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BASIC SCIENCE
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Abstract

Purpose To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into

athymic nude rats.

Methods Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T

cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 hetero-

zygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative

status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing,

superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human

embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE

(iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining.

Age-matched pigmented athymic nude rats were used as control.

Results Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males

crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated

significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1–3 layers

at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology.

Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection.

Conclusions This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal

transplantation experiments involving xenografts.

Keywords Human-derived cells . Immunodeficiency . Retinal dystrophy . Retinal transplantation

Introduction

Age-related macular degeneration (AMD) and retinitis

pigmentosa (RP) lead to a profound loss of vision in millions

worldwide. Many of these patients require replacement of

both retinal pigment epithelium (RPE) and photoreceptors

(PRs). Cell-based techniques for the replacement of RPE, pho-

toreceptors, and other inner retinal cells have been a major

focus for various research groups [1–4]. Promising techniques

are now emerging with the potential to replace even retinal
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ganglion cells and their axons in the optic nerve [5]. Other

approaches are aimed at curing retinal degenerative (RD) dis-

eases based on the transplantation of retinal progenitor cells

(RPCs). Transplantation studies involving both RPE and ret-

inal progenitor cells have been demonstrated in animal models

[4, 6–8] and humans [9] by grafting sheets of fetal-derived

neural retinal progenitor cells with its RPE.

The dystrophic Royal College of Surgeons (RCS) rats [10,

11] and various lines of transgenic S334ter rats [12–14] are the

most commonly used rat disease models in ophthalmic re-

search. These models are commonly used for the assessment

of beneficial effects of cell replacement therapies [15–22]. The

dystrophic RCS rats are characterized by RPE dysfunction

due to the deletion in the Mer tyrosine kinase (MerTK) recep-

tor that abolishes internalization of PR outer segments by RPE

cells [23]. The phagocytosis of shed photoreceptor outer seg-

ments (OS) is a prerequisite for maintaining normal retinal

physiology for which RPE plays a major role. Accumulation

of debris in the subretinal space can lead to severe photore-

ceptor degeneration and rapid loss of vision. In RCS rats,

although retinal thickness remains close to the level of normal

eyes at 1 month of age [24, 25], the outer nuclear layer (ONL)

is reduced to a single layer at the age of 3 months, with the

debris zone occupying the former outer segment area. Finally,

at 6 months, the inner nuclear layer is in direct contact with the

RPE cell layer, with very few photoreceptors surviving

[26–30].

Although the retina is considered an immune privileged

area, some immunological reactions to xenograft can occur.

Most of the preclinical studies involving human-derived cells

used animal models that are exposed to severe immunosup-

pression regimes [31, 32]. Based on the studies conducted in

our laboratory, administration of immunosuppressants in ro-

dents can yield only partial success because of the inconsistent

blood immunosuppression levels. The procedure itself is labor

intensive and may cause additional pain and discomfort to the

animals. Based on a recent investigation, a standard regimen

of cyclosporine A plus dexamethasone administered to RCS

rats resulted in demonstrable systemic side effects and de-

pressed scores on behavioral and electrophysiological testing

[33]. Further, according to Anderson et al. [34], the presence

of an active immunorejection response itself may significantly

alter the efficacy and critically, the safety profile of the cell

therapy candidate. Recently, Zhu et al. [35] demonstrated that

using an immunodeficient model enhances long-term func-

tional integration of human embryonic stem cell (hESC)-de-

rived PRs. The above findings suggest the importance of

using immunodeficient models for testing replacement thera-

pies involving human-derived cells. The only immunodefi-

cient RD rat model currently available is S334ter line-3 rats

[36], a model for photoreceptor degeneration showing certain

similarities to human retinitis pigments (RP). Contrary to this,

the RCS rats are considered as a model suitable for studying

RPE dysfunction/disease and early stage interventions based

on RPE replacement. Here, we report creating an immunode-

ficient rat model that manifests the dystrophic features of RCS

rats and hence can be considered as desirable for conducting

xenograft studies.

Methods

Animals

Breeding pairs of pigmented dystrophic RCS rats (RCS-p+)

were obtained from Dr. Mat LaVail (University of California,

San Francisco, USA). Pigmented athymic nude rats (Hsd:RH-

Foxn1mu, mutation in the foxn1 gene; no T cells) were pur-

chased from Harlan Laboratories, NJ, USA. All experiments

were approved by the University of Southern California

Institutional Animal Care and Use Committee (IACUC) and

were performed in accordance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals and

the ARVO Statement for the Use of Animals in Ophthalmic

and Vision Research.

Breeding scheme

Adult female RCS rats were mated with athymic nude male

rats. Males and females of the F1 progeny from different litters

were crossed to produce F2 generation. RCS-p+ gene status of

the pups was identified by genotyping. Immunodeficiency

status was established based on phenotypic expression (hair

loss). Since immunodeficient females are incapable of raising

pups, only heterozygous females (phenotypically non-

immunodeficient) were used in all subsequent breeding.

These females were crossed with double homozygous (immu-

nodeficient and retinal dystrophic) males to produce approxi-

mately 50% double homozygous (dystrophic and immunode-

ficient) pups. All rats were kept in an aseptic and temperature-

controlled environment.

Genotyping

The genotyping for RCS/MerTK-alleles was performed with

the RRRC (Rat Resource & Research Center) 662 protocol

and with the PCR-RFLP assay reported by Hirasawa et al.

previously [37], see Table 1 for details.

Retinal thickness measured using optical coherence
tomography imaging

Spectral domain optical coherence tomography (SD-OCT)

images of the retina were obtained using a Bioptigen Envisu

R2200 spectral domain ophthalmic imaging system

(Bioptigen, Research Triangle Park, NC). Rats were
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anesthetized, and pupils were dilated using 1% atropine drops

(Akorn Pharmaceuticals, Lake Forest, IL). During imaging,

the animals were placed on a movable platform that allowed

easy maneuvering of the head. The eyes were protected by a

frequent application of Systane ® (Alcon) to minimize the

refractive errors and avoid ocular damage by keeping the cor-

nea moist. From each eye, five scan acquisitions were taken.

Areas of 2.6 mm× 2.6 mm were imaged with one of the three

following scan parameters (units are # B-scans/# A-scans/B-

scan averaging value): 488 × 488 × 5 (optimal for obtaining

maximum projection fundus image); 700 × 70 × 25; and

800 × 20 × 80 (optimal for obtaining retinal cross sections).

Optokinetic testing

Optokinetic (OKN) testing was performed at three different

time points as previously described [38]. An EthoVision®

XT, Noldus Information Technology computer program was

used to generate alternate black and white stripes. The head-

tracking responses during clockwise (1 min) and anti-

clockwise (1 min) stripe rotations were recorded using a digital

camcorder. Visual acuity was tested by the decrease of stripe

width at 0.5 decrements. Video recordings were evaluated to

compute the head-tracking scores by two separate investigators

whom were both blind to the experimental condition.

Electroretinography testing

Electroretinography (ERG) was performed every month after

birth using the HMsERG system (Ocuscience, Las Vegas,

NV) as previously described [8]. Briefly, after dark adapted

overnight, the rats were anesthetized with an injection of

ketamine/xylazine (37.5 mg/kg ketamine and 5 mg/kg

xylazine, i.p.) and 0–2% isoflurane mixed with oxygen

through a gas anesthesia mask (Stoelting, Wood Dale, IL,

USA); and eyes were dilated using tropicamide 1% (Bausch

& Lomb Inc., Tampa, FL) eye drops. Contact lens electrodes

were placed on the cornea of both eyes, with reference and

ground electrodes placed subcutaneously. An optically clear

ophthalmic gel was used to maintain hydration and conduc-

tivity between the cornea and recording electrodes. Scotopic

testing was conducted with flash stimuli intensities ranging

from 1 to 25,000 millicandela (mcd) followed by photopic

testing (light adaptation of 10 min prior to the photopic test

which records flash stimuli responses of 10–25,000 mcd).

Superior colliculus electrophysiology

Electrophysiological mapping of the superior colliculus (SC)

was performed at about 21 weeks post-surgery. During SC

mapping, the responses were recorded from approximately

30 different SC locations. At each location, the recordings

were made at varying light intensity (~ 0.25 steps) to obtain

a luminance threshold map of the SC as described previously

[7, 39, 40].

Preparation of iPS-RPE and hESC-RPE cell suspension

The iPS cell line generated from healthy adult fibroblast cells

and differentiated into RPE cells (frozen passage 2 cells) was

obtained from Dr. Kapil Bharti (National Institute of Health,

Bethesda, MD, USA) [41, 42]. Human embryonic stem cells

(NIH-registered H9 cell line, WiCell Research Institute, Inc.,

Madison, WI, USA) were allowed to spontaneously differen-

tiate into RPE cells. Passage 3 iPSC-RPE and hESC-RPE that

had been cultured in vitronectin-coated culture dishes for

4 weeks were used for subretinal injections. The cells were

dissociated from the culture dishes by TrypLE (Life

Technologies) and suspended in DMEM/F12 medium to a

final concentration of 5 × 107 cells/mL.

Cell suspension injection in RCS rats

Male and female double homozygous (immunodeficient)

RCS rats (P28–P30) were used for iPS-RPE (n = 8) and

hESC-RPE (n = 5) cell suspension injection experiments.

Immunodeficient RCS rats (no surgery, n = 5) and non-

immunodeficient RCS rats (hESC-RPE suspension injection,

n = 5) were used as control groups. The rats were anesthetized

and placed under a surgical microscope, and their pupils were

pharmacologically dilated. A temporal peritomy was made on

the left eye, and the superior and lateral recti were isolated. A

4–0 silk suture was passed under these two muscles and used

to mechanically hold the eye in the desired position. A 27-

Table 1 The primers used for

genotyping RCS and nude genes Genes Allele Primers

Mertk (RCS) Mutant Forward: 5′-TGG GAC TAG CCT CAG TTC AC-3′

Reverse: 5′-CAC TCT CTG GTA GCC ATT G-3′

Wild type Forward: 5′-ATC ACATCC AGC ACA CAC AG-3′

Reverse: 5′-CAC TCT CTG GTA GCC ATT G-3′

Foxn1 (nude) Mutant and wild type Forward: 5′-CACCAGCAGCCATTGTTGTCA-3′

Reverse: 5′-CATGGTCCTGGCTGAGGAAG-3′
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gauge needle was used to make a scleral incision of approxi-

mately 1.2 mm, approximately 1.5 mm posterior to the limbus

at the temporal equator. An anterior chamber paracentesis was

performed to lower the intraocular pressure. A 32-gauge nee-

dle was then inserted into the subretinal space through the

aforementioned scleral incision. Two microliters of cell mix-

ture containing approximately 105 cells was injected into the

subretinal space. Successful injection created a local retinal

detachment (bleb) that was confirmed during fundus

examination.

Histological assessments

Anesthetized animals were euthanized with intracardiac injec-

tion of 0.5 mL pentobarbital sodium 390 mg and phenytoin

sodium 50 mg (Euthasol; Virbac AH, Inc., Fort Worth, TX).

Both right and left eyes were enucleated and fixed using

Davidson’s solution for at least 18 h before embedded in par-

affin. Microtome sections (5 μm thickness) passing through the

center of optic nerve were stained using hematoxylin and eosin

(H&E), and adjacent slides were used for immunostaining.

TRA-1-85 (human-specific marker), RPE65 (RPE-specific

marker), CD68 (macrophage-specific marker), and GFAP (glial

cell-specific marker) primary antibodies were used for immu-

nofluorescence assays. H&E-stained retinal sections were im-

aged with an Aperio ScanScope, and immunofluorescent-

stained sections were imaged using a digital microscope BZ-

X700 E (Keyence America, IL, USA).

Statistics

Statistical comparisons were made using Graphpad Prism

software (Graphpad Software Inc., La Jolla, CA). Paired t test

was used for analyzing the OKN data. Rest of the data was

analyzed using Student’s t test or analysis of variance

(ANOVA) followed by appropriate post hoc test. For all com-

parisons, the significance level was determined at p < 0.05.

Age-matched normal pigmented athymic nude rats were used

as controls for all experiments.

Results

Breeding of immunodeficient RCS rats

Successful crossbreeding between dystrophic RCS rats and

immunodeficient athymic nude rats (Fig. 1) was possible as

evidenced by normal litter size (6–13 pups per litter), pup

survival, and age of weaning. Immunodeficient pups (pheno-

typically discernable based on hair loss) were smaller in body

size compared to their non-immunodeficient counterparts.

Based on genotypic (Fig. 2) and phenotypic characteristics,

the double homozygotes were identified from the F2 progeny.

Based on this, 6% of the F2 pups (11/172) homozygous for

RCS-p+ gene also showed phenotypic features of nude rats

(hairlessness) and hence considered as double homozygous

(immunodeficient RCS rats).

Dystrophic characteristics of immunodeficient RCS
rats based on histological analysis

In RCS rats, retinal degeneration starts early in life and pro-

gresses quickly. In the new double homozygous RCS model

(RCS-p+ gene and features of nude rats confirmed), signs of

photoreceptor loss were observed at the age of P28 (Fig. 3b).

Only 2–3 layers of outer nuclei were present at the age of

2 months (Fig. 3c). More or less complete loss of photorecep-

tors was observed after the age of 4 months (Fig. 3d).

Progressive loss of retinal thickness
in immunodeficient RCS rats demonstrated by OCT
imaging

OCT imaging was performed in dystrophic (RCS) immuno-

deficient rats at various postnatal time points. At the age of

1 month (Fig. 4b), the retinal thickness was comparable to that

of age-matched non-dystrophic immunodeficient rats (non-

dystrophic athymic nude rat, Fig. 4a). Considerable loss of

retinal thickness was observed in these rats when assessed at

the age of 2 months (Fig. 4c). Progressive loss of retinal thick-

ness was observed in immunodeficient RCS rats tested during

the subsequent time points (Fig. 4d–f). Quantitative measure-

ment of retinal thickness made using cross-sectional OCT

images also showed significant loss of retinal thickness in 3-

month-old immunodeficient RCS rats compared to non-

dystrophic immunodeficient (athymic nude) rats (p < 0.001,

Fig. 5). The above observations are consistent with the pattern

of retinal dystrophy observed in non-immunodeficient RCS

rats [43, 44].

Visual functional loss in double homozygous rats
demonstrated by optokinetic testing

The visual functional deficit in RCS nude rats was

shown by severe loss of OKN visual acuity (Fig. 6).

Although OKN visual activity initially (up to postnatal,

P45) remained close to the level of normal rats, signif-

icant decrease in visual function was observed after

P60. No apparent OKN visual behavioral activity was

noticed after the age of 6 months.

Electroretinography testing in immunodeficient RCS
rats showed progressive loss of retinal function

Electroretinography (ERG) recording was conducted in im-

munodeficient RCS rats once a month. The immunodeficient

Graefes Arch Clin Exp Ophthalmol



Fig. 2 Genotyping RCS alleles on RCS/rnu rats by PCR. a Awild-type

(WT) allele PCR. b A mutant allele PCR. Genotype is determined by the

combination of both figures: homozygous = 700 bp product on mutant

allele PCR, no amplification on WT allele PCR; heterozygous = 700 bp

product on mutant allele PCR and 556 bp product on WT allele PCR.

Lanes 1, 2, 5, 7, 8, and 9: homozygous; Lanes 3, 4, and 10: heterozygous.

Fig. 1 Breeding scheme employed to generate immunodeficient RCS

rats. Initial mating experiments were conducted using male athymic

nude rats (Hsd:RH-Foxn1mu) and female dystrophic RCS rats (RCS-p+

strain, Mat LaVail, UCSF) to generate F1 pups. The F1 rats were crossed

to generate F2 litters. Pups that are double homozygous (homozygous for

RPE dysfunction disease and immunodeficiency) were identified from

the F2 generation based on phenotypic and genotypic characteristics

Graefes Arch Clin Exp Ophthalmol



RCS rats showed considerably low scotopic and photopic A-

and B-wave amplitudes. The scotopic A-wave and B-wave

and photopic B-wave amplitudes were significantly decreased

as the rats aged and reached baseline level by 3 to 4 months of

age (Fig. 7). The size of photopic A-wave was too small to

demonstrate a clear trend.

Fig. 3 Photoreceptor degeneration in immunodeficient RCS rats

evaluated based on histological examination. Histological assessment of

the tissue samples performed at postnatal age of P28 (b), 2.5 months (c),

and 5 months (d). Histology of an age-matched (5 months old) non-

dystrophic immunodeficient rat (control rat) is also shown in (a) for

comparison

Fig. 4 OCT vertical scan images showing loss of retinal thickness in

immunodeficient RCS rats. Image of dystrophic immunodeficient RCS

rats at postnatal age of 1 month (b) showed retinal thickness comparable

to that of non-dystrophic immunodeficient rat (athymic nude rat) (a). Loss

of retinal thickness was apparent in immunodeficient RCS rats beginning

2 months of age (c) that consistently progressed when tested at later time

points: 3.5 months (d), 5 months (e), and 7.5 months (f)

Graefes Arch Clin Exp Ophthalmol



Progressive visual loss in immunodeficient RCS rats
demonstrated by superior colliculus
electrophysiology

Electrophysiological mapping of the SC visual activity dem-

onstrated progressive loss visual function and development of

a scotoma in immunodeficient RCS rats which is typical for its

non-immunodeficient counterparts [43]. SC visual activity

was considerably attenuated at 8 weeks of age. When tested

at P180 (24 weeks of age), the presence of a large scotomawas

apparent in the SC with most of the SC surface devoid of any

light-evoked activity even at high luminescent levels (Fig. 8).

Transplantation studies showed survival
of human-derived grafts in immunodeficient RCS rats

Athymic nude rats generally show only mild immune response

to xenografts because of their absence of T cells and lack of

natural cell-mediated cytotoxicity. To test whether our new rat

model (immunodeficient RCS rats) maintains low immune cell-

mediated reactions, iPS-RPE and hESC-RPE cells were

injected into the subretinal space of double homozygous and

founder RCS rats. Histological evaluation of the implanted eyes

showed that human-derived iPS-RPE cells well survived in the

subretinal space of immunodeficient RCS at 6-month post-in-

jection and were expected to survive longer (Figs. 9 and 10). At

1 month time point, the injected hESC-RPE cells showed good

survival in the eyes of both immunodeficient and non-

immunodeficient strains. In these rats, considerably less expres-

sion of CD68, a macrophage marker, and GFAP, a retinal glial

marker, was observed (Fig. 10). The above data suggests lower

immune reaction to xenografts in immunodeficient RCS rats.

At 6 month post-surgery, no major difference in macrophage

(CD68) and retinal glial cells (GFAP)was observed either in the

RPE injection area (Fig. 9) or non-injection sites (data not

shown), compared to non-injected immunodeficient RCS rats.

The expression of immunological markers comparable to the

control group suggests absence of apparent chronic inflamma-

tion induced by xenografts.

Discussion

In the present study, a new immunodeficient RCS rat model was

created. Manifestation of RCS characteristics in this new rat

model is demonstrated based on PCR analysis, visual functional

assessments, and histological evaluation. This study also dem-

onstrated success of xenograft experiments in this new rat model

without administering immunosuppressant drugs.

Immunodeficient RD models are valuable for xenograft experi-

ments since most of the preclinical investigational new drug

(IND) studies based on cell replacement therapies require exper-

iments conducted using both immunodeficient models and dis-

easemodels. In the absence of such double homozygousmodels,

non-immunodeficient animals are subjected to severe immuno-

suppression regimes to avoid graft rejection. For example, our

preclinical studies of hESC-RPE implantation-utilized dystro-

phic RCS rats subjected to systemic administration of dexameth-

asone and cyclosporine [45]. Other investigators also employed

a similar approach in several previous studies [46–54].

The athymic nude rat (Foxn1rnu/rnu) is a popular model to

test xenografts derived from human tissue [47, 55–58].

However, since it has a normal retina, it is difficult to evaluate

the visual functional benefits of the transplants. The RCS rat

which is an RPE dysfunction model has been widely used for

assessing cell-based therapies, especially in RPE replacement

studies [15, 19, 59]. In these studies, the animals were immu-

nosuppressed using drugs to minimize the tissue rejection and

Fig. 6 OKN testing to assess visual functional changes in

immunodeficient RCS rats. Visual behavioral assessment based on

optokinetic (OKN) testing was performed in dystrophic immunodeficient

RCS rats and age-matched non-dystrophic immunodeficient rats at vari-

ous postnatal (P) time points. After the age of P60, visual acuity decreased

considerably in immunodeficient RCS rats, whereas no differences were

observed in the control group

Fig. 5 Retinal thickness measurements using OCT vertical scan images.

Significant loss of retinal thickness (p < 0.001, Student t test, mean ± SEM,

n = 6) was observed in immunodeficient RCS rats compared to age-

matched non-dystrophic athymic nude rats assessed at the age of 3 months
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to enable faithful assessment of the transplant effects [15, 32,

60, 61]. Based on the studies conducted in our laboratory,

administration of immunosuppressants is labor intensive and

may cause additional pain and discomfort to the animals.

Administration of immunosuppressant may negatively influ-

ence the health of the recipient, especially with long-term use

[62, 63]. In a recent investigation, standard regimen of

cyclosporine A plus dexamethasone was administered to

RCS rats that caused systemic side effects and depressed

scores on behavioral and electrophysiological testing [33].

In the present investigation, we were able to confirm the

dystrophic features of the new rat model based on genotyping

of the MerTK gene. Expression of disease condition was con-

firmed by histological and visual functional tests. To produce

Fig. 8 Superior colliculus (SC) electrophysiology to assess visual func-

tional changes in higher visual areas. Diagrammatic representation of

luminance threshold map of the SC in immunodeficient dystrophic

RCS rats. The responses were recorded at different light level stimulation

(0.6 to 5.4 log cd/m2) from the age of postnatal (P) 2 to 6month. aNormal

(non-dystrophic) athymic nude rat at P90. b Immunodeficient dystrophic

RCS rat P60. c Immunodeficient dystrophic RCS rat P90. d

Immunodeficient dystrophic RCS rat P120. e Immunodeficient dystro-

phic RCS rat P150. f Immunodeficient dystrophic RCS rat P180.

Different colors represent areas responding at different light intensity

stimuli. Black area means light responses absent. Representative traces

are from a 2-month-old immunodeficient dystrophic RCS rat

Fig. 7 ERG assessments in

immunodeficient RCS rats.

Electroretinography recording in

RCS nude rats at various

postnatal time points. Scotopic A-

and B-waves (a) and photopic A-

and B-waves (b) were conducted

with flash stimuli intensities at

25 cd/m2. Progressive decrease of

A-wave and B-wave responses

was observed in immunodeficient

RCS rats. Mean ± SEM, n = 13
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immunodeficient RCS pups, double homozygous males

were used for breeding, but the females used were het-

erozygous for immunodeficiency and homozygous for

the RCS mutation. Females heterozygous for immuno-

deficiency was chosen since their homozygous counter-

parts are known to be incapable of raising pups. As

expected, approximately 50% of the progeny were dou-

ble homozygous (immunodeficient RCS), whereas the

other 50% of the pups were non-immunodeficient (het-

erozygous for immunodeficiency) but homozygous for

RCS mutation. Since the immunodeficient status of the

animals was easily discernible based on phenotypic ex-

pression (hair loss), no separate genotypic tests were

conducted for assessing their immunodeficiency status.

The dystrophic status of the double homozygous (immu-

nodeficient and dystrophic) rats was established based onmul-

tiple test modalities. Histological assessments showed that the

progression of the RD condition in this new model is compa-

rable to their non-immunodeficient counterparts. The above

disease features further confirmed by OCT imaging are in

agreement with previous investigations conducted in non-

immunodeficient dystrophic RCS rats [26–30].

Fig. 9 Xenograft studies in immunodeficient RCS rats using iPS-RPE

suspension injection. H&E and immunofluorescent-stained images dem-

onstrate the long-term survival of implanted human cells and no increased

immune reaction against implanted cells. The images show no difference

in the expression of CD68 (macrophages) and GFAP (glial cells) in xe-

nograft retinas compared to the non-implanted control retinas. Presence

of the human-derived RPE cells (TRA-185) was observed in the

subretinal space at 6 months post-surgery. a CD68, control; b GFAP,

control; c CD68, cell implanted; d GFAP, cell implanted; e H&E, cell

implanted; f TRA-1-85 (human marker), cell implanted. White triangles:

implanted human RPE cells
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For visual functional assessment, we used behavioral and

electrophysiological means. The OKN visual assessment dem-

onstrated visual functional loss in the double homozygous indi-

viduals as observed in non-immunodeficient dystrophic RCS

rats [45]. Consistent with the histology data, ERG testing (sco-

topic and photopic) also demonstrated progressive attenuation of

retinal visual activity that became almost undetectable by the age

of 4 months. The above pattern of visual function loss is com-

parable to the previous observations in non-immunodeficient

RCS rats [64–66]. Electrophysiological mapping of the SC also

revealed loss of visual function as reported in earlier investiga-

tions using non-immunodeficient RCS rats [43, 44, 67].

Most of the investigations involving stem cell-derived thera-

peutics require testing of the final product in immunodeficient

animals to rule out the possibility of tumorigenicity. In our pre-

vious investigation, hESC-RPE implants were tested for tumor-

igenicity using athymic nude rats. This study established absence

of tumor formation and immune rejection by hESC-RPE im-

plants [16]. Our new animal model was also tested for immuno-

logical reactions by transplanting human-derived cells (iPS-RPE

and hESC-RPE). Our studies demonstrated high survival of xe-

nografts in this new RDmodel in the absence of external immu-

nosuppressant agents. The surviving cells expressed RPE

markers and human markers as reported in our previous

Fig. 10 Comparison of immunological reactions in immunodeficient

RCS rats and founder RCS rats following hESC-RPE cell suspension

injection. H&E staining and TRA-185 staining demonstrated presence

of hESC-RPE cells in both immunodeficient RCS retinas and non-

immunodeficient RCS retinas at 1 month after hESC-RPE cell suspension

injection. Lesser expression of CD68 (macrophages) and GFAP (glial

cells) was observed in immunodeficient RCS retinas compared to the

non-immunodeficient strain. a, b Immunodeficent RCS rats. c, d Non-

immunodeficient founder strain. e H&E cell implanted, f TRA-1-85 (hu-

man marker) cell implanted. White triangles: implanted hESC-RPE cells

Graefes Arch Clin Exp Ophthalmol



investigationswhere systemic administration of immunosuppres-

sant was employed [45]. Further, less immunological reaction

(based on CD 68 and GFAP expression) was observed in immu-

nodeficient strains compared to their non-immunodeficient coun-

terparts. It is possible that survival of the transplant may not

always be indicative of visual functional improvements as evi-

denced by CNT treatment studies where photoreceptor preserva-

tion was observed but visual function was not improved accord-

ingly [68]. The focus of our next study will be to assess how the

functionality of the transplanted human-derived RPE cells is af-

fected in this new animal model.

In conclusion, our new rat model showing dystrophic

features of RCS rats and immunodeficiency status of

athymic nude rats is useful for studying the survival

and functionality of human-derived cells. Importantly,

this new model provides a desirable RD rat model to

conduct cell transplantation experiments without involv-

ing the adverse effects of immunosuppression. By using

this model, it is possible to reduce the total animal

number and number of study groups leading to faster

completion of research projects. Based on this, IND-

enabling preclinical studies can be much faster and

cost-effective, and ethical concerns related to the use

of laboratory animals can be considerably reduced.
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