017).

Linguistic terms Equally
important
(EI)

Weakly
important
(WI)

Fairly
important
(EI)

Very
important
(VI)

Absolutely
important
(AI)

ÃBW (1, 1, 1) (2/3, 1, 3/2) (3/2, 2, 5/2) (5/2, 3, 7/2) (7/2, 4, 9/2)

CI 3 3.8 5.29 6.69 8.04

Step 6. Compute the crisp weights. After obtaining fuzzy weights, the GMIR is used to alter
the fuzzy weight of criterion to crisp weights. Where ã indicates the ranking of triangular
fuzzy number (Omrani et al., 2018).

The GMIR formula is as follows:

R(ãi) = ai + 4bi + ci

6
. (9)

Step 7. Check the consistency level. The consistency ratio is checked in the same way as
BWM and through computing the consistency ratio (CR) from the following equation. In
this step, the consistency index (CI) for F-BWM is used that is listed in Table 2.

CR = Q∗

CI
. (10)

3.3. Fuzzy RAFSI Evaluation Method

Ranking of Alternatives through Functional mapping of criterion subintervals Into a Sin-
gle Interval (RAFSI) method (Žižović et al., 2020) is based on defining ideal and anti-ideal
reference points and defining the relationship between alternatives concerning defined ref-
erence points. The relationships between criterion values and reference points are defined
using criterion functions that map criterion sub-intervals into a single criterion interval.
This achieves two key advantages of the RAFSI method (Alosta et al., 2021; Božanić et
al., 2021): i) A data standardization algorithm that allows the translation of data from
the initial decision matrix into an interval that is suitable for rational decision making;
and ii) The mathematical formulation of the RAFSI method eliminates the rank rever-
sal problem, as one of the significant shortcomings of many traditional MCDM methods.
The following section shows the extension of the RAFSI method to a fuzzy environment
(RAFSI-F). By applying fuzzy sets, the RAFSI algorithm has been improved and adapted
to handle the inaccuracies and uncertainties that arise when solving real-world problems.
The algorithm of the RAFSI-F method is realized through four steps:

Step 1: Formation of an aggregated fuzzy initial decision matrix. Suppose that the evalu-
ation of alternatives from the set Ai (i = 1, 2, . . . , m) is carried out by k experts. Experts
evaluate alternatives in relation to a defined set of criteria Cj (j = 1, 2, . . . , n) using a
predefined fuzzy linguistic scale. Then we can present the judgment of k expert as a matrix
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X(e) = [ξ̃ (e)
ij ]m×n, where 1 � e � k.

X(e) =

⎡
⎢⎢⎢⎢⎣

ξ̃
(e)
ij ξ̃

(e)
12 · · · ξ̃

(e)
1n

ξ̃
(e)
21 ξ̃

(e)
22 · · · ξ̃

(e)
2n

...
...

. . .
...

ξ̃
(e)
m1 ξ̃

(e)
m2 · · · ξ̃

(e)
mn

⎤
⎥⎥⎥⎥⎦

m×n

; 1 � i � m; 1 � j � n; 1 � e � k,

(11)

where ξ̃
(e)
ij = (ξ

l(e)
ij , ξ

s(e)
ij , ξ

u(e)
ij ); (i = 1, . . . , m; j = 1, . . . , n) represents the fuzzy value

from the fuzzy linguistic scale.
Since we have a group decision-making model, we obtain k experts’ initial decision-

making matrices X(1), X(2), . . . , X(e), . . . , X(k), (1 � e � k). For each expert
matrix X(e) = [ξ̃ (e)

ij ]m×n at position (i, j) we obtain the fuzzy sequence ξ̃
(e)
ij =

(ξ
l(e)
ij , ξ

s(e)
ij , ξ

u(e)
ij ). Using the fuzzy Heronian operator (Yu, 2013), Eq. (12), we obtain

the averaged fuzzy number ξ̃ij = (ξ l
ij , ξ

s
ij , ξ

u
ij ), where ξ l

ij and ξu
ij respectively represent

the lower and upper limits of the fuzzy number interval, while ξ s
ij represents the value

in which the fuzzy number ξ̃ij has the maximum value. The Heronian mean (HM) op-
erator (Yu, 2013) was used to aggregate the values as it allows the representation of the
interrelationships between the elements being aggregated.

ξ̃ij = (
ξ l
ij , ξ

s
ij , ξ

u
ij

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ l
ij =

(
2

k(k+1)

∑n
i=1

∑n
j=i ξ

lp
i ξ

lq
j

) 1
p+q

,

ξ s
ij =

(
2

k(k+1)

∑n
i=1

∑n
j=i ξ

sp
i ξ

sq
j

) 1
p+q

,

ξu
ij =

(
2

k(k+1)

∑n
i=1

∑n
j=i ξ

up
i ξ

uq
j

) 1
p+q

,

(12)

where k represents the number of experts participating in the research, while p, q � 0 is
a set of non-negative numbers. By applying Eq. (12) we obtain an averaged fuzzy initial
decision-matrix X = [ξ̃ij ]m×n.

Step 2: Mapping the elements of the initial decision matrix into criterion intervals. For
each criterion Cj (j = 1, 2, . . . , n), the decision-maker defines ξ̃Ij

and ξ̃Nj
, where ξ̃Ij

represents the ideal value according to the criterion Cj , while ξ̃Nj
represents the anti-ideal

value according to the criterion Cj . For each alternative from the set Ai (i = 1, 2, . . . , m),
we define a function fi that maps the criterion intervals from the aggregated initial decision
matrix (9) to the criterion interval [n1, nb], Eq. (13):

f̃Ai
(Cj ) = nb − n1

ξ̃Ij
− ξ̃Nj

ξ̃ij + ξ̃Ij
· n1 − ξ̃Nj

· nb

ξ̃Ij
− ξ̃Nj

, (13)

where nb and n1 represent a ratio that shows how much the ideal value is better than the
anti-ideal value, while ξ̃ij denotes the value of the i-th alternative for the j -th criterion
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from the aggregated initial decision matrix. It is recommended that the ideal value is at
least six times better than the anti-ideal (barely acceptable value), i.e. that n1 = 1 and
nb = 6.

Thus, we obtain a standardized decision matrix T = [ϕ̃ij ]m×n (i = 1, 2, . . . , m,
j = 1, 2, . . . , n) in which all elements of the matrix are translated into the interval
ϕ̃ij ∈ [n1, nb]. The elements of the matrix T are obtained by applying expression (10),
i.e. ϕ̃ij = fAi

(Cj ).

Step 3: Formation of a normalized decision matrix N = [ϕ̂ij ]m×n (i = 1, 2, . . . , m,
j = 1, 2, . . . , n). By applying Eq. (14), the normalization of the element of the matrix T

is performed.

ϕ̂ij =
⎧⎨
⎩

ϕ̃ij

2A
, for max criteria,

H
2ϕ̃ij

, for min criteria,
(14)

where A and H represent the arithmetic and harmonic mean of the elements n1 and nb,
respectively.

Step 4: Calculation of fuzzy criterion functions of alternatives Q̃(Ai) and ranking of alter-
natives. By applying Eq. (15), the criterion functions of alternatives Q̃(Ai) are calculated
and the ranking of alternatives is performed.

Q̃(Ai) =
n∑

j=1

wj ϕ̂ij . (15)

From the considered set of alternatives, the alternative that has a higher value of the fuzzy
criterion function Q̃(Ai) is chosen.

4. Case Study of Antivirus Mask Selection

COVID-19 is an infectious disease that primarily spreads out between humans through di-
rect contact with an infected person or their respiratory droplets. Respiratory droplets are
generated by breathing, speaking, coughing, and sneezing. Droplet nuclei are respiratory
droplets that dry quickly after expiration and shrink to a diameter of less than 5 m. Droplet
nuclei remain suspended in air and can travel over long distances. Goggles and respira-
tory protection are recommended for airborne prevention; a medical mask is needed to
avoid COVID-19 infection from spreading via the air (Azap and Erdinç, 2020). To pre-
vent the transmission of COVID-19 infection, wearing masks is one of the most protective
measures in order to limit the spread of airborne particles containing the virus (Bir and
Widmar, 2021).

This study presents integrated methods that use fuzzy BWM and RAFSI-F approach-
based framework for mask selection with respect to COVID-19 disease. We have five
experts who are caring for coronavirus patients in the hospital in Istanbul and Bursa which
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Table 3
Expert information.

Experts Profession Experience Department Location

EX1 Doctor 5 years Public Health Istanbul
EX2 Doctor 3 years Internal Medical Istanbul
EX3 Doctor More than 10 years Infectious diseases and clinical microbiology Istanbul
EX4 Doctor More than 15 years Infectious diseases and clinical microbiology Bursa
EX5 Doctor More than 15 years Infectious diseases and clinical microbiology Bursa

Table 4
Mask selection criteria.

Code Criteria Brief description

C1 Leak age rate (fitting rate for face) Covers the face perfectly, does not stretch or sag
C2 Quality of raw material Manufactured using non-woven fabric material, its pores should be

small and it should be made in accordance with health procedure
C3 Reusability Has two or more layer washable
C4 Breathability Allows comfortable breathing
C5 Use of hypo-allergenic materials Contains non-harmful particles and carcinogen substance
C6 Easy to wear and take off Conformity to the face
C7 Filtration rate Preserves the respiratory system against the viruses
C8 Tear and deformation resistant Has a durable and undeformed material

are two cities with the highest population density in Turkey. The details of experts are
indicated in Table 3.

The F-BWM was applied to determine the relative weight scores of the antivirus mask
selection criteria and then, the most favoured mask is selected by the RAFSI-F approach
using the evaluated weights. For this purpose, the criteria determined in the selection of
medical masks and short description were obtained from expert opinions and literature
review, mask selection criteria are identified in Table 4.

Six different types of medical masks including basic cloth face mask, surgical face
mask, single use face mask, particulate respirators (N95 and above), full face respirator
and full-length face shield and their descriptions are also shown in Table 5 (Health, 2021).

4.1. Application of Fuzzy BWM Model

Step 1: Eight criteria for medical selection are shown in Table 3.

Step 2: According to F-BWM, evaluations of experts in linguistic terms are used to obtain
the importance weights of antivirus mask criteria, the best criteria, the worst criteria, the
best to other comparison matrix, and the other to worst comparison matrix of each expert
(EX) are given in Table 6 and Table 7 by using linguistic terms, respectively.

Step 3: To take evaluations of Expert 1, as an example, the fuzzy preferences of the best
criterion over all the criteria can be obtained with respect to Table 3.

ÃBO = [
(0.67, 1, 1.5), (3.5, 4, 4.5), (1.5, 2, 2.5), (2.5, 3, 3.5), (3.5, 4, 4.5),

(3.5, 4, 4.5), (1, 1, 1), (2.5, 3, 3.5)
]
.
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Table 5
Medical mask alternatives.

Code Figure Name Statement

A1 Basic cloth mask
This is a typical face mask recommended for public to
avoid spreading coronavirus, everyday version of a face
mask.

A2 Surgical face mask

A variation of this face mask is worn by medical pro-
fessionals who are presently doing COVID-19 drive-thru
testing. It’s a mask that doctors and nurses use. The safety
factor is pretty high, and it has good antibacterial and an-
tiviral resistance.

A3 Single use face mask
This is a disposable mask that prevent leaks from nose
and mouth. However, it not intended for medical use. It is
made of a single-use plastic product.

A4 Particulate respirators
(N95 and above)

This kind of face mask is essential for medical staff and
first responders. When the user inhales, it filters out both
large and micro particulates, providing better protection
than a medical mask.

A5 Full face respirator

A full-face respirator is a type of mask that is commonly
used in home basic repairs and be a good choice for pro-
viding coronavirus assistance. However, it can cause some
breathing problems or respiratory issues.

A6 Full-length face
shield

This is a flimsier, plastic variant of the glass masks used
on welders. It has a padded headband that covers the full
face from brow to chin.

Table 6
Best criteria and Best to Other (BO) vectors identified by experts.

CBest C1 C2 C3 C4 C5 C6 C7 C8

EX 1 C7 WI AI FI VI AI AI EI VI
EX 2 C7 WI FI VI WI WI AI EI VI
EX 3 C7 EI VI FI FI VI FI EI FI
EX 4 C7 WI WI WI WI FI AI EI WI
EX 5 C7 FI FI AI VI VI FI EI VI

Table 7
Worst criteria and Other to Worst (OW) vectors identified by experts.

CWorst C1 C2 C3 C4 C5 C6 C7 C8

EX 1 C6 FI WI FI WI WI EI AI WI
EX 2 C6 VI FI WI VI WI EI AI WI
EX 3 C5 AI FI FI VI EI FI VI FI
EX 4 C6 FI FI FI FI WI EI AI FI
EX 5 C3 WI WI EI FI WI WI AI WI
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Step 4: The fuzzy preferences of all the criteria over the worst criterion can be presented
in Table 4.

ÃOW = [
(1.5, 2, 2.5), (0.67, 1, 1.5), (1.5, 2, 2.5), (0.67, 1, 1.5), (0.67, 1, 1.5),

(1, 1, 1), (3.5, 4, 4.5), (0.67, 1, 1.5)
]
.

Step 5: Then, for obtaining the optimal fuzzy weights of all the criteria, the nonlinearly
constrained model is established as follows in Eq. (7).

Step 6: The following nonlinearly constrained optimization problem is obtained using
represented by crisp numbers as in Eq. (8).

Min k

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a7 − c1 ∗ 0.67 <= c1 ∗ k; a7 − c1 ∗ 0.67 >= −k ∗ c1; a7 − c5 ∗ 3.5 <= c5 ∗ k; a7 − c5 ∗ 3.5 >= −k ∗ c5

b7 − b1 ∗ 1 <= b1 ∗ k; b7 − b1 ∗ 1 >= −k ∗ b1; b7 − b5 ∗ 4 <= b5 ∗ k; b7 − b5 ∗ 4 >= −k ∗ b5

c7 − a1 ∗ 1.5 <= a1 ∗ k; c7 − a1 ∗ 1.5 >= −k ∗ a1; c7 − a5 ∗ 4.5 <= a5 ∗ k; c7 − a5 ∗ 4.5 >= −k ∗ a5

a7 − c2 ∗ 3.5 <= k ∗ c2; a7 − c2 ∗ 3.5 >= −k ∗ c2; a7 − c6 ∗ 3.5 <= c6 ∗ k; a7 − c6 ∗ 3.5 >= −k ∗ c6

b7 − b2 ∗ 4 <= b2 ∗ k; b7 − b2 ∗ 4 >= −k ∗ b2; b7 − b6 ∗ 4 <= b6 ∗ k; b7 − b6 ∗ 4 >= −k ∗ b6

c7 − a2 ∗ 4.5 <= a2 ∗ k; c7 − a2 ∗ 4.5 >= −k ∗ a2; c7 − a6 ∗ 4.5 <= a6 ∗ k; c7 − a6 ∗ 4.5 >= −k ∗ a6

a7 − c3 ∗ 1.5 <= c3 ∗ k; a7 − c3 ∗ 1.5 >= −k ∗ c3; a7 − c7 ∗ 1 <= c7 ∗ k; a7 − c7 ∗ 1 >= −k ∗ c7

b7 − b3 ∗ 2 <= b3 ∗ k; b7 − b3 ∗ 2 >= −k ∗ b3; b7 − b7 ∗ 1 <= b7 ∗ k; b7 − b7 ∗ 1 >= −k ∗ b7

c7 − a3 ∗ 2.5 <= a3 ∗ k; c7 − a3 ∗ 2.5 <= −k ∗ a3; c7 − a7 ∗ 1 <= a7 ∗ k; c7 − a7 ∗ 1 >= −k ∗ a7

a7 − c4 ∗ 2.5 <= c4 ∗ k; a7 − c4 ∗ 2.5 >= −k ∗ c4; a7 − c8 ∗ 2.5 <= c8 ∗ k; a7 − c8 ∗ 2.5 >= −k ∗ c8

b7 − b4 ∗ 3 <= b4 ∗ k; b7 − b4 ∗ 3 >= −k ∗ b4; b7 − b8 ∗ 3 <= b8 ∗ k; b7 − b8 ∗ 3 >= −k ∗ b8

c7 − a4 ∗ 3.5 <= a4 ∗ k; c7 − a4 ∗ 3.5 >= −k ∗ a4; c7 − a8 ∗ 3.5 <= a8 ∗ k; c7 − a8 ∗ 3.5 >= −k ∗ a8

a1 − c6 ∗ 1.5 <= k ∗ c6; b1 − b6 ∗ 2 <= k ∗ b6; c1 − a6 ∗ 2.5 <= k ∗ a6;
a2 − c6 ∗ 0.67 <= k ∗ c6; b2 − b6 ∗ 1 <= k ∗ b6; c2 − a6 ∗ 1.5 <= k ∗ a6;
a3 − c6 ∗ 1.5 <= k ∗ c6; b3 − b6 ∗ 2 <= k ∗ b6; c3 − a6 ∗ 2.5 <= k ∗ a6;
a4 − c6 ∗ 0.67 <= k ∗ c6; b4 − b6 ∗ 1 <= k ∗ b6; c4 − a6 ∗ 1.5 <= k ∗ a6;
a5 − c6 ∗ 0.67 <= k ∗ c6; b5 − b6 ∗ 1 <= k ∗ b6; c5 − a6 ∗ 1.5 <= k ∗ a6;
a6 − c6 ∗ 1 <= k ∗ c6; b6 − b6 ∗ 1 <= k ∗ b6; c6 − a6 ∗ 1 <= k ∗ a6;
a7 − c6 ∗ 3.5 <= k ∗ c6; b7 − b6 ∗ 4 <= k ∗ b6; c7 − a6 ∗ 4.5 <= k ∗ a6;
a8 − c6 ∗ 0.67 <= k ∗ c6; b8 − b6 ∗ 1 <= k ∗ b6; c8 − a6 ∗ 1.5 <= k ∗ a6;
a1 − c6 ∗ 1.5 >= −k ∗ c6; b1 − b6 ∗ 2 >= −k ∗ b6; c1 − a6 ∗ 2.5 >= −k ∗ a6;
a2 − c6 ∗ 0.67 >= −k ∗ c6; b2 − b6 ∗ 1 >= −k ∗ b6; c2 − a6 ∗ 1.5 >= −k ∗ a6;
a3 − c6 ∗ 1.5 >= −k ∗ c6; b3 − b6 ∗ 2 >= −k ∗ b6; c3 − a6 ∗ 2.5 >= −k ∗ a6;
a4 − c6 ∗ 0.67 >= −k ∗ c6; b4 − b6 ∗ 1 >= −k ∗ b6; c4 − a6 ∗ 1.5 >= −k ∗ a6;
a5 − c6 ∗ 0.67 >= −k ∗ c6; b5 − b6 ∗ 1 >= −k ∗ b6; c5 − a6 ∗ 1.5 >= −k ∗ a6;
a6 − c6 ∗ 1 >= −k ∗ c6; b6 − b6 ∗ 1 >= −k ∗ b6; c6 − a6 ∗ 1 >= −k ∗ a6;
a7 − c6 ∗ 3.5 >= −k ∗ c6; b7 − b6 ∗ 4 >= −k ∗ b6; c7 − a6 ∗ 4.5 >= −k ∗ a6;
a8 − c6 ∗ 0.67 >= −k ∗ c6; b8 − b6 ∗ 1 >= −k ∗ b6; c8 − a6 ∗ 1.5 >= −k ∗ a6;
1/6*a1 + 4*1/6*b1 + 1/6*c1 + 1/6*a2 + 1/6*4*b2 + 1/6*c2 + 1/6*a3 + 1/6*4*b3 + 1/6*c3 + 1/6*a4 + 1/6*4*b4 + 1/6*c4 +
1/6*a5 + 1/6*4*b5 + 1/6*c5 + 1/6*a6 + 1/6*4*b6 + 1/6*c6 + 1/6*a7 + 1/6*4*b7 + 1/6*c7 + 1/6*a8 + 1/6*4*b8 + 1/6*c8 = 1;
a1 � b1 � c1; a2 � b2 � c2; a3 � b3 � c3; a4 � b4 � c4; a5 � b5 � c5; a6 � b6 � c6; a7 � b7 � c7;
a8 � b8 � c8; a1 > 0; a2 > 0; a3 > 0; a4 > 0; a5 > 0; a6 > 0; a7 > 0; a8 > 0; k � 0.

(16)

Solving above model by using LINGO 18.0 software, the optimal fuzzy weights with
regards to EX1 can be calculated, which are:

w∗
C1 = (0.156, 0.179, 0.215); w∗

C2 = (0.064, 0.073, 0.079);
w∗

C3 = (0.154, 0.167, 0.174); w∗
C4 = (0.080, 0.082, 0.100);

w∗
C5 = (0.063, 0.073, 0.079); w∗

C6 = (0.073, 0.073, 0.079);
w∗

C7 = (0.241, 0.259, 0.298); w∗
C8 = (0.080, 0.082, 0.100).
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Table 8
Optimal fuzzy weights for five experts.

EX1 EX2 EX3 EX4 EX5 AOFW

w∗
C1 (0.154, 0.179, 0.215) (0.138, 0.179, 0.179) (0.194, 0.198, 0.227) (0.129, 0.137, 0.142) (0.106, 0.114, 0.143) (0.144, 0.161, 0.181)

w∗
C2 (0.064, 0.073, 0.079) (0.074, 0.091, 0.112) (0.059, 0.081, 0.110) (0.129, 0.137, 0.142) (0.098, 0.114, 0.143) (0.085, 0.099, 0.117)

w∗
C3 (0.154, 0.167, 0.174) (0.091, 0.099, 0.099) (0.127, 0.127, 0.127) (0.129, 0.137, 0.142) (0.071, 0.076, 0.090) (0.114, 0.121, 0.126)

w∗
C4 (0.0801, 0.0821, 0.1) (0.138, 0.179, 0.179) (0.127, 0.139, 0.169) (0.129, 0.137, 0.142) (0.095, 0.114, 0.143) (0.114, 0.130, 0.147)

w∗
C5 (0.063, 0.073, 0.079) (0.106, 0.122, 0.150) (0.058, 0.058, 0.067) (0.078, 0.084, 0.096) (0.071, 0.081, 0.096) (0.075, 0.084, 0.097)

w∗
C6 (0.073, 0.073, 0.079) (0.046, 0.046, 0.051) (0.077, 0.081, 0.110) (0.045, 0.052, 0.061) (0.106, 0.114, 0.143) (0.069, 0.073, 0.088)

w∗
C7 (0.241, 0.259, 0.298) (0.219, 0.219, 0.244) (0.209, 0.209, 0.240) (0.219, 0.219, 0.244) (0.286, 0.286, 0.286) (0.235, 0.238, 0.262)

w∗
C8 (0.080, 0.082, 0.100) (0.066, 0.068, 0.809) (0.077, 0.081, 0.110) (0.129, 0.137, 0.142) (0.074, 0.081, 0.096) (0.085, 0.089, 0.251)

Fig. 3. Average crisp weight for each criterion.

θ∗ is obtained 0.4494 and the consistency ratio can be computed as: CR = 0.4494
8.04 =

0.0559. The CR is lower than 10%, therefore the obtained result is acceptable.
Then, all F-BWM steps have been implemented for each expert. Results of all optimal

fuzzy weights and average optimal fuzzy weights (AOFW) of eight criteria are given in
Table 8. The average crisp weights of eight criteria are illustrated in Fig. 3, respectively.
Heronian function, Eq. (12) was used for aggregation of fuzzy weight coefficients.

According to the results of the F-BWM model, among the antivirus mask criteria,
“Filtration rate (wC7)” were found to be the most critical criteria related to antivirus
mask selection and the next important criteria are “Leakage rate (wC1)” and “Tear and
deformation-resistant (wC8)”, respectively. On the other hand, “Easy to wear and take off
(wC6)” is the least important criteria to the experts. Ranking from the most important
criteria to the least important criteria is as follows:

wC7 � wC1 � wC8 � wC4 � wC3 � wC5 � wC2 � wC6.

Step 7: The consistency ratio is an important indicator for calculating the consistency of
pairwise comparisons for all experts’ opinions. Its closeness to zero indicates its higher
consistency. The consistency ratio is computed for pairwise comparisons that indicate
high consistency in paired comparisons, as shown in Table 9. The consistency ratio for
each expert is close to zero. Therefore, the weights obtained for the criteria are confirmed.
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Table 9
Consistency ratio.

θ∗ CI CR

EX1 0.4494 8.040 0.055
EX2 0.7912 8.040 0.098
EX3 0.6093 6.690 0.091
EX4 0.6232 8.040 0.077
EX5 0.5000 8.040 0.062

Table 10
Fuzzy linguistic scale.

Linguistic terms Membership function

Very Poor (VP) (1, 1, 1)
Poor (P) (1, 2, 3)
Medium Poor (MP) (2, 3, 4)
Medium (M) (3, 4, 5)
Medium High (MH) (4, 5, 6)
High (H) (5, 6, 7)
Very High (VH) (6, 7, 8)
Extremely High (EH) (7, 8, 9)
Absolutely High (AH) (8, 9, 9)

4.2. Application of Fuzzy RAFSI Model

After defining the weight coefficients of the criteria, five experts evaluated the alternatives
Ai (i = 1, 2, . . . , 6) in relation to the eight criteria Cj (j = 1, 2, . . . , 8) that were defined
in the previous part of the paper. Criteria belongs to the group of max criteria, while the
criterion C1 belongs to the group of min criteria. To evaluate the evaluation of alternatives,
the experts used the fuzzy linguistic scale shown in Table 10.

After evaluating the alternatives, the experts’ correspondence matrices were obtained
and are shown in Table 11.

By applying expression (12) we get an aggregated initial decision matrix, Table 12.
When calculating the initial rank of alternatives, it is recommended that decision-makers
choose the values p = q = 1, since the adoption of the value p = q = 1 simplifies the
decision-making process.

The element at position A1–C1, by applying expression (12), we obtain as follows:

ξ̃11 = (2.57, 3.40, 4.24)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ l
11 =

(
2

6(6+1)

(
11 · 11 + 11 · 11 + 11 · 31 + 11 · 11 + 11 · 41 + 11 · 51

+ · · · + 11 · 41 + 11 · 51 + 41 · 41 + 41 · 51 + 51 · 51

)) 1
1+1 = 2.57

ξs
11 =

(
2

6(6+1)

(
11 · 11 + 11 · 21 + 11 · 41 + 11 · 21 + 11 · 51 + 11 · 61

+ · +21 · 51 + 21 · 61 + 51 · 51 + 51 · 61 + 61 · 61

)) 1
1+1 = 3.40

ξu
ij

=
(

2
6(6+1)

(
11 · 11 + 11 · 31 + 11 · 51 + 11 · 31 + 11 · 61 + 11 · 71

+ · · · + 31 · 61 + 31 · 71 + 61 · 61 + 61 · 71 + 71 · 71

)) 1
1+1 = 4.24.
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Table 11
The experts’ correspondence matrices.

Criteria A1 A2 A3

C1 VP; P; M; P; MH VP; P; MP; MH; M VP; P; M; H; M
C2 MH; MH; MP; MP; P H; M; M; MH; VH MP; MP; MP; MP; VH
C3 H; MH; VP; AH; EH VP; VP; VP; VP; VP VP; VP; VP; VP; VP
C4 H; MH; VH; MH; EH M; M; VH; MP; VH MH; MH; VH; MP; VH
C5 M; MH; MH; M; M VH; M; EH; VH; EH MH; M; EH; MP; EH
C6 EH; VH; EH; EH; VH VH; M; EH; EH; AH H; M; MH; VH; AH
C7 MP; MP; P; P; MP EH; M; MP; MH; VH VP; P; P; MH; VH
C8 H; M; P; H; EH MP; MP; P; MP; MH MP; MP; VP; MP; MH

Criteria A4 A5 A6

C1 VP; VP; VP; P; P VP; P; VP; P; P VP; MP; P; VH; MH
C2 MH; M; EH; EH; EH H; MH; EH; AH; EH VP; VP; H; MP; EH
C3 M; M; M; MH; VP EH; VH; EH; AH; VH VP; M; VH; MP; VH
C4 M; M; H; MP; M P; VP; MH; P; MH VP; M; H; M; AH
C5 MH; MH; EH; VH; EH MH; P; H; VH; EH VP; VP; H; H; EH
C6 MP; M; H; P; VH MP; VP; MP; P; VH VP; MH; M; MP; AH
C7 EH; H; VH; EH; AH EH; EH; VH; EH; EH VP; VP; M; P; VH
C8 MH; M; H; MH; VH EH; H; EH; EH; EH VP; P; H; MP; VP

Table 12
The aggregated initial decision matrix.

Criteria A1 A2 A3 A4 A5 A6

C1 (2.57, 3.4, 4.24) (2.37, 3.21, 4.05) (2.55, 3.39, 4.23) (1.00, 1.35, 1.70) (1.00, 1.51, 2.04) (3.25, 4.08, 4.92)

C2 (2.38, 3.21, 4.05) (4.02, 5.02, 6.02) (2.57, 3.55, 4.54) (5.87, 6.86, 7.86) (6.35, 7.35, 8.18) (2.97, 3.64, 4.31)

C3 (4.45, 5.14, 5.64) (1, 10.180, 1.36) (1.00, 1.00, 1.00) (3.20, 4.04, 4.88) (6.51, 7.51, 8.34) (3.57, 4.41, 5.25)

C4 (4.56, 5.40, 6.24) (3.88, 4.87, 5.86) (4.20, 5.20, 6.19) (3.18, 4.18, 5.18) (2.23, 3.06, 3.89) (4.25, 5.08, 5.74)

C5 (3.02, 3.87, 4.71) (5.37, 6.37, 7.36) (4.40, 5.39, 6.38) (5.20, 6.2, 70.19) (4.24, 5.23, 6.22) (4.09, 4.78, 5.46)

C6 (6.02, 7.02, 8.02) (5.72, 6.71, 7.53) (4.88, 5.87, 6.69) (3.39, 4.38, 5.37) (2.42, 3.24, 4.08) (3.60, 4.43, 5.08)

C7 (1.51, 2.35, 3.19) (4.22, 5.21, 6.20) (2.45, 3.27, 4.09) (6.35, 7.35, 8.17) (6.51, 7.51, 8.50) (2.28, 2.79, 3.32)

C8 (4.06, 5.05, 6.04) (2.36, 3.35, 4.35) (2.04, 2.87, 3.71) (4.51, 5.51, 6.51) (6.34, 7.34, 8.34) (2.24, 2.91, 3.59)

The remaining elements of the aggregated initial decision matrix (Table 12) are aggregated
similarly.

Step 2: The experts defined the ideal and anti-ideal points, ξ̃Ij
= (10, 10, 10) and

ξ̃Nj
= (0.5, 0.5, 0.5), by consensus for each criterion Cj (i = 1, 2, . . . , 8). Based on

the defined ideal and anti-ideal points, criterion intervals are formed. Using expression
(13), the functions for standardization of criteria are defined. Since all the values of the
criteria in the initial decision matrix are defined using the same linguistic scale, the same
function f̃Ai

(Cj ) was used to map all the criteria Cj (j = 1, 2, . . . , 8):

fAi
(Cj ) = 9 − 1

10 − 0.5
· ξ̃ij + 10 · 1 − 0.5 · 9

10 − 0.5
= 0.84 · ξ̃ij + 0.58.

By applying the function f̃Ai
(Cj ), we obtain a standardized initial decision matrix (T =

[ϕ̃ij ]6×8, i = 1, 2, . . . , 6, j = 1, 2, . . . , 8), given in Table 13.
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Table 13
The standardized initial decision matrix.

Criteria A1 A2 A3 A4 A5 A6

C1 (2.75, 3.44, 4.15) (2.58, 3.28, 3.99) (2.73, 3.43, 4.14) (1.42, 1.71, 2.01) (1.42, 1.85, 2.29) (3.32, 4.02, 4.72)

C2 (2.58, 3.29, 3.99) (3.97, 4.81, 5.64) (2.75, 3.57, 4.4) (5.52, 6.36, 7.2) (5.93, 6.77, 7.47) (3.08, 3.64, 4.21)

C3 (4.33, 4.9, 5.33) (1.42, 1.57, 1.73) (1.42, 1.42, 1.42) (3.27, 3.98, 4.69) (6.06, 6.9, 7.6) (3.59, 4.29, 5)

C4 (4.42, 5.12, 5.83) (3.85, 4.68, 5.52) (4.12, 4.95, 5.79) (3.26, 4.1, 4.94) (2.45, 3.15, 3.86) (4.16, 4.86, 5.42)

C5 (3.13, 3.84, 4.55) (5.1, 5.94, 6.78) (4.28, 5.11, 5.95) (4.96, 5.8, 6.63) (4.15, 4.98, 5.82) (4.02, 4.6, 5.18)

C6 (5.65, 6.49, 7.33) (5.39, 6.23, 6.92) (4.69, 5.52, 6.21) (3.44, 4.27, 5.1) (2.62, 3.31, 4.01) (3.61, 4.31, 4.86)

C7 (1.85, 2.56, 3.27) (4.13, 4.97, 5.8) (2.64, 3.33, 4.03) (5.92, 6.76, 7.46) (6.06, 6.9, 7.74) (2.5, 2.93, 3.37)

C8 (4, 4.83, 5.67) (2.57, 3.4, 4.24) (2.29, 3, 3.7) (4.38, 5.22, 6.06) (5.92, 6.76, 7.6) (2.46, 3.03, 3.6)

Table 14
Normalized initial decision matrix.

Criteria A1 A2 A3 A4 A5 A6

C1 (0.22, 0.26, 0.33) (0.23, 0.27, 0.35) (0.22, 0.26, 0.33) (0.45, 0.53, 0.63) (0.39, 0.49, 0.63) (0.19, 0.22, 0.27)

C2 (0.26, 0.33, 0.4) (0.4, 0.48, 0.56) (0.27, 0.36, 0.44) (0.55, 0.64, 0.72) (0.59, 0.68, 0.75) (0.31, 0.36, 0.42)

C3 (0.43, 0.49, 0.53) (0.14, 0.16, 0.17) (0.14, 0.14, 0.14) (0.33, 0.4, 0.47) (0.61, 0.69, 0.76) (0.36, 0.43, 0.5)

C4 (0.44, 0.51, 0.58) (0.38, 0.47, 0.55) (0.41, 0.5, 0.58) (0.33, 0.41, 0.49) (0.25, 0.32, 0.39) (0.42, 0.49, 0.54)

C5 (0.31, 0.38, 0.45) (0.51, 0.59, 0.68) (0.43, 0.51, 0.59) (0.5, 0.58, 0.66) (0.42, 0.5, 0.58) (0.4, 0.46, 0.52)

C6 (0.57, 0.65, 0.73) (0.54, 0.62, 0.69) (0.47, 0.55, 0.62) (0.34, 0.43, 0.51) (0.26, 0.33, 0.4) (0.36, 0.43, 0.49)

C7 (0.19, 0.26, 0.33) (0.41, 0.5, 0.58) (0.26, 0.33, 0.4) (0.59, 0.68, 0.75) (0.61, 0.69, 0.77) (0.25, 0.29, 0.34)

C8 (0.4, 0.48, 0.57) (0.26, 0.34, 0.42) (0.23, 0.3, 0.37) (0.44, 0.52, 0.61) (0.59, 0.68, 0.76) (0.25, 0.3, 0.36)

By substituting the values from the aggregated initial decision matrix into the func-
tion f̃Ai

(Cj ), expression (13), we obtain the elements of the standardized initial decision
matrix. The fuzzy value at position A1–C1 is obtained by applying the function f̃Ai

(Cj ):

f̃A1(C1) = (2.75, 3.44, 4.15)

=

⎧⎪⎨
⎪⎩

f l
A1

(C1) = 0.84 · ξ l
11 + 0.58 = 0.84 · 2.57 + 0.58 = 2.75,

f s
A1

(C1) = 0.84 · ξ s
11 + 0.58 = 0.84 · 3.40 + 0.58 = 3.44,

f u
A1

(C1) = 0.84 · ξu
11 + 0.58 = 0.84 · 4.24 + 0.58 = 4.15.

In the same way, we get the remaining elements of the standardized initial decision ma-
trix. Applying the function f̃Ai

(Cj ) defines the relationship between the elements of the
aggregate matrix and the ideal/anti-ideal values. At the same time, the introduction of a
standardized initial decision matrix eliminates the rank reversal problem that in dynamic
decision-making conditions can lead to inconsistent decisions.

Step 3: By applying expression (14), the normalization of the matrix element of the stan-
dardized initial decision matrix is performed. As shown in expression (14), the arithmetic
mean (A = 5) is used to normalize the max criterion (C2, C3, . . . , C8), while the har-
monic mean (H = 1.8) is used to normalize the min criterion (C1). Thus, we obtain a
new matrix N = [ϕ̂ij ]6×8 (i = 1, 2, . . . , 6, j = 1, 2, . . . , 8) as shown in Table 14.

Step 4: By applying expression (15), the criterion functions of alternatives are calculated.
Based on the Q̃(Ai) ranking of the alternatives is performed, so it is preferable that the
alternative has a higher Q̃(Ai) value. The ranking of alternatives is shown in Table 15.
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Table 15
The ranking of alternatives.

Alt. Fuzzy value (Q̃(Ai)) Crisp value (Q(Ai)) Rank

A1 (0.295, 0.387, 0.516) 0.3930 4
A2 (0.322, 0.418, 0.559) 0.4255 3
A3 (0.265, 0.351, 0.474) 0.3569 6
A4 (0.425, 0.54, 0.703) 0.5477 2
A5 (0.448, 0.564, 0.733) 0.5726 1
A6 (0.278, 0.356, 0.463) 0.3611 5

Based on the obtained results, we can single out the antivirus mask A5 as the dominant
solution, i.e. the following ranking of alternatives is proposed: A5 > A4 > A2 > A1 >

A6 > A3.

5. Validation and Discussion of Results

To verify the proposed solution, the sensitivity analysis of the fuzzy BWM-RAFSI model
is presented in the following section. After obtaining the initial results in the MCDM
framework, the question arises as to how subjectively defined input parameters influence
decision making and what solutions are obtained by applying other multi-criteria tech-
niques (Muhammad et al., 2021). Therefore, in the next section of the paper, the robustness
check and sensitivity analysis of the obtained results to the change of the input parameters
of the MCDM model were performed. The input parameters of the MCDM model mean
the parameters that are defined based on the subjective preferences of the decision-maker
(Biswas, 2020). In the following section, sensitivity analysis and validation of results were
performed through four sections. In the first section, the analysis of the influence of the
change of the weight coefficients of the criteria on the ranking results was performed.
In the second and third sections, the analysis of the influence of the change of the parame-
ters p and q in the Heronian operator on the ranking results was performed. In the fourth
section, the robustness of the obtained solution was checked by comparison with other
MCDM techniques.

5.1. Influence of Change of Criterion Weight Coefficients on Ranking Results

It is indisputable that the results of multi-criteria models largely depend on the values
of the weight coefficients of the criteria. In this study, experts’ preferences were used to
determine the weight coefficients of the criteria, which were processed using fuzzy BWM.
Since this is a subjective model for determining the weights of the criteria, the question
arises as to how these subjective assessments affect the final results of the research. Since
the greatest influence on the final decision has the criterion that has the highest value of the
criteria weight (C7), an experiment was conducted in which the change of the value of the
criteria weight w̃′

7 = (wl′
7 , ws′

7 , wu′
7 ) in the interval wl′

7 ∈ [0.024, 0.233] was simulated;
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Fig. 4. Influence of change of criteria weights on change of criterion functions of alternatives Q̃(Ai).

ws′
7 ∈ [0.024, 0.236] and wu′

7 ∈ [0.026, 0.259]. The left limit value of the interval is
defined by reducing the value of criterion w̃7 by 99%, while the right limit value is defined
by reducing the value of criterion w̃7 by 1%. The intervals are divided into 50 scenarios,
while at the same time the values of the remaining criteria are corrected by applying the
expression w̃′

n = w̃n(1−w̃7)

(1−w̃′
7)

, where w̃n represents the original value of the considered
criterion, while w̃′

7 represents the corrected value of the most influential criterion. Thus, 50
new vectors of criteria weights were formed and their influence on the change of criterion
functions of alternatives Q̃(Ai) was analysed in Fig. 4.

The analysis shown in Fig. 4 shows that the new vectors of the weight coefficients of
the criteria affect the change in the values of the criterion functions of the alternative,
which shows that the model is sensitive to changes in the input parameters. Also, it was
shown that through the first 31 scenarios, the initial rank A5 > A4 > A2 > A1 > A6 >

A3 was confirmed. In the next 29 scenarios, for the values of the weighting coefficients
wl′

7 ∈ [0.024, 0.087]; ws′
7 ∈ [0.024, 0.088] and wu′

7 ∈ [0.026, 0.097], the third-ranked
alternative (A2) and the fourth-ranked alternative (A1) switched places, while the ranking
of the remaining alternatives was confirmed. Based on the presented analysis, we can
conclude that the first-ranked alternative (A5) remained dominant through all 50 scenarios
and that it represents the best solution regardless of the changes in the values of the criteria
weights. Also, alternative A4 (second-ranked alternative) retained its position in the set
of dominant alternatives, as it remained second-ranked through 50 scenarios. At the same
time, it was confirmed that alternatives A6 and A3 represent the worst solutions through
all 50 scenarios.
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5.2. Influence of Change of Values of Parameters p and q on Change of Weight
Coefficients of Criteria

By changing the values of the parameters p and q in the Heronian function, the calculation
of the aggregate values of the criteria weights becomes more complicated, since a larger
number of mutual relations between the attributes is considered at the same time. There-
fore, it is necessary to perform an analysis of the influence of changes in the parameters
p and q on the change of the criteria weights, and indirectly on the change in the ranks of
the alternative. The change of the parameters p and q was performed through three exper-
iments: Experiment I: The influence of the change of the parameter p ∈ [1, 300] on the
change of utility function of alternatives was analysed, while the value of the parameter
q = 1 remained unchanged through all 300 scenarios; Experiment II: In this experiment,
the effect of changing the parameter q ∈ [1, 300] was analysed in a similar way, while
the value of the parameter p = 1 remained unchanged; and Experiment III: The influence
of the change of both parameters simultaneously was analysed, which implied the change
of p and q in the interval p ∈ [1, 300] and q ∈ [1, 300]. Limit values of parameters p

and q are defined based on a large number of simulations, which showed that for higher
values of parameters p and q of 300 has no significant changes in the values of weight
coefficients of the criteria. The influence of the change of the parameters p and q on the
change of the aggregated values of the weight coefficients of the criteria and indirectly on
the change of the criterion functions of the alternatives Q̃(Ai) shown in Fig. 5.

The presented experiments showed that changes in the values of the parameters p and
q affect the change in the values of the weight coefficients of the criteria and the change
in the criterion functions of the alternative. Through 900 scenarios that were divided into
three experiments, there were no changes in the ranks of the alternative, despite changes
in the values of the criterion functions. Through all scenarios, the initial rank A5 > A4 >

A2 > A1 > A6 > A3 was confirmed, so we can conclude that alternative A5 is the
dominant alternative in the considered set of alternatives.

5.3. Influence of Change of the Value of Parameters p and q on Change of Value in the
Initial Decision Matrix

Since the Heronian function was used to aggregate values from experts’ initial decision
matrices into an aggregated initial decision matrix, this section analyses the impact of
changing the p and q parameters on the change in the value of the aggregated initial de-
cision matrix. As in the previous section, three experiments were performed here during
which the influence of the change of the parameters p and q in the interval p, q ∈ [1, 300]
was considered. The influence of changing the parameters p and q on the change of ag-
gregate values in the initial decision matrix is shown in Fig. 6.

The values of the criterion functions of the alternatives (Fig. 6) show that changes in
the values of the parameters p and q lead to changes in the aggregate initial decision ma-
trix. In the presented simulation, it is noticed that there is a change only in the ranks of the
worst-ranked alternatives, i.e. alternatives A6 and A3. In the first two experiments, for the
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Fig. 5. Influence of parameters p and q on change of weight coefficients and change of criterion functions of
alternatives.

values of the parameters p, q ∈ [12, 300], alternatives A6 and A3 switched their places,
while in the third experiment, for the values of the parameters p, q ∈ [13, 300], alterna-
tives A6 and A3 changed their ranks. In all three experiments, there were no changes in the
ranks of the remaining alternatives, which confirmed their initial rank. From the presented
analysis (through all 900 simulations) we can conclude that there is a satisfactory advan-
tage of the first-ranked alternative (A5) in relation to the remaining alternatives from the
considered set.

5.4. Comparison with Fuzzy MCDM Methodologies

Since fuzzy sets were used for uncertainty processing in this paper, four fuzzy multicriteria
techniques were chosen to compare the results: fuzzy COPRAS (Complex Proportional
Assessment) technique (Fouladgar et al., 2012) method, fuzzy MABAC (Multi-Attributive
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Fig. 6. Influence of parameters p and q on the change of aggregate values in the initial decision matrix.

Border Approximation area Comparison) method (Božanić et al., 2021), fuzzy MAIRCA
(Multi-Attributive Ideal-Real Comparative Analysis) method (Gul and Ak, 2020) and
fuzzy MARCOS (Measurement Alternatives and Ranking according to the Compromise
Solution) method (Stanković et al., 2020; Arsu and Ayçin, 2021).

A comparative overview of the application of these fuzzy MCMD methodologies is
shown in Fig. 7.

Based on the obtained results, it was confirmed that alternative A5 represents the best
solution according to all MCDM methodologies. The results showed that using the fuzzy
MARCOS and fuzzy COPRAS methods the same rank was obtained. Ranking differences
occurred in the fuzzy MABAC and fuzzy MAIRCA methods and they are reflected in the
different ranks of the last two worst alternatives (A6 and A3). The presented analysis proves
the robustness of the fuzzy BWM-RAFSI methodology proposed in this paper and that the
proposed choice of alternative A5 is credible.
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Fig. 7. Ranks of the alternatives based on the different fuzzy methodology.

6. Conclusion

COVID-19 has spread more like most other common respiratory diseases, mainly through
respiratory droplet transmission without physical contact. Therefore, wearing a face mask
is one of the most effective ways to prevent the spread of the virus. Especially, health
workers are the most likely to be exposed to COVID-19 because they are in close contact
with patients with suspected, probable or confirmed COVID-19. During the COVID-19
epidemic, face masks have become a highly effective item for health care staff and or-
dinary people. Different types of masks have been suggested throughout the COVID-19
pandemic. However, some masks are more effective than others. In order to determine
what types of face mask work best to prevent the spread of COVID-19, this paper pro-
poses a combined approach that uses F-BWM and fuzzy RAFSI methods for the mask
selection process for healthcare personnel with respect to the COVID-19 pandemic to fill
the gap in the literature.

There are two main advantages of the proposed fuzzy BWM-RAFSI methodology:
1) fuzzy BWM-RAFSI method has a new mathematical treatment for data normalization
that enables transferring data from the initial decision making matrix into any interval
which is adequate for making rational decisions and 2) resistance of fuzzy BWM-RAFSI
method to rank reversal problem (Žižović et al., 2020). This paper offers some impor-
tant contributions to the literature: (i) A novel integrated MCDM approach was used to
select an appropriate medical face mask for preventing COVID-19 in healthcare work-
ers, (ii) Antivirus mask selection criteria were considered under the fuzzy environment
to make a more accurate decision, (iii) The proposed MCDM methodology can evaluate
alternatives, although it is inaccurate and lacks quantitative information, (vi) The com-
bination of two model BWM-RAFSI under fuzzy environment enables a more flexible
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decision-making process in the healthcare sector during COVID-19 pandemic, (v) This
proposed model was compared with other MCDM methods with sensitivity analysis and
validation of this model was demonstrated.

One of the possible limitations of the fuzzy BWM-RAFSI multi-criteria methodology
is the mathematical complexity that requires the knowledge of nonlinear mathematical
programming and fuzzy theory. This feature may be a limiting factor for a broader appli-
cation in the multi-criteria decision-making field. To overcome this limitation, it is rec-
ommended that future research be directed towards developing a decision support system
based on the application of the fuzzy BWM-RAFSI methodology. Also, a major source of
limitation is that due to the over-intensity and high workload during the pandemic process,
the opinions of healthcare workers such as nurses, medical technicians, dentists and etc.
were not considered in this evaluation process.

Further research can benefit from the perspectives of healthcare workers from other
professions and occupations. Furthermore, this proposed model can be performed for the
same problem under newly released fuzzy extensions such as Pythagorean fuzzy sets,
cubic picture fuzzy sets and spherical fuzzy sets for the future work. By doing this way,
the validity of this hybrid model can be tested with the results obtained from several fuzzy
sets. Finally, this new integrated model may be used in a variety of healthcare domains,
including the development of an optimum COVID-19 diagnostic system, wearable health
devices, and treatment techniques.
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