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In this paper we present an new approach based on two filters ab and abg using Interacting Multiples

Models (IMM) design instead of a Kalman filter second and third order for the tracking a single

maneuver target. The comparison between the proposed filter and the IMM improves the computing

time amount about 60% while having a high accuracy.
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1. Introduction

Target tracking and predicting is realized in track while scan
systems, which are sampled data filters, based on previously
observed positions containing measurement noise. The perfor-
mance of these filters is function of their noise smoothing
behavior and their transient system response. A filter developed
in the mid 1950s, the ab tracker, is popular because of its
simplicity and consequently inexpensive computational require-
ments. This permits its use in limited power capacity applications’
like passive sono-buoys. The ab filter performance has been
analyzed by Sklansky [1].

Particularly in radar applications, having a single model to
capture the dynamics of a system (target) is not enough, and
therefore algorithms based on several models (modes) may be
necessary for tracking the behavior of un-predictable target. The
Interacting Multiples Models (IMM) is such an algorithm. In this
algorithm several filters are run in parallel, each filter matching a
specific model for the target’s dynamic. A particularity of the IMM
is that these models interact. The state estimates and their
covariances, obtained from different filters, are computed and
combined to form the overall state estimate and its covariance. To
reduce the complexity, the filters used in the proposed IMM
algorithm are the ab and abg filters. We here after describe these
filters before showing how they are incorporated into the IMM
algorithm.
H. All rights reserved.

ani).
2. ab and abc filter

2.1. ab filter

The ab filter is probably the most extensively applied fixed
coefficient filter. It may be viewed as the steady state second
order Kalman filter. This filter is defined by the following [2,3]:

x̂ðkÞ ¼ xpðkÞþaðx0ðkÞ�xpðkÞÞ ð1Þ

v̂ðkÞ ¼ v̂ðk�1Þþ
b
T
ðx0ðkÞ�xpðkÞÞ ð2Þ

xpðkþ1Þ ¼ x̂ðkÞþTv̂ðkÞ ð3Þ

where x̂ðkÞ is the coordinate of the smoothed (estimated) target’s
position, x0ðkÞ is the coordinate of the measured target’s position
at the kth scan, xpðkÞ is the coordinate of the predicted target’s
position at the k th scan, v̂ðkÞ is the smoothed target’s velocity at
the kth scan, T is the radar scan time or the sample interval, and
a;b are the fixed coefficients filter parameters. Finally, the usual
initialization procedure is

xpð1Þ ¼ x̂ð0Þ and v̂ð0Þ ¼ 0 ð4Þ

and

v̂ð1Þ ¼
½x̂ð1Þ�x̂ð0Þ�

T
ð5Þ

According to [4], the ab estimator is optimal the two coefficients
a;b verify the following equation:

b¼
a2

2�a ð6Þ

Further details on the steady state of the second order Kalman
filter can be found in [5].
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2.2. abg filter

The abg filter is also a fixed coefficients filter. It is the steady
state of the third order Kalman filter. This filter is defined by the
following [2,3]:

x̂ðkÞ ¼ xpðkÞþaðx0ðkÞ�xpðkÞÞ ð7Þ

v̂ðkÞ ¼ v̂ðk�1Þþ
b
T
ðx0ðkÞ�xpðkÞÞ ð8Þ

âðkÞ ¼ âðk�1Þþ
g

2T2
ðx0ðkÞ�xpðkÞÞ ð9Þ

xpðkþ1Þ ¼ x̂ðkÞþTv̂ðkÞþ1
2T2âðkÞ ð10Þ

where âðkÞ represent the smoothed target’s acceleration, g an
additional parameter of the filter, and the other quantities are
defined previously.

Further details on the steady state of the third order Kalman
filter have been reported in [3].

2.3. Computation of the coefficients a;b and a;b; g

According to [3], the abg coefficients are function of the target
maneuvering index defined by

l¼
sv � T2

sw

� �
ð11Þ

where sv is the standard deviation of the system noise and sw is
the standard deviation of the measurement noise. The a;b
coefficients can be calculated using the following equations [3]:

b¼ ðl2
þ4l�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
þ6l

q
Þ=4 ð12Þ

a¼�ðl2
þ8l�ðlþ4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
þ8l

q
Þ=8 ð13Þ

while the a;b; g coefficients are computed using the following
equations:

a¼ 1�s2

b¼ 2ð1�sÞ2

g¼ 2ls ð14Þ

where

s¼ z�
p

3z

� �
�

b

3
ð15Þ

In the previous equation

b¼
l
2
�3

p¼ c�
b2

3
ð16Þ

z¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ

4p2

27

� �s ,
2

3

vuut
ð17Þ

With

c¼
l
2
þ3

and

q¼
2b3

27
�

bc

3
�1
3. IMM and FastIMM Algorithm

In the IMM algorithm a number of models are used to describe
the dynamic of a target. The overall target state estimate is the
combination of all the state estimates obtained from the filters
matched to different models. The probability of transition
between different models is assumed to be governed by a Markov
chain. The diagram of the IMM is shown in Fig. 1 for a number of
models equal to two. In the standard IMM filter, the filters N1 and
N2 are usually chosen to be a second order and a third order
Kalman filters, respectively [3,5]. The first one is suitable for a
target that moves at a nearly constant velocity, while the second
one is appropriate for a target that manoeuvres [6,7]. In the
proposed algorithm, we have replaced these filters by their steady
states filters, the ab and the abg filters.

Step 1: Calculation of the probabilities for models mixing. The
probability that model i was effective at instant k�1 , given that
model j is effective at instant k and conditioned on measurements
received until time k�1 is calculated from:

mi=jðk�1jk�1Þ ¼ PðMiðk�1ÞjMjðkÞ; Z
k�1Þ

¼
1

cj
PðMjðkÞjMiðk�1Þ; Zk�1ÞPðMiðk�1ÞjZk�1Þ

¼
1

cj
pijmiðk�1Þ; i; j¼ 1; . . . ; r ð18Þ

where pij is the a priori probability of transition from model i to
model j, miðk�1Þ is the probability that model i is effective at the
time k�1 and cj is a normalization constant calculated from:

cj ¼
Xr

i ¼ 1

pijmiðk�1Þ; j¼ 1; . . . ; r ð19Þ

with r representing the number of models in interaction.
Step 2: Mixing of the model conditioned estimates. The model

conditioned state estimates are mixed as follows, to yield the
initial state for filter j:

x̂
0j
ðk�1jk�1Þ ¼

Xr

i ¼ 1

x̂
i
ðk�1jk�1Þmi=jðk�1jk�1Þ ð20Þ

Step 3: Mode conditioned state estimation. Using the initial
estimated state and the validated measurements as input, the
mode conditioned state estimates are calculated via the ab filter
for j¼ 1 and the abg filter for j¼ 2.

Step 4: Likelihood function computation. The likelihood function
Lj
ðkÞ of model MjðkÞ is calculated using the following equations:

Lj
ðkÞ ¼ P½zðkÞjMjðkÞ; Z

k�1� ¼ P½zðkÞjMjðkÞ; x̂
0j
ðk�1jk�1Þ; P̂

0j
ðk�1jk�1Þ�

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2pSjðkÞj

p expð�0:5ðvjðkÞÞT ðSjðkÞÞ�1vjðkÞÞ ð21Þ

In the above equation

vðkÞ ¼ zðkÞ�HjðkÞx̂
0j
ðk�1jk�1Þ ð22Þ

is the innovation of the filter matched to the model MjðkÞ and SjðkÞ

is its covariance given by

Sj ¼
s2

w

ð1�ajÞ
ð23Þ

In which s2
w is the measurement variance and aj is the

coefficient a of the fixed coefficients filter j.
Step 5: Updating the models probabilities. The probability

of the model MjðkÞ at instant k is computed using the



Fig. 1. The filter interacting multiples models.

Fig. 2. Target trajectory (I: initial point, F: final point, R: radar location).
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following equation:

mjðkÞ ¼ P
�

MjðkÞjZ
k
�
¼

1

c
Lj
ðkÞcj

with j¼ 1; :::; r ð24Þ

where cj is defined in Eq. (19) and c is the normalization constant
defined as

c¼
Xr

j ¼ 1

Lj
ðkÞcj ð25Þ

Step 6: Combining the estimates conditioned on different models.
The estimated states, based on different models, are combined to
yield the overall state estimate x̂ðkjkÞ, according to

x̂ðkjkÞ ¼
Xr

j ¼ 1

x̂
j
ðkjkÞmjðkÞ ð26Þ

4. Simulation results

To test the performance of the proposed algorithm, we use the
generic ATC tracking problem, defined in [8]. The radar, located at
[0, 0 m], provides direct position only measurements (after polar-
to-Cartesian conversion) with RMS errors of 100 m in each of the
two Cartesian coordinates. The interval between samples is
T ¼ 5 s. In the scenario under consideration, starting from
[25 000, 10 000 m] at time t¼ 0 s, the aircraft flies westward for
125 s at 120 m/s , before executing a 13=s coordinates turn (which
amounts to an acceleration of 0.2g at this speed) for 90 s , then it
flies southward for another 125 s, followed by a 33=s turn
(an acceleration of 0.6g at this speed) for 30 s. After the turn, it
continues to fly westward at a constant velocity. The target
trajectory is shown in Fig. 2. This scenario lends to a maneuvering
index that is quite high (almost 1.5) and thus very little noise
reduction can be achieved by a single model based state
estimator, which will have to be, by necessity, conservative,
since designed for maximum acceleration. To generate the
measurements a Gaussian white noise with a standard
deviation equal to 100 m has been added to the Cartesian
coordinates of the target’s position. The performances of the
proposed algorithm are compared to those of the standard IMM
estimator using a second order linear kinematic model with a
lower process noise level (0:1 m=s2 to model the uniform motion
and a third kinematic model with a 0:6 m=s2 for the process noise
standard deviation to handle the maneuvers. The following mode
transition probability matrix was used in both, the proposed and
standard IMMs:

p¼
0:9 0:1

0:1 0:9

� �

The values of the parameters sv and sw that intervene in the
calculation of the coefficients a,b, through the maneuvering index,
were chosen to be 0:1 m=s2 and 100 m.

In Fig. 3, the combined root mean square error in position,
obtained over 1000 Monte-Carlo runs is displayed. We can
observe that the filtering quality of the FastIMM during uniform
motion is better than that of the standard IMM filter and that the
filtering quality of both filters are similar during maneuvering



Fig. 3. Comparison between the RMSE in position of the standard IMM and

FastIMM for T ¼ 5 s.

Fig. 4. Models’ probabilities evolution for the standard IMM filter.

Fig. 5. Models’ probabilities evolution for FastIMM filter.

Fig. 6. Comparison between the RMSE in position of the standard IMM and the

FastIMM for T ¼ 3 s.
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segments, except at the end of the last one, where the standard
IMM outperforms the proposed FastIMM.

Figs. 4 and 5 plot the evolution of the models probabilities
for the IMM and the FastIMM. It can be observed from these
figures that the difference between these probabilities is more
pronounced in the FastIMM.

To complete our analysis we have conducted another simula-
tion of 1000 Monte-Carlo runs with an update time reduced to 3 s.
The obtained RMSE in position are presented in Fig. 6. They show
as expected, that an improvement in performance is obtained
when the update time is reduced. They also show that the
difference in performance between the standard IMM and the
FastIMM is smaller when the update time is reduced.

In the proposed (FastIMM) algorithm, the computation of the
gain is not necessary in both filters, second and third order
Kalman filters, hence the step of the matrix inversion computa-
tion is eliminated in each run of the algorithm, reducing
considerably the computation load. In order to evaluate the
performance of the proposed algorithm in terms of complexity,
we have used the execution time given by the Matlab software;
we have noticed that the FastIMM reduce de execution time by
amount of approximately 60% while having a high accuracy. we
have also observed that this is scenario independent, to some
extent.
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5. Conclusion

In this paper, we have proposed a new design of the IMM filter
for tracking a single maneuvering target, named FastIMM. In this
algorithm, the second and the third order Kalman filters are
replaced by their steady state filters, the ab and abg filters that
were suitably designed. This algorithm not only greatly decreases
the computational burden but also keeps a high accuracy. These
are promising results for the application of the proposed
algorithm in real time.
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