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Abstract—A DNA microarray can represent thousands of 

genes for studying tumor and genetic diseases in humans. 

Datasets of DNA microarray normally have missing 

values, which requires an undeniably crucial process for 

handling missing values. This paper presents a new 

algorithm, named EMII, for imputing missing values in 

medical datasets. EMII algorithm evolutionarily 

combines Information Gain (IG) and Genetic Algorithm 

(GA) to mutually generate imputable values. EMII 

algorithm is column-oriented not instance oriented than 

other implementation of GA which increases column 

correlation to the class in the same dataset. EMII 

algorithm is evaluated for imputing the generated missing 

values in four cancer gene expression standard medical 

datasets (Colon, Leukemia, Lung cancer-Michigan, and 

Prostate) via comparing the truth original complete 

datasets against the imputed datasets. The analysis of the 

experimental results reveals that the imputed values 

generated by EMII were almost the same as the original 

values besides having the same impact on the applied 

classifiers due to accuracy as similar as the original 

complete datasets. EMII has a running time of θ(n2), 
where n is the total number of columns.  

 

Index Terms—Data Mining, Genetic Algorithm, 

Information Gain, Missing Values Imputation, DNA 

Microarray, Classification. 

 

I.  INTRODUCTION 

The DNA is a sophisticated chip data with thousands 

of attributes that represent gene expression values and 

DNA datasets that generate substantial biological 

databases. Various techniques are used to determine the 

expression of many genes such as microarrays expressed 

DNA, serial analysis of gene expression, and so on[1, 2]. 

Each glass slide typically describes a microarray to which 

DNA molecules (i.e. spots) are always affixed such that 

each spot is in connection with only one gene. 

Microarrays demoralize the theory of preferential 

execution with their contrasting single-stranded DNA 

sequences (cDNAs). A single-stranded DNA sequence 

tends to attract interconnected parts by which it produces 

the attraction of cDNA sequences[3]. Most microarray 

experimentations compare gene expressions with two 

different samples: target and control. The results 

formulate a microarray as a vector in which each feature 

is being a spot and natural information produced from 

microarray experiments is called microarray image 

hybridization. Fig 1 illustrates the general procedure to 

obtain gene expression information levels, which demand 

the analysis of image quantitation. Therefore, gene 

expression datasets are determined upon the quotients of 

the intensities. Several methods could be used to group 

the genes into different clusters. Biological experiments 

employ benchmarks for enormous volumes of microarray 

data, which can help biologists to gain insights into 

underlying biological processes. Thus, gene expression is 

carefully extracted and stored in databases to be retrieved 

and analyzed subsequently [4]. 

 

 

Fig.1. Context overview of gene expression extraction process 

In the last few years, researchers have begun to use 

data estimation techniques if values are missing in the 

dataset to introduce the required complete datasets for 

data analysis purposes. There are many practical methods 

for managing the missing data in data analysis; e.g., 

deletion methods, single imputation methods, and model-

based methods. Deletion method works on eliminating all 

patterns where the lost values are at least one signal from 

the dataset. Unfortunately, the ignored instances may 

contain precious information and may be deleted in the 

process. The impact of this is particularly gained when 
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the used dataset is small. In single imputation methods, 

the missing values are replaced with statistical values 

such as the mean value of the existing historical data. The 

quality of the values that are generated by the substitution 

process depends on how close these values are to the true 

(unknown) values. The model-based method develops a 

model, or ―learner‖, to cover the missing values. Thus, it 
is more appropriate for applications that need to 

reconstruct incomplete large datasets since these 

applications have a lower computational load[5].  In 

medical data, different missing values management 

methods are applicable to resolve different types of 

missing including 1) Missing Completely At Random 

(MCAR) that determines the administrative errors, 2) 

Missing At Random (MAR) represents the missing 

patient characteristics which suffers from missing values 

that often occur in subjects that may produce random 

missing values in older subjects from a specific region., 

and 3) Missing Not At Random (MNAR) defines the 

missingness related to the value of the predictor, or to 

some traits not available in the analysis. In which, the 

missing values are usually not in a casual situation which 

leads to non-response regarding a particularly critical 

question [6]. 

In turn, ascribing the missing values of a dataset is an 

essential preprocessing step for mining knowledge of a 

complete microarray dataset, and crucial genes subset 

selection must be performed. Thus, the use of complete 

datasets should be error-free in order to achieve accurate 

classification in disease prediction.   

The primary objective of this paper is to generate 

imputable values for the missing values in experimental 

microarray datasets and to build a classification model for 

identifying a human as normal or disease-stricken based 

on the effect of assigned values. A novel evolutionary 

algorithm, that explores mutual information, is proposed 

to suggest probable values by considering the biological 

relationship between the gene and the class label in the 

microarray experimental data, which is measured by 

applying information gain analysis to estimate the 

dependency rate. In [7], missing values imputation 

processes are estimated based on the distance between the 

expression values of the genes with ignoring their 

biological characteristics. However, this proposed 

algorithm is based on the relationships between the 

values. 

The remainder of this paper is structured as follows: 

Section 2 presents a literature review of recent 

researchers’ work in estimating missing values, especially 

in medical datasets using different methods. The 

proposed method and the related strategies for designing 

the algorithm for missing values imputation are described 

in Section 3. Section 4 specifies details about the 

microarray experimental datasets, implementation details, 

theories of performance measures and metrics, and the 

performance of the proposed method as well as its effect 

in building a classification model using the imputed 

values. The paper is concluded with remarks and 

provided recommendations for future work in Section 5. 

II.  RECENT RELATED WORK 

The imputation of missing values in gene microarray 

datasets has significant involvement in the research 

regions of pattern recognition, machine learning, and 

statistics. All over the world, researchers are attracted to 

the problem of mining exciting biological information in 

gene microarray datasets. However, there is a key 

problem of missing values which is the major impact of 

missing values in incomplete datasets whether or not the 

designed model performs well regarding the accuracy, 

precision, and sensitivity rather than biology aspects.  

Fabio et al. [8] proposed a multi-objective genetic 

algorithm, abbreviated as MOGAImp, for data imputation 

based on the NSGA-II. MOGAImp starts with an 

individual’s coding schemes to analyze the instances and 
stores all plausible values that are used later to build 

chromosomes. Each individual is a complete solution to 

produce a unique imputed dataset that is used to compute 

the fitness functions. MOGAImp is suitable for mixed-

attribute datasets, tackles conflicting evaluation measures, 

and considers the information of incomplete instances 

and the model building. However, it has been found that 

during huge search space the algorithm failed to obtain 

optimal individuals and that the lack of a data analyst 

constitutes another drawback. 

The problem of missing data imputation is addressed 

and the importance of clean (or complete) data in KDD is 

elaborated by Waseem et. al. [9], in which an 

evolutionary technique using GAs for filling in missing 

data on the basis of good estimation is proposed. The 

main objective of this method was to embed information 

gain in population-based search mechanisms so as to 

explore for optimal search space. However, the method 

consumes search space complexity when striving to 

obtain all possible solutions.  

O. A. Alomari et. al. [10] proposed hybrid Genetic 

Algorithms (GAs) and decision-tree learning for imputing 

missing attribute values. Their algorithms use domain 

values for missing attributes as possible solutions and the 

set of instances with imputed attribute values is used as a 

pool of solutions or as chromosomes in GA. The 

evolutionary decision tree GATree is used to evaluate the 

fitness function of the chromosomes. The method pursues 

a global search in the problem space with classification 

accuracy as a fitness function without being biased 

towards a local optimum that gives the best classification 

accuracy. The method was tested against J48 and Simple 

CART for the validity of its proposed algorithm and was 

recognized to fit well only with categorical values.  

GPMI is a Genetic Programming (GP) algorithm for 

multiple imputations that was proposed by Tran et. al 

[11]. GPMI uses GP as a non-parametric regression 

method to build mathematical functions that regress 

missing values of one feature on other features under the 

control of prediction capability and classification 

accuracy during the evaluation process. With this method, 

the imputation of missing values can be superb in a 

feature that has a linear relation with other features but is 

fairly well when the relationship is nonlinear.  
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Hernandez et. al. [12] have proposed hybrid GA 

embedding SVM for gene selection and classification of 

microarray data. Their method consists of a pre-selection 

phase and GA search phase. The hybrid method is highly 

specialized in crossover and mutation operators which 

were designed in such a way that they integrate gene 

ranking information provided by the SVM classifier 

during the fitness evaluation process. 

Nguyen et. al. [13]have introduced supervised learning 

hidden Markov models (HMMs) for classifying cancer 

through gene expression profiles.  The proposed model 

maximizes the likelihood of the gene expression of each 

tumor type based on a modification of the analytic 

hierarchy process (AHP). The proposed AHP form stable 

and robust gene subsets by aggregation of the sorted 

results of individual gene selection methods. Their 

proposed was a useful tool for cancer classification in a 

real clinical decision support system. 

Baraldi et al. [5] presented a fuzzy similarity-based 

method for reconstructing incomplete data in real-time 

mode. The method was implemented while grouping the 

mined information in the reference trajectories into 

factors. They further developed an algorithm to 

reconstruct the missing datum as a weighted average 

reference segment based on assigning the weights of each 

reference segment of information. Support Vector 

Regression (SVR) was used to predict missing values 

using orthogonal input coding scheme to resolve the 

issues of multiple missing values in DNA sequences [1].  

Shi et. al. [14] presented a method for estimating 

missing values depending on a principal curve with the 

nonlinear generalization of PCA in DNA microarray gene 

expression data. For incomplete data in medical 

applications, particularly in diagnosis modeling, 

Wojtowicz et. al. [15] introduced an approach to listing 

the interval diagnoses for a given level of missing data. 

Their approach uses aggregation and thresholding to 

evaluate and optimize the performance of reference 

diagnoses.  Zhong et. al. [16] presented two ways to 

impute missing values: the first is the realization of 

individual variables while the other is by establishing a 

structure in the data based on Granular computing.  

However, one major restriction of their work is the 

increase of the fraction of missing data and the 

deterioration in performance. In our work, we handle this 

problem by estimating the missing values using a genetic 

algorithm to optimize the performance of overall system 

stages even with a large amount of missing data. 

 

III.  METHODOLOGY 

DNA analysis can be considered a classification 

application of data mining and machine learning field. 

The domain of DNA analysis poses a new complex 

tradeoff and embraces six challenges due to DNA unique 

attributes. First, many of DNA datasets have a small 

number of samples in a universe against hundreds of 

thousands of genes per every instance representing a key 

feature of DNA datasets. Second, DNA datasets are 

subject for missing values of types MAR or MNAR that 

can be occurred either naturally or technological in many 

situations. Third, the number of genes associated with a 

specific disease could be daunting. Fourth, in the same 

DNA dataset, there is a representation similarity between 

available instances, having less precise between the 

different types regarding the same disease. Fifth, the 

tradeoff between the original meanings and terms of 

relevant biological domain versus a high accuracy rate of 

the classification model that is a considerable factor in 

our problem. Final, time and power consumption for 

evaluating thousands of genes in DNA datasets requires a 

high throughput technology. 

A.  Problem formulation 

Every dataset of DNA dataset is considered as 

information table, K, that can be denoted as K = (U, 

X∪{d}), where U represents the instances that are listed 

in the dataset, X represents a vector of the predictor 

values with {x1, x2, …, xn} (i.e., feature set). {d} is a 

single outcome value or the class attribute in the context 

of a classification model (i.e., category or label). Because 

of missing value is a common problem in medical and 

scientific research, that can be occurred either in predictor 

(X) or category ({d}), we focus on the missing values of 

the predictor (X); i.e., the missing values of one or more 

of {x1, x2, …, xn}. Since every gene of the predictor 

vector has a binary correlation with the category attribute, 

disease, we can heuristically impute a value in a semantic 

computed manner keeping track the existing correlation. 

B.  Genetic Algorithm (GA) 

Evolutionary Algorithms (EA) are optimization 

algorithms and stochastic search techniques. EA mimics 

nature’s evolutionary principles in driving a search 
procedure to an optimal solution. In optimization 

algorithms, EAs use a population of search space per 

iteration instead of a singleton mode in classical search 

algorithms. GAs is considered the most evolutionary 

algorithms that are used extensively as search and 

optimization tools in a wide range of various problem 

domains. Their broad applicability is due to their global 

perspective and ease of use. GAs is also used in solving 

Multi-Objective Optimization Problem (MOOP) in which 

every MOOP has some objective functions that need to 

be either minimized or maximized. Every problem 

usually has some constraints that any feasible solution 

must satisfy. MOOP can be stated in its general form as: 

                ( )                                        ( )                   ( )                                         (1)   ( )          ( )            
 

where lower   ( )  and upper   ( )  bounds constitute a 

decision variable space , or simply decision space, and   

is a vector of   decision variables:   (          ) . 

The set of variable bounds restricts each decision variable    to take a value within   ( ) and   ( ) [16, 17].   

Fig 2 is a simple and straightforward flowchart of GA 
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that begins its search for a random set of solutions instead 

of one solution. Each random set is evaluated in the 

context of the underlying problem and its fitness is 

assigned to each solution. The termination condition is 

then applied to check whether it is satisfied or not. If it 

isn’t, the population for the treatments is revised by the 
GA operator, and a new population is derived. The 

counter is incremented for every derivation to specify that 

one generation of GA is accomplished. Every GA has a 

different representation of a solution based on the 

problem domain and differs in both fitness evaluation 

mechanism and objective weather minimization or 

maximization. For the representation of a solution, every 

problem requires a sophisticated representation for the 

optimal solution. The solution representation must apply 

to substitute fitness and can be interpreted as a solution. 

The interpretation of the solution must satisfy the 

objective function and the constraints. In most cases, the 

fitness value is the same as the objective function value. 

Genetic operators include selection, crossover, and 

mutation operators. The selection operator is designed to 

produce replicates of superior solutions into the new 

population while keeping the population size fixed. In 

effect, multiple copies of good solutions can be generated 

and bad solutions simultaneously are removed from the 

population. The second and third operators are used to 

create new solutions instead of good copies. In the 

crossover, pairs of solutions are usually selected from a 

mating pool at random, and different elements of these 

solutions are interchanged to create new solutions. 

However, the search aspect of GAs mainly depends on 

the crossover; mutation operator is needed to keep 

diversity in the population. Mutation procedure can 

generate another solution better than the original one by 

representing a slight difference. These three operators are 

simple and straightforward [17].  

 

 

Fig.2. General Genetic Algorithm 

Since GA optimizes the generating chromosomes in 

the population based on a common relation in heuristic 

approach, we have developed a GA algorithm 

implementation for generating the heuristic imputed 

value(s) in each gene or columns in a given dataset 

having one or more missing value 

C.  Information Gain (IG) 

IG favors certain features in investigating more simple 

selection. Consequently, the selection criteria are 

dependent on the result of the study of original features at 

each cycle, in which the features are dependent on weight 

to the decision by a way of heuristic or statistical measure. 

IG is an estimating uncertainty conditional (H(D)); i.e. 

entropy factor, where higher value denotes a higher 

uncertainty and a lower value denotes a lower uncertainty 

[8].  

For any given information table, K = (U,  ∪ * +), 
H(D) relation is defined by Eq. (2) for a given decision, D 

= {d}, and discrete instances      where i = 1... ‖ ‖      for short. 

  ( )   ∑                                  (2) 

 

where                            . 

Every single selection can be viewed as an arbitrary 

variable with a set of pre-assigned values; it could be 

considered as an information column that can be deduced 

by applying entropy relation according to decision 

column. In turn, Eq. (2) can be rewritten as the expected 

information required for classifying instances as shown in 

Eq. (3). 
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    ( )   ∑                           (3) 

 

Because every attribute an in the given information 

table K has particular information that leads to overall 

sequencing attributes based on the certainty of the 

information relative to D.  Each attribute has an expected 

information factor. The predicted score is comparable to 

the decision (D) and is computed after partitioning data at 

the attribute a grouped by the values of the decision D. 

Eq. (4) defines the expected information of an attribute a, 

which splits D into v partitions.  

      ( )  ∑ |  | | |⁄      (  )              (4) 

 

Finally, the total information gain by an attribute a, 

using the decision D, is defined in Eq. (5). 

     ( )      ( )       ( )             (5) 

 

We can conclude IG as a binary correlation 

measurement algorithm representing the amount of 

information already available in a given gene according 

to the disease of a DNA dataset. In turn, we have 

introduced the IG implementation in term of a fitness 

function for GA. The proposed implementation works on 

maintaining the existing relationship between the gene 

and disease.     

D.  Evolutionary Semantic Framework for Imputation 

Missing Values 

The proposed framework works on ascribing missing 

values which are denoted by (?) in the given information 

table    (   ∪ * +) . In turn, every column has 

missing value(s) is processed as the input to Evolutionary 

Mutual Information Imputation (EMII) algorithm after 

the given table has been converted into a list of columns; 

see Fig 3. In the proposed framework, every missing 

value in any column of the column list is imputed during 

the processing of the context column using the proposed, 

EMII, algorithm. Our framework focuses on creating 

complete datasets via apply EMII multiple times (i.e., 

multiple imputations) although a single imputation is 

more straightforward it sometimes is insufficient. Every 

missing value, (?), is imputed and replaced by (v`). When 

all columns in the list of columns are imputed, the 

information table is reconstructed again, and the imputed 

dataset is subsequently used in the classification process 

using classification algorithms such as Naïve Bayes, and 

J48. 

 

 

Fig.3. The proposed framework to impute the missing values using the EMII algorithm during the imputation phase 

Fig 4. represents the three main steps used for multiple 

imputations by EMII. The first step includes the 

imputation process of the missing dataset more than once 

(i.e., n >1) to produce n distinct imputed datasets. The 

subsequent step is based on analyzing the different 

generated imputed datasets using standard performance 

measures in order to generate n analysis reports. Finally, 

the available n reports are compared for obtaining the 

best suitable imputation result. Multiple imputations are 

helpful in resolving the limitation of a number of 

instances since it allows the EMII to try different 

suggestion to reach almost exact value(s) of the missing 

values.  

Fig.4. The main steps of multiple imputations using EMII algorithm
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Because of every dataset is extracted under certain 

circumstances and standards for acquiring details of all 

tuples from the specified sensation nodes in the dataset, 

there are two logical facts can be taken into consideration 

during imputation process of a given dataset. First, the 

whole column (feature) has a dependency relation to the 

target class, during the collection of information. Second, 

if there is a missing value(s) in the dataset that could be 

randomly occurred during the acquisition process, it 

almost has a value,     ,       -  where min and 

max are minimum and maximum values in the current 

column (feature) of the given dataset. In turn, we can 

state clearly, in microarray dataset(s), every gene has 

homogenous value with a slight change over different 

subjects and the gene type itself has correlation value 

with the studying disease. 

Hence, EMII is introduced to study the relationship 

between the gene type and the value of the gene at the 

same time to determine the more reasonable value. EMII 

suggests a value for every missing value individually in 

the same gene in the same moment. The process of EMII 

keeps track of the biology meaning of the suggested 

values and their interpretation. We have designed EMII 

for optimizing the suggested value based on the gene 

value using GA by control initialization process to be 

controlled by the min and max values in the current gene. 

Besides, EMII manages the gene type using a fitness 

function powered by entropy which tracks the relation 

between the gene and the disease. So, GA’s population is 
controlled for saving the missing values that can be 

generated due to a model considering genes’ type and 

disease labels. Hence, the outcome of GA is a population 

which precedes the adjustments of the solutions 

improvement in each iteration. GA has the ability to find 

multiple optimal solutions in one single simulation run 

makes GA unique in solving multi-objective problems. 

So, GA can be used to generate multiple solutions at the 

final population. In turn, EMII algorithm is based on a 

hybrid evolutionary and mutual information for 

imputation of missing values. It is based on GA and IG 

algorithms to generate optimal estimation values for the 

missing values. Also, it differs from the most recent 

implementation of GAs imputing missing data in three 

ways: 1) the chromosome definition is related to the gene 

or attribute itself and not to the instance in the dataset, 2) 

the fitness function optimizes the correlation dependency 

between the gene type and regularity for the gene’s 
values of the instances in the gene and 3) the 

homogeneity of the chromosome which holds the same 

type and structure of data within a predefined range 

regrading to the studied gene.  

Fig 5 represents a gene microarray dataset which is 

converted into a list of columns (see Fig 6) for illustrating 

EMII steps. We have converted the given information 

table into a list of columns in order to:  

 

 

 

 

 

a)  Increase the precision of the generated values through 

isolation of random number generator engine, 

Execute the columns simultaneously since they are 

independent even, they use the class column that is 

already read-only shared between them. 

 

 

Fig.5. A sample gene expression dataset 

 

Fig.6. Gene expression dataset, from Fig.5., in columns  

and class structure 

Each column in Fig 6 is passed through a complete 

EMII call. In turn, for a given dataset consisting of M 

genes (columns) and a disease (class label), there are M 

calls for imputation procedure, EMII, divided as one call 

per gene. Every call initializes a complete GA problem 

which consumes N iterations for producing N imputation. 

The representation of the chromosome is designed to 

impute any missing values, if existent, in the column that 

is being processed. If the chromosome doesn’t contain 
missing values in the original input state, or in the column, 

then the procedure exists for optimizing the runtime 

complexity. Otherwise, EMII goes through to replace the 

missing values until the optimal suggestion is achieved. 

During the substitution procedure, genetic operators are 

applied which are illustrated in Fig 7, where BLUE 

represents input chromosomes, RED shows the effect of 

reproduction, ORANGE represents results of cross over 

and GREEN describes effects of mutation operator. 
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Fig.7. Evolutionary operators (reproduction, crossover, and mutation) 

for the first column in the first iteration. 

 

Fig.8. A sample imputed dataset, from an incomplete dataset in Fig.5. 

The N imputed genes were evaluated using the 

standard performance measures for selecting the optimal 

imputed gene in the final result.  

The selection operator of GA makes duplicates of the 

right genes into the new population while keeping the 

size of the population fixed, i.e. reproduction. Next, in 

crossover operator, every two treatments are selected 

from the breeding pool at random while some elements of 

the treatments are swapped between the treatments to 

create two new treatments seeking more accurate values 

for the genes’ values. However, the mutation procedure 
generates better genes’ values than the handled one, and 
thus represents a slight difference by randomly changing 

the value of the missing values. Slight difference in 

random number generation is intended to manage the 

biology meaning and interpretation of genes’ value and 
type. The process is repeated until either the maximum 

number of iterations is achieved or optimal fitness is 

achieved using the designed fitness function for all genes. 

The formulated fitness function is defined in terms of the 

relation of current gene type and disease using entropy, 

IG, algorithm. It keeps or maximizes the relationship 

between the current gene and the class label.   

After EMII have been finished imputing all missing 

values over different genes in the given dataset, the 

imputed columns were merged again into a single 

information table; see Fig 8, where every missed value 

was denoted by (?) is already replaced by a suggested 

value (  ) and every column that was including a missing 

value has a new weight generated by IG algorithm after   

substitution by a new value(s) (  ). We can formulate the 

different steps of the EMII algorithm into a single 

flowchart representing the straightforward execution of 

EMII, see Fig 9. Fig 10 represents its related algorithm. 

This algorithm consists of two Procedures: EMII-P and 

EVALUATE-P. EMII-P accepts two inputs: a column 

list which is being processed and a class list that 

represents the disease type. This procedure returns the 

best solution for the input column while the returned 

solution holds the imputed values for the missing value. 

EVALUATE-P is a fitness function estimator that 

calculates the fitness function for the solution in the 

current population using standard implementation details 

of IG. This procedure accepts the population of the 

current iteration and class label that represents the disease 

type. It returns a list of scores, where each score 

represents the fitness of the different solutions in the 

current population.  

 

 

Fig.9. Flowchart of Evolutionary Mutual Information  

Imputation algorithm. 

The EMII algorithm utilizes the work of IG as a fitness 

evaluator which causes a higher probability of reaching 

pure category in classification. But pure random value 

generation can lead to higher IG rate without considering 

biology nature of gene value which represents a 

contradiction. In turn, the EMII algorithm imputes the 

values under controlled of an interval ,       -, where 

min and max are minimum and maximum values in the 

current gene of the dataset. The population of GA is 

initialized randomly based on the control interval per 

each chromosome. Every chromosome has a length equal 

to the number of instances in the dataset. 

Only the missing values in each chromosome is 

imputed randomly to make the chromosome ready to be 

evolved and evaluated using the fitness function. In turn, 

the GA seeks an optimal solution that satisfies the 

hypothesis where the changes keep imputed values within 

designated limits and have a biology relation between 

both gene and human disease types. Because the EMII 

algorithm works on NP-Complete partition problem, it 

consumes asymptotically average running time up to  (  )  where n is the total number of columns because 

generally, GA finds at least 4/3 of the approximated 

solution in the expected running time [18]. The proposed 
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algorithm is considered moderate complexity running 

time verse the original GA which costs  (    ) rather 

information gain measure that consumes  (    )  and 

the IG/SGA which is proposed in 2017 by  [24], that 

costs  (    (         )) ; where n denotes the 

number of instances, m denotes to the dimension of the 

data, p characterizes the population size and g denotes the 

total of generations. In turn, EMII is better than IG/SGA 

and standard GA in computationally expensive.  

 

 

Fig.10. The pseudocode of the EMII algorithm. 

 

IV.  EXPERIMENTAL ANALYSIS 

In this section, two experiments are designed to 

evaluate the performance of the proposed algorithm. The 

first experiment is on imputation quality and the second is 

on the impact of imputation on classification. Imputation 

quality is performed on three gene expression datasets 

(Colon, Leukemia, and Prostate), called original datasets, 

and impact of imputation on classification is performed 

using Naïve Bayes and J48 classifiers and the same three 

datasets. Imputation quality uses an incomplete version of 

the three datasets to generate three complete versions of 

datasets, called imputed datasets. Impact of imputation on 

classification uses three imputed datasets to produces 

three classification models per classifier algorithm. The 

imputation quality measures the difference of the 

dataset’s characteristics between the original dataset and 
the imputed dataset while the impact of imputation on 

classification analyses the difference in the classification 

model’s characteristics which have been generated using 

the original dataset and imputed dataset. The 

implementation environment is HP Z800 workstation 

with two Intel Xeon 2.4 GHz, 64 GB memory.  The 

workstation runs Windows 10 x64 bit and pre-configured 

with JAVA version 8 x64 bit, WEKA library and 

JENETICS library which are open source implementation 

library that is used to fully supporting in developing the 

proposed EMII algorithm.  

A.  Datasets 

In our experiments, we have used three high-

dimensional biomedical datasets (Colon, Leukemia, and 

Prostate) from Kent Ridge Biomedical repository, 

http://leo.ugr.es/elvira/DBCRepository. The datasets 

include gene expression data, protein profiling data, and 

genomic sequence data. Every dataset is considered as 

information table   (   ∪ * +), where * + represents 

the class column and   represents the list of gene features 

in the dataset. Every dataset has a set of tuples denoted by  . 

Table 1. Gene Expression Datasets for Three Human Cancer Diseases 

Dataset #Instance #Attributes #Nominal #Numeric #Class Label of Class Frequency Imbalance 

Colon Cancer[19] 62 2001 1 2000 2 
Normal: Positive 22 

1.82 
Cancer: Negative 40 

Leukemia [20] 72 7130 1 7129 2 
AML 25 

1.88 
ALL 47 

Prostate Cancer[21] 136 12601 1 12600 2 
Normal 77 

1.3 
Tumor 59 

 

http://leo.ugr.es/elvira/DBCRepository/
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Table 1 compares and summarizes the used three 

datasets, where the cardinality of   is the total number of 

samples and   is the total number of attributes minus one; 

i.e., class label.  It is noticeable, from table 1, each 

category has two class labels and they are not fair and 

balanced in terms of frequency. Also, the associated 

genes per tuple can be at least 2000 and at most 12600 

with an irregular, a small number of samples. Table 2 

highlights the challenges in the estimation of missing 

values which are: 

 

a) a number of genes verse number of samples,  

b) rare of samples availability,  

c) imbalance of tuples in the dataset.  

B.  Parameter Settings  

During the experimental evaluation, the population size 

is defined to include 100 chromosomes. Different genetic 

operators are applied in the experiment where the 

crossover is set to 0.8, and a single mutation has a 

probability rate equal to 0.1. These two operators are 

performed after the execution of the selection operator 

with a probability rate of 0.1. So, there is a group of 10 

chromosomes being selected and transferred to the new 

population.  

In the experiments, the missing values occur as a result 

of applying a filter which creates missing values 

randomly. The filter generates random values with given 

5% as a ratio in these experiments. Hence, the total 

number of missing values in a dataset equals to 0.05 * a 

number of samples * a number of genes. We intend to use 

the original dataset(s) as the ground truth state of the 

problem besides we can’t determine the truth of the 
imputed value for a dataset already includes missing 

value.  Every dataset is randomly splatted into 75% 

training and 25% testing. Table 2 summarizes overall 

parameters which were used in the experiments.  

Table 2. Parameter settings used in the experiments 

Parameter Value 

Population Size 100 

Initialization 
Random float values but must be 

in ,       - 
Generations 10 

Reproduction rate 10 % 

Crossover probability 10 % 

Mutation probability 80 % 

Selection type Tournament (size=7) 

Missing value filter ratio 5 % 

Method of missing value 

occurrence 

missing completely at random 

(MCAR) 

Classification algorithms NB and J48 

Training ratio 75 % 

Testing ratio 25 % 

Split type Random 

B.  Evaluation Metrics 

Two categories of metrics are used to evaluate the 

EMII algorithm. The first category is used as 

performance metrics to measure the quality of the 

imputed data values instead of the missing values. It 

includes three metrics: Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and Minimum Ratio (  ). 
RMSE estimates the difference between the predicted 

value and the correspondence observed data. It is scale-

dependent to measure the forecasting error for a 

particular dataset as given in Eq. (6)[22].      

       √∑ (     )      ⁄ 
                  (6) 

 

where          are the predicted and the observed values 

respectively, and   is the total number of the estimated 

values.  

RMSE has a disproportionate outcome regarding the 

effect of each error. Thus, large errors have a huge effect 

on RMSE. MAE is the One-to-One estimator used to 

measure the average horizontal differences between two 

variables. Assume (Y, X) is an ordered pair where Y and 

X represent the predicted and the observed values 

respectively [22]. MAE is the quantity disagreement 

value that is given by Eq. (7) where            are the 

predicted value, the observed value and the total number 

of values. 

        ⁄  ∑ |     |                       (7) 

   is one of the most common dissimilarity measures that 

are used to measure the dissimilarity between two 

variables: the estimated value(s) A versus the ground-

truth value(s) B. As    approaches zero, the predicted 

values almost match the original values. From Eq. (8),   is computed, where             are the predicted 

value, the observed value, and the total number of 

values[23]. 

       ⁄  ∑    (    ⁄      ⁄ )                (8) 

 

Because of DNA gene expression is a binary class and 

is classified either normal or abnormal, i.e. cancer 

infected, the second category of evaluation measurement 

estimates the impact of the imputed value(s) on the 

applied classification techniques. Table 3 shows the 

atoms factors of the used performance metrics: True 

Positive (TP), False Positive (FP), False Negative (FN), 

True Negative (TN), Positive (P), and Negative (N) 

instances[24]. 

Table 3. Classification Evaluation Metrics 

 Normal Cancer Total 

Normal         

Cancer         

Total  ̂  ̂     

 

TP and TN are the numbers of positive instances and 

negative diagnosed correctly respectively. However, FP 

is Type I error and is the number of negative instances 

detected as positive and FN is Type II error and is the 

number of positive instances detected as negative. 

Precision, Recall, F-measure, and accuracy are computed 



 A New Hybrid Genetic and Information Gain Algorithm for Imputing Missing Values in Cancer Genes Datasets 29 

Copyright © 2019 MECS                                                           I.J. Intelligent Systems and Applications, 2019, 12, 20-33 

using TP, TN, FP, and FN as given in Equations (9), (10), 

(11) and (12) respectively[25].     ` 

                                             (9) 

                                           (10) 

                                                              (11) 

                                           (12) 

 

C.  Experiments Analysis 

1)  Imputation Quality  

Fig 11 illustrates the process flow for estimating the 

quality of the imputed datasets, in which every complete 

dataset has been filtered by the missing values to be 

imputed using the EMII algorithm and generates an 

imputed dataset that is a new complete dataset. Finally, 

both of the original and imputed complete datasets are 

estimated using standard measures including RMSE, 

MAE, and   . 
 

 

Fig.11. Measuring the quality of the imputed dataset 

Three datasets are used to evaluate the EMII algorithm 

in imputing missing values. The imputation process is 

repeated ten times, and for each repetition, the values of 

RMSE, MAE and    are computed. Since the estimated 

values have different qualities and ranges due to different 

datasets, the standard deviation, average metrics, and 

normalized metrics are computed to indicate the quality 

of the imputed value. Table 4 describes the different 

values of the averages have been recorded in ten tries. In 

which, the overall RMSE rate is 0.3911 for the colon 

dataset, 0.4568 for the leukemia dataset, and 215.35 for 

the prostate dataset. We notice for MAE is 0.0722, 0. 

0817, and 14.53 for colon, leukemia and prostate datasets 

respectively. We applied the minimum ratio,   , for 

determining the dissimilarity of the original values and 

the imputed values which have been estimated by EMII. 

Average of ten tries generate imputed values similar by 

90.42%, 54.5%, and 36.71% for the colon, leukemia and 

prostate dataset respectively. So, EMII generates values 

at least similar by 36.71% up to 90.42%. (i.e. EMII is 

able to reasonably estimate exactly at least 36.7% values 

of the missing values in a given dataset). 

Table 4. Average of the imputed value(s) over 10 tries 

Dataset Measure Value 

Colon-Cancer 

RMSE 0.3911 

MAE 0.0722    0.0958 

Leukemia 

RMSE 0.4568 

MAE 0.0817    0.455 

Prostate-Cancer 

RMSE 215.35 

MAE 14.53    0.6329 

 

Since the used datasets have different ranges of values, 

the standard RMSE and MAE must be normalized for 

increasing the credibility of the empirical analysis of 

EMII algorithm.  

Table 5. Comparative evaluation of NRMSE and NMAE 

Measure 

NRMSE NMAE function of 

ten tries 
Dataset 

Min 

colon-cancer 0.039663 0.007304827 

leukemia 0.027254 0.004868260 

prostate 0.004457 0.000302733 

Max 

colon-cancer 0.040453 0.007471276 

leukemia 0.027588 0.004938180 

prostate 0.004658 0.000309803 

Ave 

colon-cancer 0.040145 0.007405721 

leukemia 0.027399 0.004900201 

prostate 0.004542 0.000306424 

Std. 

Deviation 

colon-cancer 0.000252 0.000052000 

leukemia 0.000096 0.000019000 

prostate 0.000073 0.000002200 

 

Table 5 describes the overall comparison of the 

Normalized RMSE (NRMSE) and the Normalized MAE 

(NMAE) using the colon, leukemia and prostate datasets 

respectively. Besides, Table 5 compares the imputation 

quality of minimum, maximum, average, and standard 

deviation for every dataset over the ten tries. The 

normalized relation uses the exact result report of the 

mentioned ten experiments. In Table 5, EMII algorithm 

finds optimal values for the missing values in leukemia 

with NRMSE up to 2.7% and NMAE less than 0.5%. In 

the same treatment, EMII algorithm succeeds in imputing 

missing values for the prostate dataset with NRMSE and 

NMAE less than 0.5% and 0.03% respectively. Hence, 

EMII algorithm has overall NRMSE up to 4.04%, 2.75%, 

and 0.46% and NMAE up to 0.74%, 0.49%, and 0.03% to 

impute the missing values for the colon, leukemia and 

prostate datasets respectively. 

Table 6. Evaluation of the best-imputed value(s) 

Dataset RMSE MAE    
colon-cancer 0.03966 0.0073 0.647907 

Leukemia 0.02725 0.0049 0.497174 

Prostate 0.00446 0.0003 0.665282 
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Table 6 describes the different rates of RMSE, MAE 

and    for three datasets that were derived from previous 

experiments. Table 6 shows that EMII algorithm can 

reliably estimate the missing values for leukemia dataset; 

the imputed values are 49.7% dissimilarity in ground-

truth value and differ from the observed values in terms 

of NRSME (only 2.7%) and NMAE values (only < 0.5%).  

2)  Impact of imputation on the classification  

Fig 12 describes the overall process for the proposed 

framework for handling the missing values using EMII. 

From the figure, the original dataset is splatted into train 

and test batches respectively. Then the process starts for 

multiple imputations and having the final release of the 

imputed dataset which represents the new train batch. 

This batch is used to build a classification model which is 

tested using the original test batch for granting the 

validation of the evaluation process. Then, the 

classification model is evaluated using standard measures 

and is checked for the model quality for a given dataset. 

 

 

Fig.12. Evaluating final imputed dataset after multiple imputation 

processes by EMII algorithm 

In Table 7, a comparison of two classification 

algorithms and three datasets in the original state and 

imputed state are described. This comparison includes 

three classification performance measures; precision, 

recall, and f-measure. EMII algorithm has imputed the 

colon and leukemia datasets in a significant accurate level. 

The imputed datasets achieved optimal results for 

precision, recall, and f-measure. The colon datasets have 

a matched case using J48 classification algorithm while 

the leukemia results are optimal with NB classifier. For 

prostate datasets, the J48 classifier has the nearest 

estimation with respect to precision, recall, and f-measure 

from the ground truth state. The noise for the J48 

classifier is 2.00%, 2.17%, and 4.30% in precision, recall, 

and f-measure respectively.  

Fig 13 represents a comparison between the classifiers 

J48 and NB in terms of precision using the three datasets. 

In which, we have an exact precision level for J48 

classifier using Colon dataset and for NB classifier using 

Leukemia dataset. In the same trend, Fig 14 evaluates the 

two classifiers in terms of recall metric. The classifiers 

match the same level of recall using Colon and Leukemia 

for J48 and NB respectively. Fig 15 represents a 

comparative study of F-Measure for the classification 

algorithms using the original datasets versus the imputed 

dataset(s). It shows that the results of the classifiers J48 

and NB match using Colon and Leukemia respectively.  

 

Fig.13. Comparative Evaluation of Precision using three datasets. 

 

Fig.14. Comparative Evaluation of Recall using three datasets. 

 

Fig.15. Comparative Evaluation of F-Measure using three datasets. 

3)  Comprehensive Analysis   

We have surveyed recent literature that uses the three 

datasets (Colon, Leukemia, and Prostate) in their 

experiments and evaluation. We can conclude almost of 

researchers are working on feature selection, reduction 

and classification without handling missing values; if 

exists so that in this section we are focusing on the impact 

of using the datasets; with missing values, after had been 

imputed by EMII algorithm. The intention of the 

experiments is to reach the lowest rate of difference 

between performance metrics using the original datasets 

verse the imputed datasets. The comparison between the 
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most recent approaches was performed regarding 

classifiers sensitivity, specificity, and accuracy that are 

stated in [26]. In order to evaluate the EMII algorithm 

verse recent literature, we have implemented a recent 

approach called IG/SGA approach that has been 

introduced in [24]. Since the hybrid Information Gain and 

Standard Genetic Algorithm (IG/SGA) approach has a 

higher performance against other recent literature, we 

compared the impact of EMII in a preprocessing stage on 

the same three datasets using IG/SGA approach. We have 

recorded the overall experiment results in Table 8. In 

which, the symbol, ―—‖, represents that the actual values 
are not available in the cited work due to the original 

author. The imputed values by EMII algorithm achieve 

accuracy rates that differ by 1%, 2.2%, and 4.8% for the 

use of leukemia, prostate, and colon datasets respectively 

from the use of original datasets. In turn, EMII algorithm 

imputes the missing values and generates a dataset that 

produces a model with accuracy having a noise up to ±5% 

from the original dataset. Fig 16 demonstrates the 

classification accuracy using the imputed datasets and 

IG/SGA approach versus other approaches.    

H. Salem et. al. [24] classified human cancer diseases 

based on their prediction of gene expression profiles, 

whose dimensionality was then optimized with GA. The 

study focuses on feature subset selection using a genetic 

algorithm and increases classification rates of genetic 

programming. The authors exploited the structural 

information for evolutionary selecting a set of genes 

using GA and classified this set based on genetic 

programming classifier. We are totally different from 

their framework since they built a feature reduction 

hybrid method while we introduce EMII which is missing 

value imputation algorithm. EMII algorithm is used in the 

pre-processing stage of feature dimensional reduction. 

Table 9 describes the comparison between the features 

that were chosen from both of the original and imputed 

datasets. The features were selected based on their IG 

values that were higher than the predefined threshold. 

Various thresholds are used to select a subset of features 

to obtain the genes that are most relevant to the disease in 

the three datasets. For threshold 0.0, the hybrid IG/SGA 

reduces the features of the imputed datasets, namely 

Colon, Leukemia, and Prostate, to 357, 528, and 1486 

respectively. The reduced values of the imputed datasets 

differ by 0.04, 0.03, and 0.02 from the reduced datasets 

using the original datasets with respect to accuracy. 

Different threshold values have been used to evaluate 

imputable datasets for subset selection of genes. For the 

colon dataset, the threshold is set to 0.1, which generates 

85.48%, and 90.3% for original dataset against imputed 

dataset by EMII using IG/SGA approach. With 0.8, and 

0.2 as thresholds for leukemia, 97.06%, and 96% are 

measured for the original and the imputed datasets 

respectively. EMII algorithm can impute the datasets 

which cause accuracy rates with noise up to ±1% 

compared with the original leukemia dataset. Also, with 

0.4 as the threshold for the prostate dataset, the accuracy 

level with noise is ±9%. 

 

 

Fig.16. Comparative evaluation of accuracy rates using the imputed 

dataset(s) by EMII versus the original dataset(s) in recent researches.  

 

V.  CONCLUSION 

The main aim of this paper is to propose an EMII 

algorithm as a hybrid imputation algorithm. We have 

applied the new algorithm in estimating missing values of 

DNA microarray expression datasets before classification 

because biologists are often interested in identifying the 

genes involved in biological human tests or checkups for 

a disease. The new imputation algorithm leads to enhance 

both knowledge mining and model interpretation in terms 

of RMSE, MAE, and MR. We had validated the proposed 

algorithm using three DNA microarray datasets. There 

are two experiments which were designed to evaluate the 

performance of the EMII algorithm. The first experiment 

is on imputation quality and the second is on the impact 

of imputation on classification. From the results of our 

study, we deduce that the EMII algorithm is highly 

significant and can impute missing values that are at least 

36.7% exactly to the accurate values, in some cases 

reaches 90.42% and average overall at least 60% over 

sixty tries have been done. The analysis of the final 

results showed that EMII algorithm can generate imputed 

datasets that can be used for classifying human cancer 

diseases with accuracy as high as the accuracy obtained 

when using original datasets. EMII algorithm reaches 

classification accuracy with noise up to ±9%. Hence 

EMII can be efficiently applied for imputing missing 

values in medical datasets. Also, it has a running time of 

θ(n2), where n is the total number of columns when the 
algorithm achieves at least 4/3 of the approximated 

solutions in the expected running time.  

Even the EMII algorithm has a significantly improved 

running time, it works sequentially and this limits its 

efficiency, particularly when it is used with modern 

parallel architectures. In the future, we plan to build a 

parallelized version of the algorithm. Additionally, we 

will extend the imputation process to consider the  
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problem of having missing values in multi-class and 

multi-label datasets. Also, we plan to build a generic 

framework based on the proposed algorithm to handle 

missing values in any dataset. 

Table 7. Comparative evaluation using the original dataset(s) versus the imputed dataset(s) by EMII 

Dataset Algorithm State Precision Recall F-Measure 

colon-cancer 

NB 
Original 73.611% 76.190% 75.132% 

Imputed 77.778% 80.952% 79.592% 

J48 
Original 59.722% 61.905% 60.989% 

Imputed 59.722% 61.905% 60.989% 

Leukemia 

NB 
Original 71.429% 66.667% 64.762% 

Imputed 71.429% 66.667% 64.762% 

J48 
Original 81.429% 83.333% 82.963% 

Imputed 86.429% 87.500% 87.387% 

Prostate 

NB 
Original 26.190% 23.913% 17.620% 

Imputed 54.762% 58.696% 47.322% 

J48 
Original 45.238% 41.304% 26.689% 

Imputed 47.238% 43.478% 30.988% 

Table 8. The impact of classification accuracy for the dataset(s) using the IG/SGA approach 

Author 
Imputation 

Method 

Method 
Colon Leukemia Prostate 

Feature Selection Classifier 

T. Nguyen et. al. [13] None 
Analytic Hierarchy 

Process (AHP)  

Hidden Markov 

Models (HMMs) 
81.47% 96.48% 95.60% 

D. Singh et. al. [12] None Genetic Algorithm (GA) 
Support Vector 

Machine (SVM) 
84.60% 91.50% — 

H. Salem et. al. [24] None Information Gain (IG) 
Standard Genetic 

Algorithm (SGA) 
85.48% 97.06% 100% 

The Proposed EMII IG SGA 90.30% 96% 97.80% 

Table 9. The accuracy rate of the classification of the imputed dataset(s) using different thresholds values for IG 

Dataset Authors #Attributes 

Threshold Value = 0.0 Different Threshold Value(s) 

#Attributes  

IG 

#Attributes 

IG-GA 
Accuracy 

Threshold 

Value 

#Attributes 

IG-GA 
Accuracy 

Colon 
[24] 

2000 
135 60 85.48% 

0.1 
60 85.48% 

EMII 296 138 91.90% 87 90.30% 

leukemia 
[24] 

7129 
585 316 91.17% 0.8 3 97.06% 

EMII 1042 524 92.60% 0.2 137 96% 

Prostate 
[24] 

12600 
2457 1235 100% 

0.4 
26 100% 

EMII 2980 1486 97.30% 16 91.1 
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