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Chaos-based encryption algorithms offer many advantages over conventional cryptographic algorithms, such as speed, high
security, affordable overheads for computation, and procedure power. In this paper, we propose a novel perturbation algorithm
for data encryption based on double chaotic systems. A new image encryption algorithm based on the proposed chaotic maps is
introduced.(e proposed chaotification method is a hybrid technique that parallels and combines the chaotic maps. It is based on
combination between DiscreteWavelet Transform (DWT) to decompose the original image into sub-bands and both permutation
and diffusion properties are attained using the chaotic states and parameters of the proposed maps, which are then concerned in
shuffling of pixel and operations of substitution, respectively. Security, statistical test analyses, and comparison with other
techniques indicate that the proposed algorithm has promising effect and it can resist several common attacks. Namely, the
average values for UACI and NPCR metrics were 33.6248% and 99.6472%, respectively. Additionally, unscrambling quality can
fulfill security and execution prerequisites as evidenced by PSNR (9.005955) and entropy (7.999275) values. In sum, the proposed
method has enough ability to achieve low residual intelligibility with high quality recovered data, high sensitivity, and high
security performance compared to some other recent literature approaches.

1. Introduction

With the fast development of innovations in data commu-
nication, it can end up crucial for private information security
from prohibitive actions or attackers. Data exchange is closely
related to existence, such as instruction, commerce, financial
matters, military, e-learning, phone keepingmoney, and news
telecasting. With the modern telecommunication and mul-
timedia technologies progression, a huge amount of critical
information voyages in a daily monotony through the shared
and open networks. In order to keep security, sensitive and
critical information ought to be secured before conveyance
[1]. For data transmitting through any uncertain channel,
certain cryptograph techniques are required to change over
the coherent information to incomprehensible form before
transmitting (encryption). (e modern strategies of cryp-
tography are effective for text information. However, due to
the high redundancy and bulk information capacity, they fail
to provide computational security.

Chaos-based encryption is one of the foremost impor-
tant security technologies within the advanced encryption
zone. Chaos hypothesis is created by mathematicians and
physicists. Chaos hypothesis has qualified features as non-
linearity, deterministically, abnormality, and affectability to
beginning conditions. Security investigative community
receives chaos hypothesis in modern cryptography. A
function that has some kind of chaotic behavior is defined as
a work or a chaotic map. Within the following we discuss
numerous sorts of proposed chaotic maps that are utilized in
this paper. To apply a chaos map, there are two ways in a
cipher system: (i) produce pseudorandom stream utilizing
chaotic maps, and (ii) utilize the plain or secret key(s) as
control parameters and the introductory conditions [2].
Finally, apply a few emphases on chaotic systems to get
cipher data. (e first way compares to stream cipher and the
second to block ciphers. (e implementation of chaotic
maps within the improvement of cryptography systems lies
within the truth that a chaotic outline is characterized by (i)
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the beginning conditions and control parameters with high
sensitivity, (ii) unpredictability of the orbital advancement,
and (iii) the straight forwardness of the hardware and
software execution that leads to a high encryption rate [3].
(e techniques focused on chaos are considered effective in
managing with voluminous, excess information. (ey give
quick, profoundly secure strategies of encryption. In liter-
ature, various research works have exploited chaotic maps
for data encryption. For example, Zahmoul et al. [4] pre-
sented a beta chaotic map for producing distinctive
groupings in replacement, diffusion, and exchange. (eir
system viably moves forward the encryption security. Yavuz
et al. [5] approached autonomous chaotic function frame-
work to adequately apply diffusion principles and confusion.
Differential assaults extended the cryptosystem resistance; it
moreover requires extra circular turn operations and ex-
clusive-or on the scrambled image pixel values. Zhang [6]
utilized S-box and the piecewise liner chaotic outline to
produce key stream with great factual for image encryption.
(e presented cryptosystem had undefined encryption get
ready and decryption. It contains a key with large space and
quick speed for encryption, but still contains a lot of
correlation for the ultimate encrypted image. Aqeel-ur-
Rehman et al. [7] suggested encryption image algorithm
and hyperchaotic framework related to the initial image
used for creating the key stream. Due to small key space, it
easily is joined to that complex scheme. Song et al. [8]
presented a modern framework using the defining of the
neighborhood nonlinear map within the Coupled Map
Lattices (CML). (e outline was connected to the instru-
ment of permutation-diffusion. (e encryption scheme
chaos considered that the merits of spatiotemporal chaos
and the Nonlinear Chaotic Algorithm (NCA) is a great
execution and has profoundly eccentric chaotic sequences.
Wang et al. [9] proposed an image encryption algorithm
with combined permutation and diffusion stages. Due to its
little key space, the algorithm is still not secure. Parvaz and
Zarebnia [10] characterized a chaotic framework based on
calculated sine, and tent framework.(ough the encryption
conspire is not palatable, they demonstrated that the en-
cryption is secure. Wu et al. [11] presented a Two-Di-
mensional Hénon-Sine Map (2D-HSM) that has higher
characteristics. Slimane et al. [12, 13] presented an effective
scheme for image encryption dependent on the settled
nested chaotic map and Deoxyribonucleic Acid (DNA)
utilizing(e Secure Hash Algorithm (SHA-256) to produce
the initial states of the chaotic attractor, and introduced a
new chaotic system dependent on Julia’s fractal procedure,
tumultuous attractors, and logistic map in a complex set.

(e assessment of literature work finds that some chaos-
based image encryption algorithms have security vulnera-
bilities, including (i) standing up to chosen-plaintext attack;
(ii) sensitivity to all the chaotic secret keys; (iii) decoding of
primary pixel within the decryption process; and (iv) re-
versing rectangular transform system. To outdo the above-
mentioned shortcomings and security defect, we propose an
improved encryption algorithm utilizing two-dimensional
alteration models. (e main objective of our work is to
propose a data encryption system with key sensitivity, low

residual clarity, and keeping up great quality of information
reproduced by chaotic maps. Security analysis and experi-
mental results suggest that proposed map could encrypt
digital images with powerful capability and high security to
resist different attacks.

(e remainder of this paper is organized as follows.
Within the next section, the proposed chaotic systems
details are fully explained. (e proposed encryption and
decryption frameworks are presented in Section 3. In
Section 4, the quantitative measurements for system
evaluation are presented. Section 5 presents the test results
for the proposed cryptosystem. Finally, the concluding
comments and recommended future avenues are given in
Section 6.

2. The Proposed Chaotic Systems

We propose a novel chaotic system for improving encryp-
tion quality and execution, which is described below. Our
system is a Two-Dimensional (2D), nonlinear, discrete-time
technique that provides dynamical chaotic behavior. Due to
the nonrepeatability and ergodicity of chaos in these algo-
rithms, they can accomplish general searches at higher
speeds than stochastic searches that depend on probabilities
[14]. (e proposed chaotic maps are used to create the
chaotic sequence; it derives from the model of Chirikov
standard map. Classical chaotic maps suffer from low
control parameters which in turn lead to a limited chaotic
range, but the better dimensional as the proposed chaotic
maps can be used to increase the key space and excessive
complexity and complement the randomness of pseudo
sequence. To create such maps a chaotic pseudo code is
employed and is described in Algorithm 1. Among the
diverse proposed maps, four are examined and their char-
acteristics are analyzed below. In short, the new chaotic
maps have desirable characteristics such as a large phase
space, high ergodicity, and high sensitivity to slight changes
in initial conditions and/or control parameters. (ese
characteristics are analogous to the requirements of en-
cryption algorithms. In addition, these maps preserve the
original structure of the classical maps in terms of their
parameter range.

(e first proposed chaotic map can be considered as 2D
growth of the traditional logistic map. It has a mathematical
expression similar to Hénon map. (e modified map gives a
thought of chaotic nature which is given by condition (1). In
this, original position (xn, yn) can be mapped to a new
position (x1+n, y1+n) using the following:

y1+n � b2xn,

x1+n � xn( )2 + yn( )2 − a . r,
 (1)

where the state variables x and y are the simulated time
series, a, b, and r represent the external parameters of con-
trol, and n is an iteration number using this map. (e graph
of this map is obtained in Figure 1(a).

(e second proposed chaotic map that is utilized in our
technique is a new finance model. It is a discrete-time dy-
namical system that exhibits chaotic behavior. It takes a
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point (xn, yn) in the plane and maps it to a new point given
by

yn+1 � yn − r. tanxn,

xn+1 � sinxn + sinyn+1.
{ (2)

(e above set of equations is a dynamical nonlinear
system with 2D nonlinearities.Within the finance dynamical
illustration, the state factors x and y are the simulated time
series, r acts the external control parameter, and n is an
iteration number. (e bifurcation diagrams with different
parameters could be utilized to examine the distribution

//Chaotic proposed algorithm
Begin
(1) It could be a system of a discrete time that maps point $(x n, y n)$.
(2) Define the initial value of maximum number of iterations tMax, upper boundary, and lower bound, population size n, number of
dimensions dim and define the fitness function.
(3) Randomly initialize the positions of map.
(4) Begin iteration (n).
(5) Select one of the four proposed finance dynamical models.
(6) End for
End

ALGORITHM 1: Proposed chaotic pseudo code.
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Figure 1: Numerical simulation of the 2D phase plot in (x, y) plane of the modern finance model defined by (a) equation (1), where a� 1.4
and b� 0.3; (b) equation (2); (c) equation (3); and (d) equation (4) where a� 1.5.
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property of the chaotic series. It could be certain that the
proposed map possesses excellent chaotic property in terms
of uniform distribution and has relatively large parametric
space, which can be suitable for the field of image en-
cryption. (e graph of this map is demonstrated in
Figure 1(b).

(e third proposed chaotic map utilized in our pipeline
is a 2D chaos map that includes generation of a permuted
image which includes the change within the position of the
pixel in unique image to some new position utilizing the
taking after the following condition:

y1+n � yn − r tanhxn,

x1+n � tanhxn + sinyn+1,
{ (3)

where n is an iteration number using this map, the chaotic
time, the state variables x and y are the simulated time series,
and r represents the chaotic parameter. (e graph of this
map is observed in Figure 1(c).

Finally, the fourth proposed chaotic map that is intro-
duced is obtained using the iterative function introduced by

y1+n � yn + a . r cosxn,

x1+n � cosxn + sinyn+1,
{ (4)

where the deterministic chaotic time series are produced in
the interval xn, ynϵ[0, 1], a and r speak to the external pa-
rameters control, and n is the number of the recreated fo-
cuses. (e graph of this map is obtained in Figure 1(d).

(e proposed characteristic types of the modern finance
models are obtained using MATLAB for the financial pa-
rameters, e.g., initial state values as x(0) � 0.02 and
y(0) � 0.02. (e dynamics of chaotic map are indicated by
orbits. (e chaotic map orbit is characterized by a dis-
continuous motion, nonsmooth. (e structures of the
proposed chaotic maps are demonstrated. As can be readily
seen from the figure, each chaotic system has its extraor-
dinary signature, which could be a special attractor char-
acteristic. (e balance focuses of the other proposed chaotic
system are gotten by fathoming the following pseudo code in
Algorithm 1.

2.1. Chaotic Behavior Evaluation of the Proposed Maps.
Chaotic performance can be evaluated using different tech-
niques such as Lyapunov exponent, bifurcation, and trajectory.
A quick overview of those methods are given below; then
evaluation of the chaotic behavior for the proposedmaps based
on their bifurcation diagram, iteration function diagram, and
Lyapunov exponent are detailed in the next section.

Lyapunov exponent represents the highlights of a dis-
ordered framework and can generally communicate the
general execution of chaotic maps. It is utilized as a
quantitative measure for the sensitive reliance on initial
conditions. For a discrete system xn+1 � f(xn) and for an
orbit beginning with x0, the Lyapunov exponent can be
described as follows [15]:

λ x0( ) � lim
n⟶∞

1

n
∑∞
i�1

ln|f′(xi)|, (5)

where f′ is the subordinate of the capacity f. In the event
that λ is negative, the framework is not clamorous. On the off
chance that λ is zero, this implies the framework is im-
partially steady and is in consistent state mode. In the event
that λ is certain, the advancement is touchy to introductory
conditions and thusly disorganized. Additionally, it is not
unexpected to allude to the Maximal Lyapunov Exponent
(MLE), in light of the fact that it decides a thought of
consistency for a riotous framework. (e bigger MLE is, the
more tumultuous the guide is and the less the quantity of
cycles important to accomplish the necessary level of dis-
semination or disarray of data is, and this implies a superior
clamorous guide. On the other hand, bifurcation diagram is
normally alluded to as the subjective progress from ordinary
to riotous conduct by changing the control parameter. (e
bifurcation outline is utilized to consider the clamorous
framework as a component of the estimations of the control
parameters. (is chart permits knowing the districts of the
framework showing intermingling, bifurcation, and bedlam
relying upon the estimations of the control parameters [16].
At long last, iteration property plots the connection between
the quantity of cycles n and the quadratic disorganized guide
at various estimations of the disordered parameter r and at a
particular introductory worth x0 [17]. (e parameter r can
be partitioned into three areas, which can be analyzed by
recreation utilizing MATLAB.

2.2. Analysis of the ProposedChaoticMaps. Quadratic map is
a fundamental case of a disorderly framework. It might give
the well-known and broadly utilized One-Dimensional (1D)
disordered logistic map which is portrayed by scientific it-
erative [18]:

xn+1 � rxn 1 − xn( ), (6)

where r is the clamorous parameter and n is the quantity of
iterations.(e arrangement of the quadratic guide is riotous,
in light of the fact that it is nonlinear. It is deterministic since
it has a condition that decides the conduct of the framework.
Likewise, a slight difference in the underlying worth xo can
prompt an altogether unique conduct of the guide. We can
gather from Figure 2 that logistic map in general has a
positive LE and scattered appropriation just for 3.57≤ r≤ 4.
As featured in [19] the logistic guide has negative marks, for
example, (i) low riotous range for control parameter r, (ii)
has nonconfused areas in any event, when 3.57≤ r≤ 4, and
(iii) has low biggest LE= 0.6923. Next, numerous plots for
the examination of the proposed tumultuous maps will be
concentrated, for example, the bifurcation diagram, the
Lyapunov exponent, and the iteration property.

2.2.1. Analysis of the First Proposed Chaotic Map. (e bi-
furcation graph of the first proposed turbulent map is in-
troduced in Figure 3(a). (is graph has three districts: (i)
assembly area is at r ϵ [0, 0.55], (ii) the bifurcation locale at
rϵ[0.55, 1.0]. (e confusion locale is at rϵ[1.0, 1.4], where
the disorderly conduct happens. Figure 3(b) shows the
Lyapunov type of the main proposed chaotic map. It is
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clearly evident that when rϵ [0, 0.55] all Lyapunov exponents
are less than or equivalent to zero. When r ϵ [0, 0.55], the
Lyapunov exponents are positive and consequently tu-
multuous. (e Maximal Lyapunov Exponent of the first
chaotic map is 1.225.

(e iteration and trajectory examinations are introduced
in Figure 4. When r ϵ [0, 0.55] as shown in Figures 4(a) and
4(d), the determined qualities arrive at a similar outcome
after a few emphases without any chaotic behavior.When r ϵ
[0.55, 1.0], as shown in Figures 4(b) and 4(e), the framework
shows up as having an intermittent conduct. When
r ϵ [1.0, 1.4], it turns into a chaotic system as shown in
Figures 4(c) and 4(f).

2.2.2. Analysis of the Second Proposed Chaotic Map. (e
conduct of the second proposed map is introduced through
Figure 5. As exhibited by the bifurcation outline shown in
Figure 5(a), plainly the guide displays a disorderly conduct at
r ϵ [5,∞[, the union district is at r ϵ [0, 4] expect little range
(±0.2) around r � 2.0 and the bifurcation locale is at r ϵ [4, 5].

In Figure 5(b), for all estimations of r aside from r ϵ [5,∞[, the
Lyapunov exponent has a positive worth. Along these lines, the
proposed map displays a turbulent conduct at the remainder
of the range. (e MLE of the proposed map is 3.317.

(e iteration and trajectory analyses for the second
proposed map are introduced in Figure 6. When rϵ[0, 4]
expect little range (±0.2) around r � 2.0 as shown in
Figures 6(a) and 6(d), the determined worth goes to the
almost same outcome after a few cycles with no chaotic
conduct. When r ϵ [4, 5], as shown in Figures 6(b) and 6(e),
the system shows up as having an occasional conduct. When
r ϵ [5,∞[, it turns into a chaotic system as shown in
Figures 6(c) and 6(f ).

2.2.3. Analysis of the *ird Proposed Chaotic Map.
Figures 7(a) and 7(b) depict the bifurcation and Lyapunov
exponent, respectively. As readily seen, convergence regions
are at r ∈ [0.0, 4.0], r ∈ [6.8, 7.8], etc. to infinity. (e bi-
furcation regions are at r ∈ [4.0, 5.7], r ∈ [7.9, 8.2], etc. to
infinity.(e chaos regions are atr ∈ [6.0, 6.5], r ∈ [8.5, 13.0],
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Figure 2: Logistic map: (a) Bifurcation diagram and (b) Lyapunov exponent.
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r ∈ [14.5, 19], etc. to interminability, aside from the little
locales of assembly and bifurcation, where the chaotic be-
havior happens. In Figure 7(b), the Lyapunov exponent has a

positive incentive at all estimations of r aside from little
scopes of combination and bifurcation. Henceforth, the
proposed chaotic map shows a disordered conduct in the
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remainder of the range. (e MLE of the third proposed map
is 4.499.

(e emphasis and trajectory analyses for the third guide
are introduced in Figure 8. When r ∈ [0.0, 4.0],
r ∈ [6.8, 7.8], and so forth to boundlessness as shown in
Figures 8(a) and 8(d), the determined qualities arrive at a
similar outcome after a few emphases with no disorganized
conduct. Whenr ∈ [4.0, 5.7], r ∈ [7.9, 8.2], and so forth to
unendingness, as shown in Figures 8(b) and 8(e), the
framework shows up as having an intermittent conduct.
When r ∈ [6.0, 6.5], r ∈ [8.5, 13.0], r ∈ [14.5, 19], and so on
to unendingness, it turns into a chaotic system as
Figures 8(c) and 8(f) illustrate.

2.2.4. Analysis of the Fourth Proposed Chaotic Map. At long
last, the disorderly conduct of the fourth guide is shown in
Figures 9 and 10. (e bifurcation chart in Figure 9(a) shows
a few combination, bifurcation, and chaos regions. (ese
districts stretch out to interminability. (e bifurcation areas
are at r ∈ [4.4, 4.5], r ∈ [8.55, 8.7], and so on to intermin-
ability. (e assembly areas are at r ∈ [4.2, 4.3], r ∈ [8.4, 8.5],
and so on to unendingness. (e disorder locales are at
r ∈ [4.5, 8.4], r ∈ [8.8, 12.5], and so on to limitlessness,
where the confused conduct happens. In Figure 9(b), the
Lyapunov exponent has a positive incentive at r ∈ [4.5, 8.4],
r ∈ [8.8, 12.5], and so forth to unendingness and conse-
quently the proposed fourth tumultuous map shows a
clamorous conduct at these periods. (e MLE of the pro-
posed map is 3.091.

(e iteration and trajectory examinations for the fourth
proposed chaotic map are introduced in Figure 10. When
r ∈ [4.2, 4.3], r ∈ [8.4, 8.5], and so on to vastness as shown in
Figures 10(a) and 10(b), the determined qualities addi-
tionally arrive at a similar outcome after iterations with no
chaotic conduct. When r ∈ [4.4, 4.5], r ∈ [8.55, 8.7], etc. to
endlessness, as shown in Figures 10(b) and 10(e), the system
shows up as having an occasional conduct. When
r ∈ [4.5, 8.4], r ∈ [8.8, 12.5], etc. to infinity, it turns into a
chaotic system as shown in Figures 10(c) and 10(f).

Table 1 sums up the investigation of the classical and
proposed chaotic maps. It shows the improvement in both
the turbulent parameter range r and MLE.

3. The Proposed Encryption System

An iterative handle to scramble arrangement of bytes that is
1D changed form of the 2D original image can be used in the
suggested scheme. As given in equations (1) through (4), the
proposed chaotic capacities are utilized. (ese capacities
together guarantee perplexity and dissemination procedure
required for encryption. For increasing security and to
decrease encryption time, the algorithm is additionally
backed with some logical operations help. (e structures of
encryption and decryption procedures are demonstrated in
Figure 11. (e DWT, based on operations of high-pass and
low-pass filtering, consists in decomposing the image into
sub-bands. For a single level decomposition, it presents an
image as four sub-bands; the first sub-band represents an
approximation image Low-Low (LL) and the others show
image details in horizontal high-low (HL), vertical low-high
(LH), and diagonal high-high (HH) directions. (e four
proposed maps are used to permute the positions of the four
sub-bands pixels. (e constructed proposed chaotic se-
quence is adopted to diffuse the overall permutation image;
an auxiliary key is brought in the algorithm to make the
algorithm sensitive to the secret keys. (e Inverse Discrete
Wavelet Transform (IDWT) allows perfect reconstruction of
the image.(e following subsection has details of encryption
and decryption algorithms.

Within the presented cryptosystem for encryption and
decryption forms, four of the proposed maps are utilized.
(e initial conditions and control parameters (key states) are
extracted from the secret key and used to produce chaotic
sequences from the proposed maps.

3.1. EncryptionProcess. (e proposed image encryption plot
dependent on chaos structure is delineated in Figure 11(a).
DWT, permutation (confusion), and diffusion stages are
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Figure 5: (e Bifurcation diagram (a) and Lyapunov exponent (b) for the second proposed map, at x(0) � 0.02, y(0) � 0.02.
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utilized to totally encode an image. Both the stage and
dissemination tasks are intended to utilize tumultuous states
and plain picture information to change pixel positions and
substitute pixel esteems separately, bringing about a clamor-
like cipher image.

3.1.1. Discrete Wavelet Transforms. DWT is famous in many
image/video applications because of its multigoal portrayal.
(e fundamental thought of the DWTfor a two-dimensional
image is depicted as follows. With the pyramid-organized
wavelet change, the original image will experience various
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blends of a low-pass filter and a high-pass filter and after-
ward dependent on the convolution with these channels to
produce the LL, LH, HL, and HH subgroups. To acquire the
following coarser scaled wavelet coefficients, the sub-band
LL is additionally disintegrated and fundamentally sub-
examined. (is procedure can rehash several times, which is
controlled by the application. With the pyramid-organized
wavelet transform, the size of the original image is identical
to adding all the decayed subimages up. Utilizing this decay
structure, there will be no data lost when the disintegrated
pieces are reproduced. (is remaking procedure is called
IDWT [20].

3.1.2. *e Permutation Process. We utilize the proposed
chaotic maps to produce tumultuous groupings and af-
terward sort that confused numbers in rising or plunging

order for the age of the change key. We sort the chaotic
sequences in the record network utilized in rearranging the
original image to acquire the permuted image. In the wake
of acquiring the rearranged image, the relationship among
the neighboring pixels is totally upset and the image is
totally unrecognizable. In this way, the permuted orderly
conduct of the fourth g image is frail against factual assault,
and realized plain-content assault [21]. (erefore, we
utilize a dispersion procedure after change to improve the
security.

3.1.3. *e Diffusion Process. (e dissemination step in the
proposed encryption plot is performed by the key identified
with the plain image calculation which utilized just one
round dispersion activity and its key relies upon the initial
key and the original image [22]. (e diffusion procedure in
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Figure 9: (e bifurcation diagram (a) and Lyapunov exponent (b) for the fourth proposed map at x(0) � 0.02, y(0) � 0.02, and a � 1.5.
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our scheme depends on the proposed chaotic maps. We will
talk about the encryption procedure just in detail, because
the decryption is the opposite procedure. (e subtleties of
the encryption procedure can be summed up by
Algorithm 2.

3.2. Decryption Process. (e decryption procedure is the
opposite activity of the encryption procedure. (e sche-
matic representation of the structure of the decoding
forms is shown in Figure 11(b). Utilizing similar mystery
keys, it tends to produce a tumultuous record grouping
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and the disordered vectors created in encryption process.
(e decoding calculation additionally comprises three
fundamental stages: inverse diffusion, inverse confusion,
and IDWT. Initially, we convert the encoded picture C in
size M ×N. At that point, we produce a reverse diffused
vector. Besides, we acquire the consolidated permutated
vector and recompose it into the four-stage subgroups
(LLP, LHP, HIP, and HHP). At long last, converse stage for
each sub-band (LL, LH, HI, and HH) utilizing the confused
record arrangement, and get the original image P utilizing
IDWT. (e decryption procedure is given in detail in
Algorithm 3.

4. Performance Metrics

(e quantitative performance of proposed techniques
compared with traditional techniques could be measured
using different metrics. (e latter include (i) statistical
parameters, (ii) differential parameters, and (iii) efficiency
parameters [23]. Details of those metrics are given as
follows.

4.1. Statistical Parameters. Good cipher must have strong
resistance against any measurable examination. To confirm
the security of any encryption technique, the following
statistical examinations should be performed [24].

4.1.1. Histogram Analysis. An image histogram depicts the
conveyance of image pixels by plotting the number of pixels
at each gray scale level. (e redundancy of plaintext should

be hidden in the distribution of cipher text and this dis-
tribution logically needs to be uniform [23]. (e histogram
equation of an image is gotten as follows:

Pn �
number of pixels with intensity n

total number of pixels
, n � 0, 1, . . . , L − 1,

(7)
where I is represented as an r by c matrix of numbers
extending of pixels from 0 to L − 1. L is the number of
conceivable concentrated values, more often than not 256,
and Pn indicates the normalized histogram of [25].

4.1.2. Correlation Analysis. (e relationship between two
variables is called correlation coefficient (R) [26]. (e cross-
correlation coefficient between decrypted images and
original is

R �
∑m∑n OImn − OI( ) DImn −DI( )�������������������������������������∑m∑n OImn − OI( )2( ) ∑m∑n DImn − DI( )2( )√ ,

(8)

where n is the column number, m is the row number, OI is
the pixels mean value of original image, and DI is the pixels
mean value of decrypted image. Ideally, the value ofR should
be 1.

4.1.3. Information Entropy Analysis. (e entropy is a perfect
feature to evaluate the degree of randomness. (e entropy of
a message source could be computed as [27]

LL
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HL
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Permutation

LH
Permutation

Di�usionDWT

Proposed chaotic mapsSecurity key

LL HL

HHLH

Plain image Cipher image

(a)

HL Inv.
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LL Inv.
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LH Inv.
Permutation

HH Inv.
Permutation
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Di�usion

IDWT

Proposed chaotic maps Security key

HLLL

LH HH

Cipher image Plain image

(b)

Figure 11: Schematic illustration: (a) the encryption processes, and (b) the decryption processes. Note that DWT, LL, LH, HL, HH Inv.
Diffusion, Inv. Permutation, and IDWTstand for, Discrete Wavelet Transform, low-low, low-high, high-low, high-high, inverse diffusion,
inverse permutation, and inverse Discrete Wavelet Transform, respectively.
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Table 1: Comparison between the classical and proposed quadratic maps. Note: MLE is Maximal Lyapunov Exponent.

Chaotic map Equation Chaotic parameter range MLE

Classical quadratic map [19] xn+1 � r – x
2
n r ∈ [3.75, 4] 0.6923

(e first proposed chaotic map y1+n � b
2xn

x1+n � (xn)
2
+ (yn)

2
− a.r

{ a� 1.4, b� 0.3, r ∈ [1, 1.4] 1.225

(e second proposed chaotic map yn+1 � yn − r. tanxn
xn+1 � sinxn + sinyn+1

{ r ∈ [5,∞[ 3.317

(e third proposed chaotic map y1+n � yn − r tanhxn
x1+n � tanhxn + sinyn+1

{ r ∈ [6, 6.5], r ∈ [8.5, 13], r ∈ [14.5, 19] to ∞ 4.499

(e fourth proposed chaotic map y1+n � yn + a.r cosxn
x1+n � cosxn + sinyn+1

{ a� 1.5, r ∈ [4.5, 8.4], r ∈ [8.8, 12.5] to ∞ 3.091

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 12: (e simulation steps: (a) LL component; (b) LH component; (c) HL component; (d) HH component; (e) LL component
confusion; (f ) LH component confusion; (g) HL component confusion; (h) HH component confusion; (i) original image; (j) overall
confusion; (k) encrypted image; and (l) decrypted image.
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H(m) � − ∑2N−1
i�0

p mi( )log2 p mi( )( ), (9)

whereN represents the number of bits for each symbol and
p(m) is the probability of symbol mi.

4.2. Differential Parameters. Encrypted image needs to be
sensitive to tiny changes in plain image. Attacker can change
some features in the plain image to get changes within the
encrypted one. If a small unsettling influence within the
original image comes about in a significant change in the
encrypted one, then differential attacks lose their efficiency
and become useless [28].

4.2.1. Mean Square Error. (e Mean Square Error (MSE) is
used in this paper to measure difference between the plain
and encrypted images.(e high value ofMSE corresponds to
a high difference between plain and encrypted images. It can
present as in equation (10) [29]:

MSE �
1

MxNxf
∑f
K�1

∑M
i�1

∑N
j�1

(P(i, j) − C(i, j)]2, (10)

whereN is the number of columns,M is the number of rows,
and f is the number of image frames. (e parameters P(i, j)
and C(i, j) refer to the pixels of the plain and the encrypted
images, respectively. For a MSE ≥30 dB, there is a difference
between the plain and encrypted images.

Input: plain image P
Output: cipher image C
Begin
//Permutation Process

Step 1: examine the plain image P in size M×N. P can be a gray-scale or RGB image.
Step 2: decompose the image into four level sub-bands (LL, LH, HL, and HH) by the selected DWT.
Step 3: choose a two-dimensional chaotic system and generalize it by introducing the initial values (x0, y0, a, b, r) , these initial
values as secret keys.
Step 4: generate the chaotic sequences using the proposed chaotic maps and set the appropriate values of the secret keys. Can use the
1st proposed chaotic map.
Step 5: change the chaotic sequence, with the same method, into a consistently dispersed grouping by altering the initial values and
parameters.
Step 6: iterate the chaotic sequence for LL sub-band for scrambling LLP row by row and column by column (starting from the first
row and the first column)
Step 7: like step 3, compute the next quantized chaotic pair using the 2nd, 3rd, and 4th proposed chaotic maps to scramble the next
sub-bands of LH, HL, and HH, respectively, and reiterate this step total times. (When the last row or the last column has been
scrambled, switch to the first row or the first column over again.)
Step 8: combine the chaotic vectors (LLP, LHP, HIP, and HHP) into one vector with Sk in size M×N.
Step 9: make the new vector of mistook pixels for SP in size M×N as SP � SK(index).
//Diffusion Process

Step 10: adjust and change the vector SP realizing that every component of level gray ranges in [0, 255] utilizing the accompanying
condition: SP(i) � mod(round(1012SP(i)), 256),where 1≤ i≤M ×N
Step 11: create the diffused vector with SD in sizeM×N as follows: SD � SP ⊕ SK, where ⊕ denotes the exclusive OR operation bit by
bit
Step 12: create the final matrix with cipher image C as follows: C � reshape(SD,M,N)Algorithm 2: Proposed encryption process.

End

Input: cipher image C
Output: plain image P
Begin

Step 1: produce the deshuffled vector as follows: SP � SD ⊕ SK, where ⊕ denotes the exclusive OR operation bit by bit
Step 2: produce the permutated each vector as follows: SP� SK (index)
Step 3: obtain the permutation sub-bands (LLP, LHP, HIP, and HHP)
Step 4: opposite stage and reshape vector components utilizing the chaotic index sequence to get sub-bands (LL, LH, HI, and HH)
Step 5: use IDWT recovers to obtain the original image

End

ALGORITHM 3: Proposed decryption process.
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4.2.2. Normalized Mean Square Error. Another popular
performance measurement related to MSE is Normalized
Mean Square Error (NMSE) which equals MSE divided by
the maximum MSE as in equation (11) [30].

NMSE �
MSE

(maxMSE)
. (11)

4.2.3. Peak Signal-to-Noise Ratio. (e peak signal-to-noise
ratio (PSNR) measures the conformity between the original
and decrypted images [31]. For an image of sizeM×N, it can
be evaluated as follows:

PSNR � 10 log10
Max201
MSE

( )dB, (12)

whereMax01 represents themaximum possible pixel value of
the original image. For a good encryption algorithm, the
PSNR should be as low as possible between the plain and
encrypted image.

4.2.4. Number of Pixels Change Rate. (e Number of Pixels
Change Rate (NPCR) is utilized to measure the percentage of
different pixel numbers between the original and decrypted
images and is assessed as within the following condition [31, 32].

NPCR �
1

M ×N × f
∑f
K�1

∑M
i�1

∑N
j�1

Di(i, j)
  × 100%,

Di(i, j) �
0, if OI(i, j) � DI(i, j),

1, if OI(i, j)≠DI(i, j).


(13)

NPCR evaluates the rate of pixels change in the coded
image after modification in one pixel of an original one; as
with higher value for NPCR, more effective performance is
got [32]. (e practical value for 1-NPCR ought to be ap-
proximately 0.99 [33].

4.2.5. Unified Average Changing Intensity. (e Unified
Average Changing Intensity (UCI) measures the average
intensity of difference between plain and decrypted images.
It could be computed through the following equation [33].

UACI �
1

M ×N × f
∑f
K�1

∑M
i�1

∑N
j�1

OI(i, j) −DI(i, j)

2l − 1
  × 100%,

(14)
where the number of columns is represented byN ,M is the
number of rows, f is the number of image frames, DI is
decrypted image, OI is the original image, and l is the
number of bits per pixel of original image.

4.3. Efficiency Parameters. Efficiency and high speed are
additionally imperative issues for a successful cryptosystem,

particularly for real-time Internet application. Generally,
encryption speed is highly dependent on the CPU/MPU
structure, size of RAM, operation system, the programming
language, and compiler option. So, there is no need to
compare the encryption speeds of two ciphers image using
two different devices [24]. (e foremost common parameter
related to efficiency analysis is the slipped-by-time (sec)
which has spoken to the overall computation time for en-
cryption as well as decryption prepared in seconds for each
trial of experiments.

5. Experimental Results

Most encryption algorithms are tested by utilizing mea-
surable examination. (ose analyses are utilized to find a
relation between the encrypted and the original image. All of
our experiments have been conducted utilizing a core i5-
2400 Windows 7 machine with a 4GB RAM, 160GB HDD,
and the same version of MATLAB programming environ-
ment. Our device was connected to the web most of time. All
tests have been connected more than one time and thus the
elapsed time represents the average simulation time for all
trials for each test. (e execution of proposed algorithm is
tested using MATLAB R2017a where it is inspected through
an arrangement of tests.

(e proposed approach is implemented using the pro-
posed maps for encryption and decryption of an image. We
used the benchmark images Lena, Cameraman, Baboon, etc.
(each of which is 512× 512 pixels) as plain (original) images.
With multi-map orbit key, the proposed maps are per-
formed. (e foremost direct technique to choose the dis-
orderly degree of the encrypted image is by the sense of sight.
On the other hand, the stochasticity of encrypted images can
be quantitatively calculated by the connection coefficient.
Appling the proposed maps, the parameters r and n should
be set agreeing with Step 1 in Algorithm 2. Based on the
experimental encounter, general combos of r and n can
continuously result in exceptionally disruptive outcomes at
intervals of recreation. (e beginning conditions of all
proposed chaotic maps utilized are set as x(0) � 0.02 and
y(0) � 0.02 as initial conditions for the first random key.(e
simulation results of the encryption process for Lena image
are shown in Figure 12.

5.1. Encrypted andDecryptedExperiment Tests. Four pictures
are utilized to test the encryption algorithm, “Lena,” “Cam-
eraman,” “Baboon,” and “Peppers.” From the simulation
results shown in Figure 13, these cipher images show up to be
so boisterous such that any data from them cannot be gotten.
Within the decryption process, by utilizing the proper secret
keys, the decoded images are the same as initial plain images.

Conveyances of information values in a system com-
prised the histogram. Histogram investigation can be made
by looking at information distributions in numerous diverse
fields. In encryption practices, in case the conveyances of
numbers that represent encrypted data are near, this implies
encryption is performing well. (e closer the encrypted data
distributions, the higher their encryption level. (e
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

Figure 13: Encryption and decoding results: (a) Lena plain image; (b) Lena scrambled picture; (c) Lena decrypted image with right keys;
(d) Cameraman plain image; (e) Cameraman encrypted image; (f ) Cameraman decrypted image with right keys; (g) Baboon plain image; (h)
Baboon encrypted image; (i) Baboon decrypted image with right keys; (k) Peppers plain image; (l) Peppers scrambled image; and (m)
Peppers decrypted image with right keys.
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histogram investigation for the chosen sample images is
shown in Figure 14. As shown in Figures 14(i)–14(l), the
histograms of the encrypted images are uniform and do not
give any clues to utilization of any factual examination
assault. Subsequently, it is troublesome for attackers to
perform the factual examination since there are no valuable
data exposed within the cipher images.

5.2. Key Space Analysis. (e key space is the all out number
of various keys that can be utilized in the encryption
procedure. (e proposed calculation comprises two pro-
cedures: permutation and diffusion. In permutation pro-
cess, we utilize the four proposed maps with autonomous
factors x0, y0, a, b and r for the four sub-bands. In the
diffusion process, the clench hand proposed map has in-
dependent variables x0 and r. In the key identified with the
plain content algorithm, we have a consistent whole
number c and c [1, 255]. (us, the key space is {x0, y0, a, b,
r}. Sincex0, y0, a, b and r are twofold accuracy numbers, the
absolute number of various qualities forx0, y0, a, b and r is
more than 1014. In this way, the key space is bigger than
1014×1014×1014×1014×1014× 255. (is huge key space is
sufficient to resist brute-force attack.

5.3. Key Sensitivity Analysis. In addition to histogram
analysis, we employed another critical feature of chaos
encryption, which is key sensitivity. During the decryption,
any little alteration within the key leads to diverse results.
Even if only one parameter has been changed, encrypted
data cannot be unscrambled. Additionally, the information
cannot be decrypted with knowing all the keys since the
decryption does not occur within the correct order.
Figure 15 shows the encrypted image of the proposed
approach when utilizing the specific keys. Figure 15(a)
shows the original cameraman image. Figures 15(b) and
15(c) show the encrypted images utilizing diverse
encrypted keys and there are no patterns or shadows ob-
vious within the corresponding decrypted image with
utilizing off-base keys.

(e decrypted image is shown in Figure 16, where
Figure 16(a) shows the decrypted image using the same keys
of encryption. Figures 16(b) and 16(c) show illegal decrypted
images while using the error keys. (e results show that the
decrypted images are all unrecognized. (is means that,
without using the right key, the original image cannot be
recovered. A little key change will produce the error de-
cryption results. (erefore, the proposed encryption algo-
rithm has high key sensitivity.
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Figure 14: Simulation results of sample test images: (a) Lena, (b) Cameraman, (c) Baboon, and (d) Peppers, respectively; (e)-(h) histogram
of original images; and (i)-(l) histogram of cipher images.
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(a) (b) (c)

Figure 15: Key sensitivity of encrypted process: (a) Cameraman plain image; (b) Cameraman encrypted image with first key; and (c)
Cameraman encrypted image with another key.

(a) (b)

(c)

Figure 16: Decrypted process with key sensitivity (a) using same keys of encrypted and (b,c) using the error keys.

Table 2: Parameters of the encryption quality for different test image. Please note that MSE, PSNR (dB), and ET (sec) stand for minimum
mean square error, peak signal-to-noise ratio, and elapsed time, respectively.

Image name MSE PSNR ET Entropy

Lena 7747.309 9.23929 0.28913 7.9993
Cameraman 9445.441 8.3785 0.17302 7.9991
Baboon 7254.201 9.52486 0.30186 7.9993
Peppers 8413.235 8.88117 0.20668 7.9994
Average 8215.0465 9.005955 0.2426725 7.999275
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Moreover, to assess the robustness of the proposed
system the statistical analysis is conducted. Table 2 shows
measurable analysis of our results; different measures are
utilized: MSE, PSNP, ET, and Entropy.

(e proposed encryption employs distinctive mid-
points when scrambling distinctive input images. (is
progressively can impressively increment the resistance of
the cryptography system against unknown/chosen attacks

(a) (b) (c)

(d) (e) (f )

Figure 17:(e effect of speckle noise attack: (a) encrypted picture with 5% salt & pepper noise; (b) encrypted picture with 4% speckle noise;
(c) cipher picture with 2% Gaussian commotion and turn of 30°; (d) decrypted image with 5% salt & pepper noise; (e) decrypted image with
4% speckle noise; and (f) decrypted image with 2% Gaussian noise and turn of 30°.

Table 3: (e NPCR (%) of encrypted images for our approach compared with other literature algorithms. Please note that NA stands for
“not applicable.”

Image name
Proposed
method

Wu et al.
[11]

Ben Slimane et al.
[13]

Wang et al.
[35]

Luo and Ge
[36]

Amina and Mohamed
[37]

Alawida et al.
[38]

Lena 99.6641 99.6002 99.6271 99.59 99.6137 99.6452 99.620
Cameraman 99.6523 99.6082 NA 99.59 99.6131 NA NA
Baboon 99.6438 99.5903 99.6145 99.56 99.6111 99.6154 99.601
Peppers 99.6287 99.6112 NA 99.61 99.6137 99.6315 99.617

Table 4: (e UACI (%) of encrypted images for our approach compared with other literature algorithms. Note that NA stands for “not
applicable.”

Image name
Proposed
method

Wu et al.
[11]

Ben Slimane et al.
[13]

Wang et al.
[35]

Luo and Ge
[36]

Amina and Mohamed
[37]

Alawida et al.
[38]

Lena 33.6124 33.5079 33.5589 33.48 33.4594 33.6152 33.505
Cameraman 33.6425 33.5574 NA 33.53 33.4615 NA NA
Baboon 33.6430 33.5281 33.4277 33.58 33.4629 33.4354 33.424
Peppers 33.6012 33.5265 NA 33.41 33.3948 33.5073 33.391
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and differential assaults. Security performance of the
proposed algorithm is better than those results mentioned
in [34]. In order to test the algorithm’s capacity to resist
assaults, noise attack may be a common image assault
strategy, which frequently happens within preparing of
cipher image transmission. For assault analysis, two pa-
rameters were used, namely, the NPCR and UACI. (e
algorithm ought to have great sensitivity to plain image,
which means great difference in cipher image caused by a
small change in plain image. (e effects of salt & pepper,

speckle, and composite Gaussian and rotation attack are
illustrated in Figure 17. It is concluded that the proposed
scheme can resist different assaults (noise attack and ro-
tation attack).

It may be a common form of cryptanalysis and a secure
encryption scheme ought to have strong capacity of standing
up to these attacks. For an image encryption scheme, by the
number of pixels changing rate and bound together normal
changed intensity can measure its capacity of standing up to
differential attack. (e results can be observed in Tables 3
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Figure 18: Adjacent pixels correlation test for Lena: (a) plain image by horizontal, (b) plain image by vertical, (c) plain image by diagonal,
(d) cipher image by horizontal, (e) cipher image by vertical, and (f) cipher image by diagonal.
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Table 5: Correlation coefficient of the original images and their encrypted images using the proposed chaotic maps.

Image Direction Horizontal Diagonal Vertical

Lena
Plan image 0.98453 0.97553 0.95271

Encrypted image 0.00047 0.00305 −0.03911

Cameraman
Plan image 0.92021 0.91321 0.90124

Encrypted image 0.00212 −0.00205 0.00190

Baboon
Plan image 0.91251 0.9029 0.89215

Encrypted image 0.00318 −0.00294 0.00285

Peppers
Plan image 0.97543 0.97697 0.95871

Encrypted image 0.00198 0.02547 0.04321

Table 6: Result of the NIST (SP800) test suite.

Test name P value Result

Frequency 0.338753490 Success
Block frequency 0.375654387 Success
Runs (M� 10.000) 0.374565348 Success
Long runs of ones 0.334567898 Success
Rank 0.345345266 Success
Spectral DFT 0.464527 Success
No overlapping templates 0.527653 Success
Universal (L� 7, Q� 1280, K� 141 577) 0.264534567 Success
Lempel–Ziv complexity 0.565435 Success
Linear complexity 0.384534167 Success
Serial P value 1 0.492345123 Success
Serial P value 2 0.424355767 Success
Approximate entropy 0.543556665 Success
Cumulative sums forward 0.345456565 Success
Cumulative sums reverse 0.287662009 Success
Random excursions X�−4 0.535435 Success

X�−3 0.675656 Success
X�−2 0.434521 Success
X�−1 0.429843 Success
X� 1 0.512344 Success
X� 2 0.576545 Success
X� 3 0.496565 Success
X� 4 0.486632 Success

Table 7: Result of DIEHARD tests suite.

Test name Average value Result

Birthday spacing 0.524546 Success
Overlapping permutation 0.486766 Success
Binary rank 31× 31 0.823667 Success
Binary rank 32× 32 0.456273 Success
Binary rank 6× 8 0.686388 Success
Bitstream 0.423876 Success
OPSO 0.4601 Success
OQSO 0.5243 Success
DNA 0.5561 Success
Count the ones 01 0.480243 Success
Count the ones 02 0.256778 Success
Parking lot 0.638823 Success
Minimum distance 0.467348 Success
3DS spheres 0.327673 Success
Squeeze 0.536561 Success
Overlapping sum 0.476538 Success
Runs 0.426565 Success
Craps 0.387243 Success
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and 4. As can be observed, NPCR is over 99% whereas UACI
is over 33%. (ese results infer the high sensitivity of the
proposed calculation towards the miniature modification
made to the plain image; the decrypted images will be
completely different even if there is only one bit of change
between the two plain images. In our test, the results of four
encrypted images and the average value UACI and NPCR
are 33.6248% and 99.6472%, individually. By differentiation,
the values of UACI and NPCR in our plot are closer to the
perfect esteem, which proves that it is exceedingly sensitive
for the proposed encryption for resisting differential attacks.

5.4. Correlation of Two Adjacent Pixels. Using the sample
images above, we compute the correlation coefficients of
adjacent pixels for the original and the encrypted image,
and this is done through estimating the correlation among
two vertically adjacent pixels, two horizontally adjacent
pixels, and two diagonally adjacent pixels in the original
and the corresponding encrypted images [22]. We ran-
domly select 5000 pairs of two adjacent pixels from the
image.

rxy �
cov(x, y)�����
D(x)

√ �����
D(y)

√ ,

cov(x, y) �
1

N
∑N
i�1

xi − E(x)( ) yi − E(y)( ),

D(x) �
1

N
∑N
i�1

xi − E(x)( )2,

E(x) �
1

N
∑N
i�1

xi,

(15)

where cov(x, y) represents the covariance of x and y, D(x)
represents the variance of the vector x, E vector or(x)
represents the main value of vector x, and N means the
length of the vector x.

As can be seen from Table 5 and Figure 18, the corre-
lation coefficients of the plain images are close to 1, while the
correlation coefficients of the cipher images are close to 0. So,
the plain images have strong correlations for the adjacent
pixels, while the cipher images have hardly any correlations
for the adjacent pixels. (ese demonstrate that our proposed
scheme can fight against attacks based on statistical prop-
erties of the images.

5.5. Randomness Tests for the Ciphered Image. To guarantee
the security of the cryptosystem, the figured picture must
have properties to segregate designs for additional mea-
surable investigation, for example, great dispersion (i.e.,
arrangement’s connection gets feeble), extensive stretch
(i.e., long key period), and high multifaceted nature and
productivity (i.e., disarray and dissemination) [39]. A few
tests are ordinarily used to test the haphazardness of the

figured picture. (ese tests incorporate DIEHARD and
NIST (SP800) measurable test suites. DIEHARD test is
significant on the grounds that it is by all accounts the most
remarkable and troublesome test suite to pass [40]. (e P
estimation of each test must be inside the achievement
scope of 0.01 < P esteem < 0.99. NIST is a measurable
bundle comprising a lot of tests. (ese tests were created to
test the haphazardness of the ciphered image dependent on
the pseudorandom number generators. Tables 6 and 7 show
the consequences of the NIST and DIEHARD; the out-
comes show that ciphered images have passed all the as-
sessments, which implies that they exhibit highly random
behavior.

6. Conclusion

A set of novel chaotic maps based on DWT and double
chaotic function have been proposed in an effort to improve
encryption quality and execution. In such a way, the pro-
posed pipeline was able to avoid many existing cryptanalysis
methodologies and cryptography attacks. (is has been
documented using the NPCR and UACI metrics with values
of 99.6472% and 33.6248%, individually. (e dynamical
analysis and sample entropy algorithms showed that the
proposed map is overall hyperchaotic with the high sensi-
tivity and high complexity. (us, the proposed chaos-based
image cipher can be seen as reasonable tool for applications
like wireless communications. (ere are a few research
focuses that can follow after this investigation. (e key
choice handle can be randomized. (e number of offers
superimposed can be expanded to increase the layers of
security. Different sorts of chaotic maps can be connected to
the same image to improve the encryption handle. (e
proposed chaotic maps for multimedia security algorithms
can be applied based on chaotic system for fog computing.
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