
 Open access  Journal Article  DOI:10.1080/14685248.2018.1540879

A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for
Lattice Boltzmann method-based large eddy simulation — Source link 

JÃ©rÃ´me Jacob, Orestis Malaspinas, Pierre Sagaut

Institutions: Aix-Marseille University, University of Geneva

Published on: 02 Nov 2018 - Journal of Turbulence (Taylor & Francis)

Topics: Lattice Boltzmann methods and Large eddy simulation

Related papers:

 Lattice Boltzmann method with regularized pre-collision distribution functions

 Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows

 
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component
Systems

 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation

 Recursive regularization step for high-order lattice Boltzmann methods.

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-
3nl87h30kw

https://typeset.io/
https://www.doi.org/10.1080/14685248.2018.1540879
https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-3nl87h30kw
https://typeset.io/authors/ja-c-rame-jacob-37fscjdll7
https://typeset.io/authors/orestis-malaspinas-hwh5g1d9jo
https://typeset.io/authors/pierre-sagaut-wd0fou9neg
https://typeset.io/institutions/aix-marseille-university-2z208r50
https://typeset.io/institutions/university-of-geneva-1ljqrc07
https://typeset.io/journals/journal-of-turbulence-30n3dg76
https://typeset.io/topics/lattice-boltzmann-methods-1p5855a0
https://typeset.io/topics/large-eddy-simulation-2ocplsdw
https://typeset.io/papers/lattice-boltzmann-method-with-regularized-pre-collision-3p3xaixwyj
https://typeset.io/papers/hybrid-recursive-regularized-thermal-lattice-boltzmann-model-4owkop5b5h
https://typeset.io/papers/a-model-for-collision-processes-in-gases-i-small-amplitude-28xo1c1r6t
https://typeset.io/papers/kinetic-theory-representation-of-hydrodynamics-a-way-beyond-gs2dxbm1jf
https://typeset.io/papers/recursive-regularization-step-for-high-order-lattice-2jsb4uj5ce
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-3nl87h30kw
https://twitter.com/intent/tweet?text=A%20new%20hybrid%20recursive%20regularised%20Bhatnagar-Gross-Krook%20collision%20model%20for%20Lattice%20Boltzmann%20method-based%20large%20eddy%20simulation&url=https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-3nl87h30kw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-3nl87h30kw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-3nl87h30kw
https://typeset.io/papers/a-new-hybrid-recursive-regularised-bhatnagar-gross-krook-3nl87h30kw


HAL Id: hal-02114308
https://hal.archives-ouvertes.fr/hal-02114308

Submitted on 29 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new hybrid recursive regularised
Bhatnagar–Gross–Krook collision model for Lattice

Boltzmann method-based large eddy simulation
Jérôme Jacob, Orestis Malaspinas, Pierre Sagaut

To cite this version:
Jérôme Jacob, Orestis Malaspinas, Pierre Sagaut. A new hybrid recursive regularised Bhatnagar–
Gross–Krook collision model for Lattice Boltzmann method-based large eddy simulation. Journal of
Turbulence, Taylor & Francis, 2018, pp.1 - 26. 10.1080/14685248.2018.1540879. hal-02114308

https://hal.archives-ouvertes.fr/hal-02114308
https://hal.archives-ouvertes.fr


A new hybrid recursive regularised Bhatnagar–Gross–Krook
collision model for Lattice Boltzmannmethod-based large
eddy simulation

Jérôme Jacob a, Orestis Malaspinas b and Pierre Sagaut a

aCentrale Marseille, Aix Marseille University, CNRS, Marseille, M2P2, France; bDepartment of Computer
Science, University of Geneva, Carouge, Switzerland

ABSTRACT

A new Lattice Boltzmann collision model for large eddy simulation
(LES) of weakly compressible flows is proposed. This model, referred
to as the Hybrid Recursive Regularised Bhatnagar–Gross–Krook
(HRR-BGK) model, is based on a modification of previously existing
regularised collisionmodels defined with the BGK Lattice Boltzmann
method (LBM) framework. By hybridising the computation of the
velocity gradient with an adequate Finite Difference scheme when
reconstructing the non-equilibrium parts of the distribution func-
tion, a hyperviscosity term is introduced in themomentumequation,
whose amplitude can be explicitly tuned via a weighting parame-
ter. A dynamic version of the HRR-BGK is also proposed, in which the
control parameter is tuned at each grid point and each time step in
order to recover an arbitrarily fixed total dissipation. This new colli-
sion model is assessed for both explicit and implicit LES considering
the flow around a circular cylinder at Re = 3900. The dynamic HRR-
BGK is observed to yield very accurate results when equipped with
Vreman’s subgrid model to compute the target dissipation.
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1. Introduction

Large eddy simulation (LES) is now a mature simulation technique for high-resolution

unsteady simulation of turbulent flows [1–3]. This technique, which is under develop-

ment since the early 1960s, is now implemented in almost all computational fluid dynamics

(CFD) tools, including commercial software. Among the key issues faced when develop-

ing LES-based simulation tools, one must cite the development of accurate models for

subgrid scales and adequate numerical schemes that guarantee numerical stability whose

induced dissipation does not overwhelm the effect of physical subgrid models. To this end,

a huge amount of subgrid models and numerical methods have been proposed since the

1980s. This issue is far from being a trivial one, since it is now accepted that the discreti-

sation errors and the subgrid models are implicitly coupled in a genuinely nonlinear way
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which escapes a full mathematical analysis. Therefore, finding an optimised pair (numeri-

cal scheme and subgrid model) is a very difficult task, since it has been observed that some

partial error cancellation may occur, leading to: (i) a kind of super-convergence of LES

results (an unexpected high accuracy is obtained in such a case since modelling errors and

numerical errors partially balance each other) and (ii) the counter-intuitive result that in

some cases an increase of the order of the numerical scheme or grid refinementmay lead to

a decrease of the global accuracy of the results [4–6]. A promising way to solve this prob-

lem is to develop stabilised numerical schemes whose leading error terms mimic explicit

subgrid models, leading to the implicit large eddy simulation (ILES) approach [7]. Using

such a scheme, one may expect to guarantee numerical robustness and physical accuracy

at the same time in a better controlled way.

LES has been implemented within the Lattice Boltzmann method (LBM) framework

[8–12] since the 1990s [13–26], and both classical LES and ILES approaches have been

proposed. The most common way to incorporate an explicit subgrid viscosity model is to

modify the relaxation time in the collision model in order to recover the targeted effective

total viscosity, defined as the sum of the molecular viscosity of the fluid and the subgrid

viscosity. But the need to develop stabilised LBM schemes to handle high Reynolds number

flows has also led to the definition of collision models with some ILES capabilities, such as

Entropic methods [27–30], Cascaded models [31–33] and regularised methods [34–39].

While it has been observed in numerical experiments that these methods may lead to sat-

isfactory results in turbulent flow simulations without adding an explicit subgrid model,

the direct link between their build-in dissipation and the physical subgrid one is not fully

understood.

This paper proposes a new improved recursive regularised LBM method based on

the hybridisation of the computation of the velocity gradients when evaluating the

coefficients of the reconstruction of the regularised non-equilibrium component of dis-

tribution functions, leading to the definition of an Hybrid Recursive Regularised Bhatna-

gar–Gross–Krook (HRR-BGK) model. In this new model, the numerical stabilisation can

be explicitly tuned in order to recover a perfectly controlled amount of local dissipation. To

get an accurate ILESmethod, the free parameter appearing in this new collision kernel can

be set dynamically at each grid point and time step to a value which allow to recover exactly

the same dissipation as the one provided by any classical LES subgrid model, according to

an explicit formula given below. The scope of the paper is restricted to low-Mach number

athermal flows.

This paper is organised as follows. The basic regularised BGK collision model used to

develop the new collision scheme is reminded in Section 2. The new dynamic RR-BGK

collision kernel is then discussed in Section 3. The analysis of its build-in dissipation and

the bridgewith ILES are presented in Section 4. Key features of theVreman’s subgridmodel,

which is used in this paper for explicit LES and tuning of the ILES simulations are reminded

in Section 5. The approach is then assessed considering the turbulent flow at Re = 3900,

which is a well-documented validation case. This test case is selected because it allows for a

wall-resolving simulation without wall model in a flow configuration in which the subgrid

model plays a very important role. The decoupling from the effects of a wall model is an

important point here, since wall models may have a deeper impact on the solution than

the subgrid model, masking the effect of the later. Here, the subgrid closure is known to

have a leading effect on the development of the separated shear layers and the formation



of the cylinder wake. It is worth noting that this is not the case considering plane channel

flows on LBM grids. As a matter of fact, wall-resolving LES of plane channel flow would be

based on a uniform grid with �x+ = �y+ = �z+ = 1 − 2 near the wall, which is finer

than classical DNS grid resolution requirement, yielding a poor interest for the assessment

of the present subgrid closure approach.

2. Recursive regularised BGK LBM

The Boltzmann equation discretised in the velocity space reads

∂tfi(x, t) + (ξ i · ∇)fi(x, t) = �i, (1)

where {ξ i}
q−1
i=0 is the discrete velocity set,�i is the collision operator. The most widely used

collision operator in the lattice Boltzmann community is the BGK model, where � is a

relaxation towards a polynomial approximation of the Maxwell–Boltzmann distribution

equilibrium, noted f
(0)
i

� = −
1

τ

(

fi − f
(0)
i

)

, (2)

where f
(0)
i is the equilibrium distribution function

f
(0)
i = wiρ

(

1 +
ξ i · u

c2s
+

1

2c4s
H

(2)
i : uu

)

, (3)

with cs the speed of sound (which is a constant) and H
(2)
i = ξ iξ i − c2s I (I is the iden-

tity matrix). This model is accurate for low-Mach number, weakly compressible athermal

flows. It suffers from a lack of numerical stability in highReynolds number flows. Therefore

several successful attempts have been made to make it more stable. Among these the regu-

larised approach (see [35, 36]) is particularly appealing due to its simplicity. The collision

operator of this model reads

�i = −
1

τ
f
(1)
i , (4)

where

f
(1)
i = −

1

2c4s
H

(2)
i : P(1), (5)

with P
(1) =

∑q−1
i=0 H

(2)
i (fi − f

(0)
i ) is the deviatoric stress tensor.

In Ref. [37], a recursive procedure is introduced to add higher order terms to make

the regularisation model even more stable, which was later used and generalised in Refs.

[34, 38]. It is based on the relation between the equilibrium and non-equilibrium Hermite

coefficients of the distribution function fi. By expanding fi in Hermite polynomials up to

an order N (see [11]) one gets

fi = wi

N
∑

n=0

1

c2ns n!
H

(n)
i : a. (6)



Then by using the standard Chapman–Enskog expansion [40], one can decompose fi into

two parts

fi = f
(0)
i + f

(1)
i , (7)

where f
(0)
i is the equilibrium distribution function and f

(1)
i is the off-equilibrium distribu-

tion function with f
(0)
i ≫ f

(1)
i . These two distribution functions can also be expanded in

Hermite polynomials

f
(0)
i = wi

N
∑

n=0

1

c2ns n!
H

(n)
i : a

(n)
0 , (8)

f
(1)
i = wi

N
∑

n=0

1

c2ns n!
H

(n)
i : a

(n)
1 , (9)

where a
(n)
0 and a

(n)
1 are the Hermite coefficients of the equilibrium and off-equilibrium

distributions respectively,

a
(n)
0 =

q−1
∑

i=0

H
(n)
i f

(0)
i , (10)

a
(n)
1 =

q−1
∑

i=0

H
(n)
i f

(1)
i . (11)

In the athermal case, the equilibrium Hermite coefficients of order n are given by

a
(n)
0 = a

(n−1)
0 u, with (12)

a
(0)
0 = ρ. (13)

Using the Chapman–Enskog expansion as in [37], one asymptotically first recovers the

weakly compressible Navier–Stokes equations

∂tρ + ∇ · (ρu) = 0, (14)

ρ(∂tu + u · ∇u) = −∇ · P, (15)

where

ρ =
∑

i

fi, (16)

u =
∑

i

ξ ifi, (17)

P =
∑

i

(ξ i − u)(ξ i − u)fi = P
(0) + P

(1) = Ip − 2ρνS, (18)

where S = (∇u + (∇u)T)/2 is the strain-rate tensor, p = c2sρ is the pressure (this is the

perfect gas law) and ν = c2s τ is the kinematic viscosity. Another very interesting property



of the Chapman–Enskog expansion of Equation (2) is that the off-equilibrium coefficients

are also related between themselves by a recursive relation (as are the equilibrium ones)

and are given by

a
(n)
1,α1···αn

= a
(n−1)
1,α1···αn−1

uαn +
(

uα1 · · · uαn−2a
(2)
1,αn−1αn

+ perm(αn)

)

, (19)

where ‘perm(αn)’ stands for all the cyclic index permutations of indexes from α1 to αn−1

(αn is never permuted), and where

a
(2)
1,αβ = −2ρτ c2s Sαβ , (20)

with Sαβ = (∂αuβ + ∂βuα)/2 is the strain rate tensor. Until this point we made the hid-

den assumption that the discrete Hermite polynomials H
(n)
i have the same orthogonality

relations between themselves that the continuous Hermite polynomials up to an arbitrary

order n. In reality only, a limited number of Hermite polynomials possess this property:

for the standard lattices D3Q15, D3Q19 and D3Q27 this is true up to order n=2 (see [41]

for example). In [37], one uses the D3Q27 lattice because of its better isotropy and there-

fore higher resemblance with the continuous case at the expense of a higher computational

cost. To lower the amount of computations needed per grid point, we use here the D3Q19

quadrature.

The Hermite polynomials used here are a bit different than for the D3Q27 case. Here

we will use only combinations of third-order Hermite polynomials which have the correct

orthogonality properties. These are

H
(3)
α,xxy + H

(3)
α,yzz, (21)

H
(3)
α,xzz + H

(3)
α,xyy, (22)

H
(3)
α,yyz + H

(3)
α,xxz, (23)

H
(3)
α,xxy − H

(3)
α,yzz, (24)

H
(3)
α,xzz − H

(3)
α,xyy, (25)

H
(3)
α,yyz − H

(3)
α,xxz. (26)

These Hermite polynomials being added to the set ofH(0),H(1) andH(2) the equilibrium

distribution function is given by

f
(0)
i = wi

(

ρ +
ξ i · (ρu)

c2s
+

1

2c4s
H

(2)
i : a

(2)
0 +

1

2c6s
(H

(3)
i,xxy + H

(3)
i,yzz)(a

(3)
0,xxy + a

(3)
0,yzz)

+
1

2c6s
(H

(3)
i,xzz + H

(3)
i,xyy)(a

(3)
0,xzz + a

(3)
0,xyy)

+
1

2c6s
(H

(3)
i,yyz + H

(3)
i,xxz)(a

(3)
0,yyz + a

(3)
0,xxz)



+
1

6c6s
(H

(3)
i,xxy − H

(3)
i,yzz)(a

(3)
0,xxy − a

(3)
0,yzz)

+
1

6c6s
(H

(3)
i,xzz − H

(3)
i,xyy)(a

(3)
0,xzz − a

(3)
0,xyy)

+
1

6c6s
(H

(3)
i,yyz − H

(3)
i,xxz)(a

(3)
0,yyz − a

(3)
0,xxz)

)

(27)

and the off-equilibrium is

f
(1)
i = wi

(

1

2c4s
H

(2)
i : a

(2)
1 +

1

2c6s
(H

(3)
i,xxy + H

(3)
i,yzz)(a

(3)
1,xxy + a

(3)
1,yzz)

+
1

2c6s
(H

(3)
i,xzz + H

(3)
i,xyy)(a

(3)
1,xzz + a

(3)
1,xyy)

+
1

2c6s
(H

(3)
i,yyz + H

(3)
i,xxz)(a

(3)
1,yyz + a

(3)
1,xxz)

+
1

6c6s
(H

(3)
i,xxy − H

(3)
i,yzz)(a

(3)
1,xxy − a

(3)
1,yzz)

+
1

6c6s
(H

(3)
i,xzz − H

(3)
i,xyy)(a

(3)
1,xzz − a

(3)
1,xyy)

+
1

6c6s
(H

(3)
i,yyz − H

(3)
i,xxz)(a

(3)
1,yyz − a

(3)
1,xxz)

)

, (28)

where

a
(2)
1,αβ =

∑

i

H
(2)
i,αβ(fi − f

(0)
i ) = −2ρτ c2s Sαβ , (29)

a
(3)
1,αβγ = uαa

(2)
1,βγ + uβa

(2)
1,γα + uγ a

(2)
1,αβ . (30)

With these two modifications to the regularised model (see Equation 4), we have now the

recursive regularised BGK Lattice-Boltzmann method (RR-BGK).

3. A new improved RR-BGK collision operator

In this paper, we propose a modified version of the regularisation procedure, which relies

on the hybridisation of the computation of the velocity gradients with finite difference

schemes in the computation of the recursive reconstruction parameters discussed in the

preceding section. The deviatoric stress tensor in the above equation is replaced by a

stabilising hybrid stress tensor P̃
(1)

which reads

P̃
(1)

= P
(1)σ − (1 − σ)2ρτ c2s S

FD, 0 ≤ σ ≤ 1, (31)

where σ = 1 is equivalent to the RR-BGK model.



Using the simple second-order centred finite difference approximation

g(x + �x) − g(x − �x)

2�x
= ∂xg(x) +

1

6
�x2∂3x g(x), (32)

the finite-difference strain rate tensor SFD can be evaluated as

SFDαβ
∼=

1

2

(

∂αuβ +
1

6
�x2∂3αuβ + ∂βuα +

1

6
�x2∂3βuα

)

,

∼=
1

2

(

∂αuβ + ∂βuα +
1

6
�x2(∂3αuβ + ∂3βuα)

)

,

∼= Sαβ +
1

2

(

1

6
�x2(∂3αuβ + ∂3βuα)

)

, (33)

where Sαβ denotes the exact velocity gradient tensor.

The collision operator then reads

� = −
1

τ
f̃
(1)
i , (34)

where

f̃
(1)
i = f

(1)
i σ − (1 − σ)

ρτ

c2s
H

(2)
i : SFD, (35)

where f
(1)
i is given by Equation (28). A more efficient way to compute this last term is to

evaluate it through the recursive relation using a following modified expression for the

coefficients:

f̃
(1)
i = f

(1)
i

(

ã
(2)
1,αβ

)

, (36)

with f
(1)
i still given in Equation (28) and where ã

(2)
1,αβ is

ã
(2)
1,αβ = σ

∑

i

H
(2)
i,αβ(fi − f

(0)
i ) + (1 − σ)(−2ρτ c2s Sαβ) = σa

(2)
1,αβ + (1 − σ)(−2ρτ c2s Sαβ).

(37)

The actual Boltzmann equation we will solve hereafter is given by

∂tfi + ξ i · ∇fi = −
1

τ

(

f
(1)
i σ − (1 − σ)

ρτ

c2s
H

(2)
i : SFD

)

. (38)

Performing the Chapman–Enskog expansion on this equation, one gets at the lowest order

∂tf
(0)
i + ξ i · ∇f

(0)
i = −

1

τ

(

f
(1)
i σ − (1 − σ)

ρτ

c2s
H

(2)
i : SFD

)

. (39)

Taking the zeroth-, first- and second-order moments of this last equation, one gets

∂tρ + ∇ · (ρu) = 0, (40)

∂t(ρu) + ∇ · (ρuu) = −∇p, (41)



∂t(ρuu) + ∇ · (ρuuu) + ∇(ρu) + (∇(ρu))T = −
1

τ
P̃

(1)
. (42)

Using the first two equations, the third can be rewritten as

− 2ρc2s τS + O(Ma3) = P̃
(1)
, (43)

whereMa = u/cs ≪ 1 is theMach number. TheMach number is shown to scale likeMa ∼

�t/�x (see [35] among others). Therefore using the diffusive limit for the scaling of �t,

�t ∼ �x2, which is the limit consistent with incompressible fluids, one can safely neglect

theO(Ma3) term which scales like �x3.

Therefore the previous equation can be rewritten as

σP
(1)
αβ = −2ρτ c2s Sαβ + (1 − σ)2ρτ c2s S

FD
αβ ,

P
(1)
αβ = −2ρτ c2s Sαβ +

(

1 − σ

σ

)

ρτ c2s
�x2

6
(∂3αuβ + ∂3βuα). (44)

With this relation, one recovers the equivalent Navier–Stokes equation

ρ
(

∂tuα + uβ∂βuα

)

= −∂αp + 2∂β(µSαβ)

−

(

(1 − σ)�x2

6σ

)

∂β(µ(∂3αuβ + ∂3βuα)), (45)

where µ = c2sρτ .

After performing the standard time–space discretisation using the trapezoidal approx-

imation of Equation (38), one gets the following numerical scheme

f̄i(x + ξ i, t + 1) = f
eq
i (ρ, u) +

(

1 −
1

τ̄

)

f̃
(1)
i , (46)

where f̄i = fi +
1
2τ f̃

(1)
i , f̃

(1)
i is given by Equation (36) and τ̄ = τ + 1/2.

The present model is discretised in space using embedded subdomains with uniform

mesh with a grid spacing ratio of two between two successive subdomains (see Figure 1).

For all the grid points far from the transition region, the collision–propagation algorithm

is applied and S
FD is computed using centred second-order finite differences schemes. As

shown in Figure 1, the coarse grid (©) overlaps the fine grid (•) making it possible to apply

the collision–propagation algorithm on the transition grid points belonging to the coarse

grid (©). Because of a lack of neighbour points, the propagation step cannot be applied at

the fine grid points (•) located in the transition layer. On these grid points, themacroscopic

values (ρ and u) and the deviatoric stress tensor (P(1)) are interpolated from the coarse

grid neighbours located in the transition layer and S
FD is computed using non-centred

first-order finite difference schemes.

4. Associated kinetic energy dissipation, equivalent artificial viscosity and
dynamic collision kernel

The extra dissipation of kinetic energy associated to the use of the new hybrid collision

kernel introduced above, denoted εσ , can be easily obtained considering the evolution



Figure 1. Visualisation of the grid arrangement around transition in resolution.

equation for the kinetic energy 1
2u · u derived from Equation (45). After some algebra,

one obtains

εσ = νσ |∇2
u|2, νσ =

1 − σ

6σ
�x2c2s τ , (47)

where νσ is the σ -dependent artificial hyperviscosity associated to the hybrid RR-BGK col-

lision operator. It is worth noting that the induced dissipation originates in the leading error

term of the finite difference scheme used to compute the velocity derivatives. Therefore, the

use of a second-order centred scheme leads to a bi-Laplacian-based hyperviscosity, i.e. a

νσ∇4
u correction in the momentum equation. Higher order artificial dissipation opera-

tors can be easily defined considering higher order centred finite difference schemes to

compute Sij. As a matter of fact, using a pth-order scheme will introduce an hyperviscous

operator proportional to∇2p
u. An increase in the order of the hyperviscosity is associated

to an concentration of the induced dissipation at small resolved scales and to a possible

way for smart control of spurious wiggles.

The above expression for the induced dissipation εσ offers a smart way to obtain an

ILES scheme by tuning σ in order to recover the same dissipation as the one provided by a

subgrid scalemodel, εsgs. Considering a generic subgrid viscosity νt (the same development

holds for any RANS eddy viscosity model), one has εsgs = νt|∇u|2. Therefore, equalising

the artificial and the subgrid dissipation leads to

νt|∇u|2 = νσ |∇2
u|2, (48)

whose solution is

νσ = L2VKνt , (49)



where LVK = |∇u|/|∇2
u| can be interpreted as a renormalised extended definition of the

von Kármán length scale [42]. The associated value of σ is

σ =
1

6νt
L2VK

�x2c2s τ
+ 1

. (50)

These expressions can be further simplified considering subgrid viscosity models that can

bewritten as νt = csgs�x2/τsgs where τsgs and csgs are the subgrid time scale and the subgrid

model constant, respectively. The expression for the tuning parameter is

σ =
1

6
csgsL

2
VK

c2s ττsgs
+ 1

. (51)

It is worth noting that this last expression does not explicitly involve the mesh size �x,

leading to an easy implementation in multiresolution algorithms.

The last relation can be inverted to find the value of the Smagorinsky constant that yields

the same dissipation as the regularised collision kernel:

csgs =

(

1

σ
− 1

)

c2s ττsgs

6L2VK
. (52)

In the case, the regularised collision kernel is used in the ILES mode, the influence of the

implicit subgrid dissipation can be evaluated thanks to the subgrid viscosity parameter s

defined as [43]

s =
εσ

εσ + εν

, (53)

where εν = ν|∇u|2 denotes the molecular viscosity-induced dissipation. After some alge-

bra, one obtains

1

s
= 1 +

εν

εσ

= 1 +
ν

νσ

L2VK = 1 +
6σν

(1 − σ)�x2c2s τ
L2VK . (54)

5. Vreman’s explicit subgrid model

The explicit subgrid model selected in the present paper for both explicit LES and ILES

simulations is the one proposed by Vreman [44], which is observed to have very interesting

self-adaptation features without relying on a test filter-based procedure or a prognostic

equation for a subgrid quantity. More specifically, this model is observed to behave in a

very satisfactory manner in fully developed turbulent shear flows, and also in transitional

flows and near wall region without the use of dynamic procedure, test filter and semi-

empirical stabilisation step such as averaging or clipping. It is also computationally very

efficient, since it does not involve the computation of eigenvalues. A complete analysis of

its properties, including symmetry preservation, is available in [45, 46].



The subgrid tensor is defined as

Rij = uiuj − ui uj, (55)

where the bar symbol denotes the LES filter. It is modelled as

Rij ≃ −2νtSij + Rkkδij, (56)

where viscosity is defined as

νt = c

√

Bβ

αijαij
, (57)

with

αij =
∂ūi

∂xj
, βij = �2αijαij (58)

and

Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23. (59)

The cutoff length � is taken equal to the mesh size �x in the present LBM-based simula-

tions, which are carried out on grids with cubic cells. The model constant is taken equal to

c = 2.5C2
S , where CS = 0.18 is the Smagorinsky constant.

In the classical LES mode, this model is implemented by modifying the relaxation time

τ in the BGK collision kernel according to

τ =
ν + νt

c2s
+

�t

2
, (60)

where ν denotes the fluid molecular viscosity.

6. Application to the flow around a cylinder at Re = 3900

6.1. Case description

The new Hybrid RR-BGK collision operator is assessed considering the flow around a

cylinder at Re = U0D/ν = 3900 and Ma = U0/C0 = 0.0585 with U0 the inflow velocity,

C0 the speed of sound and D the cylinder diameter. Four different computational cases

are defined, in order to assess both LES and ILES capabilities of the method (see Table 1).

Case 1 and Case 2 correspond to ILES simulations with constant values of the weighting

parameter σ . Case 3 is an explicit LES simulation, in which σ = 0.99, i.e. the total amount

of numerical dissipation is expected to remain very small. The last test case (Case 4) cor-

responds to an ILES simulation with a dynamic evaluation of the parameter σ , Vreman’s

Table 1. Computation parameters.

Case Subgrid model σ

Case 1 – 0.97
Case 2 – 0.985
Case 3 Vreman 0.99
Case 4 Vreman Dynamic



Figure 2. View of the computational domain and the grid points.

subgrid model being used to evaluate the targeted dissipation. The computation of σ in

that case follows the procedure described in Section 3 for ρ and u for the transition in

resolution fine grid points.

The computational domain (see Figure 2) is extended 9.5 diameter upstream the cylin-

der and 49.5 diameter downstream the cylinder. A non-reflective subsonic outflow [47]

is used for the outlet and free slip conditions are imposed in the top and bottom bound-

aries 14.5 diameter far from the cylinder leading to a blockage ratio of 3.3%. The spanwise

extent of the computational domain is taken equal to 4D and is used with periodic bound-

aries. This spanwise size is known to prevent spurious effects due to unphysical correlations

that may be induced by periodic boundary conditions. It is shown in Breuer [48] that no

differences are obtained on average quantities using πD or 2πD for the spanwise size.

The computational grid (see Figure 2) is composed of several embedded volumes of

uniform cartesian mesh. The grid size is reduced from D/2.5 far from the cylinder to

D/80 (finer than in Parnaudeau et al. [49]) around the cylinder and in its wake. A layer

of 15 grid points with �x = D/80 is applied around the cylinder and extended 1.5 diam-

eter downstream it (x=2D) to ensure a good representation of the recirculation bubble.

The refinement areas with�x = D/40 and�x = D/20 are applied on 10 grid point layers

around the cylinder and extended 3.5 and 5.5 diameter downstream the cylinder (x=4D

and x=6D). The distance of the first node to the cylinder is between 0 and 0.0177Dwith an

averaged value of 0.00865D which is lower than in Alkishriwi et al. [50] and Ouvrard et al.

[51]. The use of cubic cells leads to 320 grid points in the spanwise direction for the mini-

mal grid size area and a total of 10 million grid points were used in this computation. The

computational time was around 47 CPU hours per vortex shedding period on 48 proces-

sors. Statistically steady state was reached after 93T∗ with T∗ = D/U0 and all the statistics

presented in Section 6.2 were computed on 84T∗ (≈ 17 vortex shedding periods).

6.2. Results

Key parameters related to the mean flow are reported in Table 2 with reference

experimental and numerical results. It is observed that the mean drag coefficient Cd and



Table 2. Overview of numerical and experiment results.

Case Model Cd C′
l

St Lr/D −Cpb

Parnaudeau et al.
[49]

PIV 0.208 1.51

Dong et al. [52] DNS 0.206–0.210 1–1.18 0.93–1.04
Ma et al. [53] DNS 0.84–1.04 0.203–0.219 1–1.59
Alemi et al. [54] LES-Smag 0.92–1.01 0.07–0.14 0.205–0.225
Alkishriwi et al. [50] LES 1.05 0.217 1.31
Breuer [48] LES-Smag 0.969–1.486 0.397–1.686 0.687–1.665

LES-DynSmag 1.016–1.071 1.197–1.372 0.941–1.011
Mani et al. [55] LES 0.99 0.206 0.86
Franke and Frank

[56]
LES 0.978–1.005 0.209 1.34–1.64 0.85–0.94

Kravchenko and
Moin [57]

LES 1.04 0.210 1.35 0.94

Lysenko et al. [58] LES-TKE 0.97 0.09 0.209 1.67 0.91
LES-Smag 1.18 0.44 0.19 0.9 0.8

Meyer et al. [59] LES 1.05–1.07 0.21–0.215 1.18–1.38 0.92–1.05
Ouvrard et al. [51] LES-Smag 0.99 0.125 0.218 1.54 0.85

LES-Vreman 0.92 0.054 0.227 1.83 0.78
LES-WALE 1.02 0.219 0.221 1.22 0.94

ILES 0.92 0.052 0.225 1.85 0.77
Parnaudeau et al.
[49]

LES 0.208 1.56

Abrahamsen Prsic
et al. [60]

LES 1.0784–1.2365 0.1954–0.4490 0.1956–0.2152 1.27

Wormon et al. [61] LES-WALE 0.99 0.108 0.21 1.45 0.88
Zhang et al. [62] LES 1.001–1.098 0.125–0.345 0.21–0.22
D’Alessandro et al.
[63]

SA DES 1.205–1.2776 0.428–0.6140 0.204–0.215 0.7172–0.85 1.077–1.289

SA IDDES 1.0235–1.4106 0.1458–0.8283 0.205–0.222 0.5137–1.4270 0.8780–1.4688

v̄2 − f DES 0.9857–1.2553 0.1088–0.5719 0.205–0.214 0.7270–1.6780 0.8290–1.2570
Case 1 ILES 0.936 0.044 0.212 2.05 0.779
Case 2 ILES 0.973 0.077 0.210 1.835 0.828
Case 3 LES-Vreman 0.954 0.048 0.209 2.04 0.779
Case 4 ILES 1.047 0.165 0.212 1.425 0.925

Note: Smag stands for Smagorinsky model, DynSmag for Dynamic Smagorinsky model, TKE for Turbulent Kinetic Energy
model, SA for Spalart Allmaras and IDDES for Improved Delayed DES.

the Strouhal number St associated to the main frequency of aerodynamic forces exerted

on the cylinder are very accurately recovered in all cases. The predicted values of the rms

value of the fluctuations of the lift coefficient C′
l , the base pressure coefficient Cpb and the

normalised recirculation bubble length Lr/D exhibit more dispersion, but always remain

within the range of variation of previous DNS (Direct Numerical Simulation), LES and

DES (Detached Eddy Simulation) results. But it is worth noting that a too large value of

Lr is found in cases 1, 2 and 3 showing that the transition to turbulence in the separated

shear layers present in the formation region is delayed when compared to Parnaudeau’s

experiments. On the overall, case 4 (ILES with dynamic tuning of the weighting parameter

σ ) yields a very good prediction of all parameters, followed by case 2 (ILES with a small

constant value of σ ).

A deeper insight into the results is obtained considering Figure 3, which displays the

streamwise evolution of the mean longitudinal velocity along the symmetry axis in the

cylinder wake. It is observed that in all cases the maximum amplitude of the reverse flow

in the recirculation bubble is accurately predicted when compared to experimental data. It

must also be noticed that the velocity in the far wake is also recovered in all cases, showing



Figure 3. Mean streamwise velocity in the wake centreline: Parnaudeau et al. [49] PIV 1 • and PIV 2 *,
present case 1 , present case 2 , present case 3 , present case 4 .

that both domain size and boundary conditions are adequately chosen since there is no

spurious mass/momentum leaks on upper and lower boundaries and that outflow bound-

ary conditions do not induce unphysical mass/momentum flux. As mentioned above, case

4 leads to an almost perfect agreementwith experimental results.Moreover it is observed in

Figure 3 that the transition in resolution located at x/D = 2 and x/D = 4 does not include

spurious effects on the velocity fields which demonstrates the good implementation of the

present method.

The topology of the wake is now investigated looking at vertical profiles of the mean

velocity at different location in the cylinder wake (see Figures 4 and 5). Once again, the

simulation based on the dynamic version of the new HRR-BGK collision model (case 4)

is in almost perfect agreement with experimental data. An important point is that a

V-shaped profile is recovered on the mean longitudinal velocity profile in agreement with

experimental data, while many less accurate LES predict a U-shaped profile [49]. Discrep-

ancies observed in the three other cases are mainly due to the error on the prediction of

the length of Lr, but the global topology of both the mean recirculation bubble and near

wake is recovered in all cases.

Since the size of the recirculation bubble is governed by the transition process in the

separated shear layers, it is interesting to analyse the resolved Reynolds stresses. Vertical

profiles of the longitudinal and vertical resolved Reynolds stresses at several locations in

the wake are displayed in Figures 6 and 7. Once again, the very good accuracy of the case

4 is observed. In that case, the shear layer dynamics is very well recovered, since both the

maximum value and the shear layer thickness and spreading rate are accurately predicted.

In other cases, the separated shear layer spreading rate is underpredicted, leading to the

prediction of a too long recirculation bubble.

This is further confirmed looking at the streamwise evolution of the resolved longi-

tudinal Reynolds stress u′u′ along the wake symmetry line that is displayed in Figure 8.

Case 4 is in very good agreement with experimental data, since both the location and the

amplitude of the peak located near the end of the recirculation bubble are satisfactorily

predicted. In the three other cases, peaks are damped and shifted downstream, which is



Figure 4. Mean streamwise velocity at x= 1.06D (top), x= 1.54D (middle) and x= 2.02D (bottom) in
the wake of the cylinder: Parnaudeau et al. [49] PIV 1 • and PIV 2 *, present case 1 , present case
2 , present case 3 , present case 4 .



Figure 5. Mean normal velocity at x= 1.06D (top), x= 1.54D (middle) and x= 2.02D (bottom) in the
wake of the cylinder: Parnaudeau et al. [49] PIV 1 • and PIV 2 *, present case 1 , present case 2

, present case 3 , present case 4 .



Figure 6. Vertical profiles of the streamwise resolved Reynolds stress u′u′ at x= 1.06D (top), x= 1.54D
(middle) and x= 2.02D (bottom) in the wake of the cylinder: Parnaudeau et al. [49] PIV 1 • and PIV 2 *,
present case 1 , present case 2 , present case 3 , present case 4 .



Figure 7. Vertical profiles of the normal resolved Reynolds stress w′w′ at x= 1.06D (top), x= 1.54D
(middle) and x= 2.02D (bottom) in the wake of the cylinder: Parnaudeau et al. [49] PIV 1 • and PIV 2
*, present case 1 , present case 2 , present case 3 , present case 4 .



Figure 8. Variance of the streamwise velocity in the wake centreline: Parnaudeau et al. [49] PIV 1 •
and PIV 2 *, present case 1 , present case 2 , present case 3 , present case 4

.

Figure 9. Iso contours of normalisedQ criterion (Q∗ = Q(D2/U20) = 1) coloured by velocitymagnitude:
Case 1 (top left), Case 2 (top right), Case 3 (bottom left) and Case 4 (bottom right).

coherent with previous comments dealing with the damping of the shear layer dynamics

in these simulations.

The effects of the dissipation on the flow structures are illustrated in Figures 9 and 10,

which display iso-surfaces of instantaneous Q criterion. While it is seen that the flow

physics is qualitatively well predicted in all cases (laminar boundary layers along the cylin-

der with laminar separation and transition in the separated shear layers, large-scale roll-up

of the shear layers and appearance of small scaleworm-like vortices in thewake), some sub-

tle differences can be detected. As a matter of fact, it can be seen that small-scale structures



Figure 10. Iso contours of normalised Q criterion (Q∗ = Q(D2/U20) = 100) coloured by velocity magni-
tude: Case 1 (top left), Case 2 (top right), Case 3 (bottom left) and Case 4 (bottom right).

Figure 11. Iso contours of the σ value coloured by the velocity magnitude for σ = 0.97 (left) and σ =

0.985 (right) for the Case 4.

are mode developed in case 4 and that the separated shear layer transition occurs earlier

in that case. The same worm-like vortices are observed in Figure 11 which display the

iso-value of σ = 0.97 (Case 1 value) and σ = 0.985 (Case 2 value) for the case 4. The σ

parameter tends to decrease down to 0.5 or lower values for a few grid points in areas where

dissipation is needed to ensure a good representation of physical phenomena or stays at

values close to 1 when no dissipation is needed.

A last quality criterion may be obtained analysing the frequency content of the wake.

This is done looking at the frequency spectrum of both streamwise and normal velocity

fluctuations in the wake at x/D = 3, see Figures 12 and 13, respectively. Power spectra are

computed using 3 sequences of 10 vortex shedding cycles with 50% of overlapping using

the periodogram technique of Welch [64] and Hanning window. It is seen that the main

frequency peak is recovered in all cases, showing that the vortex shedding frequency fvs is

accurately predicted. More interestingly, the existence of a secondary peak at a frequency



Figure 12. Power spectra density of the streamwise velocity at x= 3D: present case 1 , present
case 2 , present case 3 , present case 4 .

Figure 13. Power spectra density of the normal velocity at x= 3D: present case 1 , present case
2 , present case 3 , present case 4 .

three times larger than the primary peak, i.e. f = 3fvs in the normal velocity spectrum is

accurately captured in case 4, showing the very good quality of this simulation [49]. An

inertial range with a slope is observed in all cases, whose width is about 1 decade, as in

high-resolution LES and experiments presented in Ref. [49].

7. Concluding remarks

A new regularised collision model for Lattice Boltzmann-based LES of weakly compress-

ible flows, referred to as the HRR-BGK collision model, has been presented. It relies on

the modification of previously existing recursive regularised BGK models, which consists

of hybridising the computation of the velocity gradient with a centred finite difference

evaluation when reconstructing the regularised non-equilibrium part of the distribution



functions. The resulting effect is the introduction of a stabilising hyperviscosity term,

whose amplitude can be explicitly tuned via a control parameter σ . The resulting model

can be used in both LES and ILES modes.

The new collision model has been assessed considering the flow around a cylinder at

Re=3900. The results obtained with a fixed uniform value of σ exhibit a delay in the tran-

sition of the separated shear layers, a phenomenon which is also observed when an explicit

subgrid viscosity term is added. On the opposite, very satisfactory results are obtained

when using the dynamic version of the HRR-BGK collision kernel equipped with the Vre-

man’s subgrid model. It is important noting that ILES based on the dynamic HRR-BGK is

not strictly equivalent to a classical BGK coupled to theVreman’smodel, since the scale-by-

scale distributions of the total dissipation are not equivalent. While the original Vreman

model is associated to a classical Laplacian-based dissipation, the present ILES method

introduces an bi-Laplacian-based dissipation. The use of higher order dissipation is known

to preserve large-scale and inertial-range dynamics [65, 66], and has been successfully used

in several ILESmethods for Navier–Stokes equations, e.g. Refs. [67–73], with a few existing

extensions to the LBM framework [74–77].

The significant differences between the dynamic version of the present ILES method

and non-dynamic ones and also the classical explicit LES are due to the fact that most

key features of the flow are governed by the transition in separated shear layers. This phe-

nomenon is very sensitive to viscous and hyperviscous damping. A fully turbulent flow is

less sensitive to fine details of the dissipative mechanisms, and much smaller differences

would certainly occur in such a flow, as observed in ILES results based on Navier–Stokes

equations.
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