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Because deep neural networks (DNNs) are both memory-intensive and computation-intensive, they are difficult to apply to
embedded systems with limited hardware resources. -erefore, DNNmodels need to be compressed and accelerated. By applying
depthwise separable convolutions, MobileNet can decrease the number of parameters and computational complexity with less loss
of classification precision. Based on MobileNet, 3 improved MobileNet models with local receptive field expansion in shallow
layers, also called Dilated-MobileNet (Dilated Convolution MobileNet) models, are proposed, in which dilated convolutions are
introduced into a specific convolutional layer of the MobileNet model. Without increasing the number of parameters, dilated
convolutions are used to increase the receptive field of the convolution filters to obtain better classification accuracy. -e
experiments were performed on the Caltech-101, Caltech-256, and Tubingen animals with attribute datasets, respectively. -e
results show that Dilated-MobileNets can obtain up to 2% higher classification accuracy than MobileNet.

1. Introduction

Computer image classification is one of the research hot-
spots in the field of computer vision. It can replace human
visual interpretation to some extent by analyzing the image
and classifying it into one of several categories. Image
classification research mainly focuses on image feature ex-
traction and classification algorithm. -e features are very
critical to the image classification, but traditional image
features such as SIFT [1], HOG [2], and NSCT [3] are usually
manually designed. So, the traditional methods are difficult
to meet the requirements of the designer. On the contrary,
convolutional neural network (CNN) can automatically
extract features by using the prior knowledge of known
image samples. It can avoid the complex feature extraction
process in traditional image classification methods, and the
extracted features have strong expression ability and high
classification efficiency.

Deep learning technologies [4, 5] have been in-
creasingly applied in image classification [6], target
tracking [7], object detection [8], image segmentation
[9, 10], and so on, all of which have achieved good results.
Russakovsky et al. [11] used AlexNet of approximately 60
million parameters with 5 convolutional layers and 3 fully
connected layers to win the 2012 champion of ImageNet
Large-scale Visual Recognition Challenge. -en, in order
to achieve higher classification accuracy, the deep neural
network (DNN) structures have become deeper and more
complex. For example, VGG [12] deepened the network
to 19 layers, GoogleNet [13] used inception as the basic
structure (the network reaches 22 layers), and ResNet
[14] introduced residual network structure to solve the
gradient vanishing problem. However, the complex
DNNs have a large number of parameters and a large
amount of computation, which requires a lot of memory
access and CPU/GPU resources. Some real-time

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8817849, 10 pages
https://doi.org/10.1155/2020/8817849

mailto:lhm4133@126.com
mailto:wangxin@csust.edu.cn
https://orcid.org/0000-0002-2298-3429
https://orcid.org/0000-0001-7124-3470
https://orcid.org/0000-0001-7168-3062
https://orcid.org/0000-0001-5473-8738
https://orcid.org/0000-0003-2386-5405
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8817849


applications and low-memory portable devices still
cannot fully meet the resource requirements of the DNN
models.

To solve the above problems, more and more researches
have focused on lightweight networks, which have fewer
parameters and less computation while maintaining high
accuracy. When analyzing the number of network param-
eters, Denil et al. [15] found that the parameters in the deep
network have a lot of redundancy. In the process of pro-
cessing, these parameters were useless to improve the
classification accuracy but affected the processing efficiency.
Hinton et al. [16] significantly improved the compressed
model by distilling the models’ ensemble knowledge. -e
classification accuracy of this simple network was almost as
same as that of complex network. In terms of network
compression, Iandola et al. [17] proposed a small CNN
structure called SqueezeNet in 2016, which greatly reduced
the number of network parameters. By using depthwise
Separable Filters, Howard et al. [18] designed a streamlined
architecture called MobileNet, based on depthwise convo-
lution filters and pointwise convolution filters. MobileNet
used two global hyperparameters to keep a balance between
efficiency and accuracy. As an extremely computation-ef-
ficient CNN architecture, ShuffleNet [19] adopted two new
operations, pointwise group convolution and channel
shuffle. -is network can be applied to mobile devices with
very limited computing power.

Although the parameters or computation of lightweight
network is reduced, the accuracy of classification also de-
creases correspondingly. -erefore, by introducing the di-
lated convolution filter intoMobileNet, a Dilated-MobileNet
approach is proposed based on local receptive field ex-
pansion. Without increasing the parameters, the dilated
convolution filter can make the network obtain larger local
receptive field and improve the classification accuracy.

2. Fundamental Frameworks

2.1. CNN Structure. Convolutional neural network usually
consists of convolutional layer, pooling layer, and full
connection layer [20], as shown in Figure 1. First, the fea-
tures are extracted by one or more convolution layers and
pooling layers. -en, all the feature maps from the last
convolution layer are transformed into one-dimensional
vectors for full connection. Finally, the output layer classifies
the input images.-e network adjusts the weight parameters
by back propagation and minimizing the square difference
between the classification results and the expected outputs.
-e neurons in each layer are arranged in three dimensions:
width, height, and depth, in which width and height are the
size of neurons, and depth refers to the channels number of
the input picture or the number of input feature maps.

-e convolutional layer, which contains several con-
volution filters, extracts different features from the image by
convolution operation.-e convolution filters of the current
layer convolute the input feature maps to extract local
features and get the output feature maps. -en, the non-
linear feature maps can be obtained by using activation
function.

-e pooling layer, also known as the subsampling layer,
is behind the convolutional layer. It performs downsampling
operation, using a specific value as output in a certain
subregion. By removing the unimportant sample points
from the feature map, the size of input feature map of the
subsequent layer is reduced, and the computational com-
plexity is also diminished. At the same time, the adaptability
of the network to the changes of image translation and
rotation is increased. -e most common pooling operations
are maximum pooling and average pooling.

-e structure based on convolutional layer and pooling
layer can improve the robustness of the network model. -e
convolutional neural network can get deeper through
multilayer convolutions. With the number of layers in-
creasing, the features achieved through learning become
more global. -e global feature map learned at last is
transformed into a vector to connect the full connection
layer. Most of the parameters in the networkmodel are at the
full connection layer.

2.2. MobileNet Structure. MobileNet, as shown in Figure 2,
has smaller structure, less computation, and higher preci-
sion, which can be used for mobile terminals and embedded
devices. Based on depthwise separable convolutions,
MobileNets use two global hyperparameters to keep a bal-
ance between efficiency and accuracy.

-e core idea of MobileNet is the decomposition of
convolution kernels. By using depthwise separable convo-
lution, the standard convolution can be decomposed into a
depthwise convolution and a pointwise convolution with 1 ×
1 convolution kernel, as shown in Figure 3. -e depthwise
convolution filters perform convolution to each channel,
and the 1 × 1 convolution is used to combine the outputs of
the depthwise convolution layers. In this way, N standard
convolution kernels (Figure 3(a)) can be replaced by M
depthwise convolution kernels (Figure 3(b)) and N point-
wise convolution kernels (Figure 3(c)). A standard convolu-
tional filter combines the inputs into a new set of outputs,
while the depthwise separable convolution divides the inputs
into two layers, one for filtering and the other for merging.

3. Dilated-MobileNet (Dilated Convolution
MobileNet) Structure

MobileNet (Figure 2) mostly uses 3 × 3 convolution filters.
Although this network can reduce the computation cost, the
local receptive fields of small convolution filter are too small
to capture better features in the case of higher resolution of
the feature maps. However, using large convolution filters
will increase the number of parameters and the computation
load. -erefore, in some first shallow convolutional layers,
we use the dilated convolution with the expansion rate of 2
instead of the standard convolution. We call this network
Dilated Convolution MobileNet (Dilated-MobileNet).

3.1. Dilated Convolution. Dilated convolution filter [22],
which was first applied in image segmentation, is a kind of
convolution filter which inserts 0 values between the adjacent
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nonzero values in feature maps. Image segmentation needs
the same size image as the original input image, but the
pooling layer in traditional DNN will reduce the spatial
resolution of the feature map. In order to generate an effective
dense feature map and obtain the same size of receptive field,
Chen et al. [10] removed the maximum pooling layer in last
layers of the full CNN and added dilated convolution. -is
method not only avoids the reduction of the spatial resolution
of the feature map in the pooling layer but also increases
receptive field as same as the pooling layer does.

-e dilated convolution filter expands the receptive field
by inserting 0 values between the nonzero values, as shown
in Figure 4. Figure 4(a) represents the receptive field of a
3 × 3 convolution filter. Figure 4(b) indicates the receptive
field, while the 3 × 3 convolution kernel changed to 5 × 5
when the expansion rate is 2. Figure 4(c) shows the receptive
field, while the 3 × 3 convolution kernel changed to 7 × 7
when the expansion rate was 3. -erefore, the dilated
convolution can expand the receptive field of convolution
filter without increasing the parameters of convolution filter.

3.2. Dilated-MobileNet. Receptive field refers to the size of
each element in the feature map of every layer’s output
mapped on the input image, so the layer will have larger
receptive field when closer to the bottom of the network, and
its receptive field is approximately equal to the global re-
ceptive field. In our research, expanding local receptive field
is to improve the classification accuracy of MobileNet, so the
layers which need increasing receptive field are near the
input of the MobileNet. According to the location of the
dilated convolution filter, we propose 3 new network models
named D1-MobileNet, D2-MobileNet, and D3-MobileNet.

3.2.1. Dilated1-MobileNet. D1-MobileNet sets convolu-
tional stride as 1 in the first layer and replaces the standard
convolution filters with dilated convolution filters with an
expansion rate of 2. At the same time, in order to restrain the
increase of calculation cost, the stride of the 2nd depthwise
separable convolution is set as 2, and the other layers remain
unchanged. Compared with MobileNet, the first
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convolutional layer with stride 1, the size of the output
feature map of the first convolutional layer changes from
112 × 112 to 224 × 224, as shown in Figure 5.

3.2.2. Dilated2-MobileNet. In DWD2 (depthwise separable)
layer, the depthwise convolution filters is expanded by di-
lated convolution filters with an expansion rate of 2, while
the other layers remain unchanged. -is approach does not
increase the amount of computation and parameters nor
does it change the size of the output feature map of any layer,
as shown in Figure 6.

3.2.3. Dilated3-MobileNet. D3-MobileNet sets the con-
volutional stride in first convolutional layer as 1 and replaces
the standard convolution filters with dilated convolution
filters by using an expansion rate of 2. After the convolution
operation in the first convolution layer, it is normalized
through batch normalization layer [23]. -en, a maximum
pooling layer with a stride of 2 is behind the batch nor-
malization layer, and the other layers are unchanged, as
shown in Figure 7.

In terms of receptive field expansion, there are also
different ways of expansion. For example, Sun W combined
dilated convolution and depthwise separable convolution to
form standard blocks for network construction [21]. -eir
approach is to add a dilated convolution layer before each
depthwise separable convolution. Unlike their approach, in
the Dilated1-MobileNet, we use dilated convolution instead
of the standard convolution in the first layer of MobileNet,
without adding dilated convolution in front of all subse-
quent depthwise separable convolution blocks because that
would increase the number of parameters. -e difference in
Dilated2-MobileNet is greater because we extend the re-
ceptive field in depthwise convolution layer rather than
adding a dilated convolution layer in front of the depthwise
separable convolution layer. Similarly, Dilated3-MobileNet
replaces standard convolution with a dilated convolution at
the first level and add a pooling layer after it, rather than
adding a dilated convolution in front of all depthwise
separable convolution blocks.

3.3. Computation Analysis. In the standard convolutional
layer, assuming the height, width, and input channel number
of the input feature maps I are h, w, and m, the convolution
filter K is s × s, the output channel number is n, and the
output feature maps O � K × I can be obtained by the
convolution of I and K with no padding zeros and stride 1,
as shown in the following formula:

O(y, x, j) �∑m
i�1

∑s
u,v�1

K(u, v, i, j)I(y + u − 1, x + v − 1, i),

(1)
where O(y, x, j) represents the value of point (y, x) in jth
output feature map,K(u, v, i, j) represents the value of point
(u, v) on channel i in jth convolution filter, and I(y, x, i)
represents the value of point (y, x) on ith input feature map.
From Formula (1), it is known that an output value needs
s × s ×m times multiplication, so the total amount of cal-
culations is s × s ×m × (h − s + 1) × (w − s + 1) × n and the
number of parameters is s × s ×m × n.

When Dilated-MobileNet introduces the dilated
convolution in the standard convolution layer, with
feature map I, the dilated convolution is performed with
no padding zeros by using convolution kernel K of the
same size and expansion rate of 2. So, we can get the
output feature map Od by the following formula:

Od(y, x, j) �∑m
i�1

∑s
u,v�1

K(u, v, i, j)I(y + u +(u − 1)(r − 1)

− 1, x + v +(v − 1)(r − 1) − 1, i).

(2)
So, the total computational amount of the dilated

convolution layer is (s × s ×m) × (h − s − (s − 1)(r − 1) +
1) × (w − s − (s − 1)(r − 1) + 1) × n, and the number of
parameters is s × s ×m × n. With no padding zeros, the
computation of dilated convolution with expansion rate r> 1
is less than that of standard convolution, and the number of
parameters is the same, but the receptive field of dilated
convolution is larger than that of standard convolution.
Under the convolution operation with padding zeros, the
map size of the dilated convolution is the same as that of the

(a) (b) (c)

Figure 4: Schematic diagram of dilated convolution kernel.
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standard convolution, both of which are h × w × n, and the
computation and the number of parameters are the same
too.

When introducing dilated convolution filters to the
depthwise convolution, the above feature maps I is firstly
convoluted with the depthwise convolution filter K, and the
output feature graph Odc is obtained through the following
formula:

Odc(y, x, j) � ∑s
u,v�1

K(u, v, j)I(y + u +(u − 1)(r − 1)

− 1, x + v +(v − 1)(r − 1) − 1, j),

(3)

where Odc(y, x, j) represents the value of point (y, x) in jth
feature map. Since the depthwise convolution filter has only
one channel,K(u, v, j) represents the value of point (u, v) on

Dilated 
convolution

. . .
33

321

13

643

3
10243 128

Depthwise separable convolution

Depthwise 
convolution

Pointwise 
convolution

Depthwise separable 
convolution

Depthwise separable 
convolution

Global average 
pooling Full connections

DC1:
32@224 × 224

Input
224 × 224 × 3

DW2:
32@112 × 112

PW2:
64@112 × 112

PW3:
128@56 × 56 PW13:

1024@7 × 7
PW14:

1024@7 × 7

F15: layer
1024 Output 

classes

Figure 5: Architecture of Dilated1-MobileNet.

. . .

3
3

321

1
3 643

3
1024

3
128

Depthwise separable convolution

Convolution
Depthwise dilated

convolution

Pointwise 
convolution

Depthwise separable 
convolution

Depthwise separable 
convolution

Global average 
pooling

Full connections

Input
224 × 224 × 3

C1:
32@112 × 112

DWD2:
32@112 × 112

PW2:
64@112 × 112

PW3:
128@56 × 56 PW13:

1024@7 × 7

PW14:
1024@7 × 7

F15: layer
1024 Output 

classes

Figure 6: Architecture of Dilated2-MobileNet.

. . .

3

321
13 64

3

3
10243 128

2

Max
subsamping

3

Dilated 
convolution

Depthwise separable convolution

Depthwise 
convolution

Pointwise 
convolution

Depthwise separable 
convolution

Depthwise separable 
convolution

Global average 
pooling

Full connections

Input
224 × 224 × 3

DC1:
32@224 × 224

S2:
32@112 × 112

DW3:
32@112 × 112

PW3:
64@112 × 112

PW4:
128@56 × 56

PW14:
1024@7 × 7

PW15:
1024@7 × 7

F15: layer
1024

Output 
classes

Figure 7: Architecture of Dilated3-MobileNet.

Computational Intelligence and Neuroscience 5



jth convolution filter and I(y, x, j) represents the value of
point (y, x) on jth input channel.

-e total computation of the depthwise separable con-
volution is (s × s × n) × (h − s − (s − 1) (r − 1) + 1) × (w −
s − (s − 1)(r − 1)+ 1) ×m, and the total number of pa-
rameters is s × s ×m +m × n. It can be seen that the

parameter of the depthwise separable convolution are re-
duced compared with the standard convolution:

s × s ×m +m × n

s × s ×m × n
�
1

n
+

1

s2
. (4)

-e ratio of computation is

(s × s + n) ×(h − s − (s − 1)(r − 1) + 1) ×(w − s − (s − 1)(r − 1) + 1) ×m

s × s ×m × n ×(h − s + 1) ×(w − s + 1)
�
1

n
+

1

s2
. (5)

Similarly, when carrying out the depthwise convolution
with padding zeros, the reduction ratio of parameters is

(s × s + n) ×m × h × w

s × s ×m × n × h × w
�
1

n
+

1

s2
. (6)

From the above analysis, it can be seen that the receptive
field of the deep convolution kernel with expansion rate r
and convolution kernel size s × s is equivalent to that of the
convolution kernel (r × s − r + 1) × (w × s − r + 1), thus can
expand the receptive field without increasing the number of
parameters and calculation amount.

3.4. Receptive Field. In many tasks, especially intensive
prediction tasks such as semantic image segmentation and
optical flow estimation, it is necessary to predict each pixel’s
value of the input image, and each output pixel’s value needs
a large receptive field to retain important information. Local
receptive field refers to the size of the region in the input
feature map of the upper layer, and the region is mapped by the
pixel in the output feature map. In this paper, dilated convo-
lution is used to enlarge the local receptive field of a certain layer
to capture better features and further influence the receptive
field size of the convoluted layer behind. -e size of receptive
field of each layer is shown in in the following formula:

rk �

fk, k � 1,

rk− 1 + fk − 1( ) ×∏k− 1
i�1

si , k> 1,

 (7)

where rk denotes the receptive field size of the kth layer, fk
denotes the size of filter, and si denotes the stride of the ith
layer. -e receptive field of the first layer equals to the size of
the filter. By using Formula (7), we can get the receptive field
size of each layer of MobileNet and Dilated-MobileNet, as
shown in Table 1.

-e “ds” in Table 1 shows the depthwise separable
convolution, and the pointwise convolution has the same
receptive field as the depthwise convolution in depthwise
separable convolution, so the receptive field is given
uniformly. -e receptive field sizes of the first convolution
layers in D1-MobileNet and Dilated3-MobileNet show
that the receptive field of the 3 × 3 convolution kernel
changed to 5 × 5 when the expansion rate is 2. In sum-
mary, dilated convolution is able to enlarge the size of
local receptive field. Moreover, Dilated1-MobileNet and

Dilated2-MobileNet also slightly increase the receptive
field size of the underlying layers. It can be seen from
Table 1 that, for Dilated-MobileNet networks, although
the expansion ratio of the receptive fields of the latter
convolution layers becomes smaller, their receptive fields
of the first few layers are larger than those of MobileNet. In
this way, it is easier to extract more detailed information,
which is conducive to the improvement of classification
accuracy.

4. Experiments and Result Analysis

In the experiments, we compare the classification results of 6
networks: SqueezeNet [17], MobileNet [18], Dense1-
MobileNet [24], Dense2-MobileNet [24], D1-MobileNet,
D2-MobileNet, and D3-MobileNet on Caltech-101 [25] and
Catech-256 [26] datasets and Tubingen Animals with At-
tributes [27].

-e Caltech-101 dataset is an image object recognition
dataset, which consists of a total of 9146 images, split be-
tween 101 different object classes and an additional back-
ground/clutter class. Each object class contains between 40
and 800 images on average. After labeling the pictures in the
dataset, 1500 pictures are randomly selected as the test
pictures and the rest as the training pictures. Some samples
are shown in Figure 8.

-e Caltech-256 dataset is based on the Caltech-101
dataset, adding image classes and the number of images in
each class. -e dataset contains 30607 images in 257 classes,
including 256 object classes and one background class. Each
class has at least 80 pictures and a maximum of 827 in
background class. Figure 9 shows the image examples in the
Caltech-256 dataset. Each picture in the dataset is labeled
and shuffled. 3060 pictures are randomly selected as test
images, and the remaining pictures are used as training
images.

We also verify our method on the Animals with Attri-
butes (AwA) dataset, as shown in Figure 10. -ere are a total
of 50 animal classes in the database with a total of 30475
pictures. In experiments, we select 21 animal categories,
which are the largest classes and have almost the same
number of pictures, as the experimental dataset. -ere are
22742 pictures in these 21 animal classes, and the number of
pictures in each class is between 850 and 1600. After labeling
the pictures in the dataset, 2000 pictures are randomly se-
lected as the test pictures and the rest as the training pictures.
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-e experiments are under TensorFlow framework and
the programming language is Python. -e experimental
server is equipped with an NVIDIA TITAN GPU.
RMSprop optimization algorithm is used in the experi-
ments. RMSprop is an adaptive learning rate method,
which can adjust the learning rate. In the experiments, the
initial learning rate is 0.1. Since the Xavier initialization
method can determine the random initialization distri-
bution range of parameters according to the number of

inputs and outputs of each layer, we use it to initialize the
weight coefficients. ReLU is used as the activation function
in the experiments, and a total of 50,000 batches are trained,
with 64 samples per batch.

In the following experiments, all the results are the
averages of 10 times experiments, and the best classification
accuracy rates are in bold in the tables. Table 2 shows the
classification accuracies of 7 network models on the Caltech-
101 dataset.

Table 1: -e receptive field size of each layer.

MobileNet Dilated1-MobileNet Dilated2-MobileNet Dilated3-MobileNet

Conv1 3 5 3 5
Pool — 6 — —
Conv2 ds 7 10 11 7
Conv3 ds 11 14 15 11
Conv4 ds 19 22 23 19
Conv5 ds 27 30 31 27
Conv6 ds 43 46 47 43
Conv7 ds 59 62 63 59
Conv8 ds 91 94 95 91
Conv9 ds 123 126 127 123
Conv10 ds 155 158 159 155
Conv11 ds 187 190 191 187
Conv12 ds 219 222 223 219
Conv13 ds 251 254 255 251
Conv14 ds 315 318 319 315

Figure 8: Picture instances in the Caltech-101 dataset.

Figure 9: Picture instances in the Caltech-256 dataset.
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As seen from Table 2, the accuracy rates of the 7 network
models have reached a balance after 30000 iterations, and the
accuracy rates of our 3 improved Dilated-MobileNets
models are about 0.8%∼2% higher than those of the
MobileNet model. Among of them, the classification ac-
curacy rate of Dilated1-MobileNet model is improved by
0.87% and that of Dilated2-MobileNet model is improved by
1.13%.-eDilated3-MobileNet model has the best effect, the
accuracy rate is increased by 2.13%, and the final classifi-
cation accuracy rate is 78.73%.

Table 3 is a comparison of the classification accuracy
rates of the 7 network models on the Caltech-256 dataset. As
shown in Table 3, the accuracy rates of the 7 network models
also have reached a balance after 30000 iterations, and the
accuracy rates of our 3 improved models are improved by
0.5%∼1.5% than that of MobileNet model. Among of them,
the accuracy rate of Dilated1-MobileNet model is improved
by 1.35%, the accuracy rate of Dilated3-MobileNet model is
improved by 0.64% and that of Dilated2-MobileNet model is
the highest, which is improved by 1.42% and final reaches to
65.94%.

It can be seen from Table 4 that the accuracy rates of
MobileNets and Dilated-MobileNet models have reached a

balance after 30000 iterations, but the accuracy rate of
SqueezeNet still increases and finally reaches a balance at the
accuracy rate of 73.85% after 50000 iterations. As in the
previous 2 experiments, the accuracy rates of MobileNet,
Dense-MobileNets, and our 3 improved models are much
higher than those of SqueezeNet. -e accuracy rates of the 3
improved Dilated-MobileNet models are about 0.5%∼1.2%
higher than those of MobileNet. Among them, the classi-
fication accuracy rate of Dilated1-MobileNet model is finally
improved by 0.8%, the classification accuracy rate of Di-
lated2-MobileNet is finally improved by 0.4%, and the

Table 2: Classification accuracy rates (%) on Caltech-101 dataset.

Number of iterations 30000 35000 40000 45000 50000

SqueezeNet 53.60 53.60 53.47 53.40 53.47
MobileNets 76.73 76.60 76.60 76.80 76.60
Dense1-MobileNet 76.60 76.53 76.47 76.40 76.47
Dense2-MobileNet 77.60 77.67 77.87 77.80 77.80
Dilated1-MobileNet 77.40 77.47 77.53 77.40 77.47
Dilated2-MobileNet 77.67 77.80 77.73 77.67 77.73
Dilated3-MobileNet 78.60 78.60 78.53 78.53 78.73

Figure 10: Picture instances in Tuebingen Animals (21) dataset.

Table 3: Classification accuracy rates (%) on Caltech-256 dataset.

Number of iterations 30000 35000 40000 45000 50000

SqueezeNet 41.48 43.06 43.39 43.58 44.03
MobileNets 64.48 64.58 64.55 64.67 64.52
Dense1-MobileNet 64.61 64.53 64.45 64.44 64.47
Dense2-MobileNet 65.62 65.67 65.84 65.78 65.79
Dilated1-MobileNet 65.77 65.74 65.87 65.90 65.87
Dilated2-MobileNet 66.10 66.06 65.94 65.84 65.94
Dilated3-MobileNet 64.97 64.9 64.87 65.19 65.16

We also validate our method on the Animals with Attributes (AwA) dataset [28]. -e classification accuracy rates are shown in Table 4.

Table 4: Classification accuracy rates (%) on AwA (21) dataset.

Number of iterations 30000 35000 40000 45000 50000

SqueezeNet 72.65 72.10 73.30 73.40 73.85
MobileNets 91.60 91.60 91.60 91.55 91.60
Dense1-MobileNet 90.65 90.60 90.60 90.60 90.65
Dense2-MobileNet 92.10 92.05 92.10 92.05 92.05
Dilated1-MobileNet 92.45 92.45 92.50 92.35 92.40
Dilated2-MobileNet 92.00 92.05 92.05 92.00 92.00
Dilated3-MobileNet 92.85 92.75 92.80 92.70 92.80
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classification accuracy rate of Dilated3-MobileNet is the
highest, reaching 92.8%.

In the above 3 kinds of experiments, the Dense1-
MobileNet and Dense1-MobileNet based on dense con-
nection also achieved good classification effect.-e results of
the experiments on caltech-256 dataset are slightly better
than those of Dilated3-MobileNet and a little worse than
those of Dilated1-MobileNet and Dilated2-MobileNet. -e
design idea of Dense-MobileNets is different from that of the
Dilated-MobileNets, and the network structures are also
different, so the two approaches can be used together in the
practical application.3

5. Conclusions

-e memory-intensive and highly computation-intensive
properties of deep learning approaches restrict their
applications in portable devices. At the same time, the
compression and acceleration of network models will
reduce the classification accuracy. So, this paper uses the
dilated convolution in the lightweight neural network
(MobileNet) to improve the classification accuracy
without increasing the network parameters and proposes
three Dilated-MobileNet models. -e experimental re-
sults show that Dilated-MobileNets have better classifi-
cation accuracies on Caltech-101, Catech-256, and AWA
datasets.

In recent years, new lightweight networks, such as
mobilenetv2 [29] and mobilenetv3 [28], have emerged.
How to reduce the parameters and improve the classi-
fication effect is still one of the research hotspots.
Meanwhile, some deep learning methods combined with
traditional methods have achieved good results in target
recognition and classification [30]. On the other hand,
designing specific deep learning networks based on the
characteristics of classification targets is a very effective
classification approach [31, 32]. -erefore, how to give
full use of the advantages of different methods is also
worth further studying.
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