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Abstract

gro is a cell programming language developed in Klavins Lab for simulating colony

growth and cell-cell communication. It is used as a synthetic biology prototyping tool

for simulating multicellular biocircuits. In this work, we present several extensions

made to gro that improve the performance of the simulator, make it easier to use and

provide new functionalities. The new version of gro is between one and two orders

of magnitude faster than the original version. It is able to grow microbial colonies

with up to 105 cells in less than 20 minutes. A new library, CellEngine, accelerates

the resolution of spatial physical interactions between growing and dividing cells by

implementing a new shoving algorithm. A genetic library, CellPro, based on Proba-

bilistic Timed Automata, simulates gene expression dynamics using simplified and easy

to compute digital proteins. We also propose a more convenient language specifica-

tion layer, ProSpec, based on the idea that proteins drive cell behavior. CellNutrient,

another library, implements Monod-based growth and nutrient uptake functionalities.

The intercellular signaling management was improved and extended in a library called

CellSignals. Finally, bacterial conjugation, another local cell-cell communication pro-

cess, was added to the simulator. To show the versatility and potential outreach of this

version of gro, we provide studies and novel examples ranging from synthetic biology

to evolutionary microbiology. We believe that the upgrades implemented for gro have

made it into a powerful and fast prototyping tool capable of simulating a large variety

of systems and synthetic biology designs.
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Synthetic biologists need new computational bioCAD tools to assist them during the
design and engineering of new biocircuits. Genetic circuit engineering is moving from single
cell devices towards multicellular biocircuits.1 Ordinary Differential Equations and Gillespie
algorithms are useful tools but mainly for intracellular calculations.2,3 Computational tools
are needed to rapidly predict the dynamical behavior of programmed multicellular microbial
communities.

Partial differential equations and individual-based models (IbMs)4,5 are the most com-
monly used models to study cell colonies behavior. Partial differential equations aim to reveal
the general dynamics of a population as a whole following global equations.6 Alternatively,
IbMs derive the global dynamics of the population from local interactions rules described for
every single individual (i.e., cell). The behavior of the population then emerges as a result
of the interaction between these individuals. IbMs are better suited for simulating multicel-
lular systems such as cell colonies or tissues4 as more complex behaviors can be achieved.
Because of that, several IbM simulators for cell colonies have been developed. These simu-
lators range from general-purpose and computer-consuming frameworks like CellModeller,7

IDynoMiCS,8 Biocellion,9 CeCe10 or gro,11 to more focalized representations oriented to-
wards studying specific aspects of colonies, such as BSim,12 BactoSim,13 an IPS by Krone
et al.,14 COMETS15 or DiSCUS.16 Other solutions include programming frameworks for
constructing IbM simulators like REPAST,17 FLAME,18 Netlogo19 and Mason.20

We have chosen gro11,21 as a base platform to extend because of its flexible architecture
and open-source nature. It is a 2D simulator that reproduces microcolony growth within a
simple graphical interface, which is ideal for visualizing spatial arrangements. Cell behavior
specifications are implemented through its own flexible functional programming language.
gro was used for simulating synthetic collective intelligence22 and studying synthetic bac-
terial architectures using morphogenetic engineering.23 gro has also been used at the 2016
iGem by the award-winning Imperial College team to simulate multicellular behavior of RNA
circuits in their ecolibrium project.

Despite being a solid simulation platform, we identified some shortcomings of gro as a
prototyping tool:

• The algorithm for handling cell mechanics in the colony is too costly and limits the
number of cells that can be simulated: at about 3000 cells, the simulator’s execution
speed greatly slows down.

• Specifying genetic circuits in gro requires the abstraction of its components to align
with gro’s functional programming language.

Accelerating and enriching gro would make it an an excellent tool for executing multicell
modeling and simulations. This was our motivation for improving gro and adding the new
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functionalities described in this paper. The flexible architecture of gro allows for features to
be coupled easily. We have tackled the presented limitations through the following improve-
ments: We constructed and integrated a new physics engine, CellEngine. It was developed to
improve the performance of simulations involving a large number of cells (in the order of 105

cells) through the use of a new algorithm. We developed a Probabilistic Timed Automata
based library, CellPro, that encapsulates and simulates gene expression with simplified and
easy to compute digital (bearing values of 0 or 1) proteins with a noisy behavior based on
probabilities. We also built a new specification language layer, ProSpec, to define genetic
circuits in terms of digital proteins. ProSpec also handles cell behavior by evaluating logical
conditions in terms of digital protein values.

In addition, we have implemented a set of other features to further improve the simulator.
First, we implemented a new library called CellNutrient that handles nutrient uptake and its
influence on growth. We also built a new library that extends intercellular and environmen-
tal signaling capabilities called CellSignals. Finally, we added another form of intercellular
communication: bacterial conjugation.

Our new version of gro can simulate larger bacterial colonies in a shorter time than the
original version of the simulator (see Figure 1). Starting from a single bacterium, colonies
of 105 simulated bacteria are now reached in around 20 minutes in a standard computer
(see Figure S2). The original version of gro reaches about 5000 bacteria in the same time.
For the original version to simulate 105 bacteria, it would require over five days of compu-
tation.24 The improved gro also proved to be faster than other powerful simulators such as
CellModeller7 by about an order of magnitude (see Figure S2).

Each of the extensions will be described in detail throughout the course of this paper.
We complement the description of our extensions by presenting some relevant case studies
and synthetic circuit examples to illustrate the new functionalities of the new version of gro.

Results and discussion

gro was originally conceived as a simulator that relies on three major components:

1. Chipmunk25 , an open-source physics engine that handles the mechanics of how bacteria
are placed and move in the environment when they grow and divide.

2. CCL,26 a guarded command based language for programming and modeling control
systems. This language is used to specify cell behavior and control the environment in
which colonies grow.

3. gro, the biological backbone of the simulator. Cell dynamics and behavior are imple-
mented in this subsystem.

The goal of this work is to extend the capabilities of gro for it to be a more realistic and
complete tool for the simulation of synthetic microbial systems. The results are presented
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Figure 1: Visual performance comparison of the original gro and our extended version. The
new version of gro simulates larger bacterial colonies. We compared the execution speed and
size of the colonies for the simulation of an arabinose reporting circuit. a) Genetic circuit.
When arabinose is present in the environment and sensed by the circuit, it is reported
by GFP. b) A radial gradient of arabinose serves as the spatial cue for expressing GFP.
Therefore, the expression of GFP is expected to be located at the center of the colony. c)
The original version of gro is able to simulate a colony of about 104 cells carrying and
executing this circuit in an hour. d) Our version reaches over ten times more cells in the
same time. The 104 bacteria simulated by the original gro are reached by our version in a
little over 5 minutes.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2017. ; https://doi.org/10.1101/097444doi: bioRxiv preprint 

https://doi.org/10.1101/097444
http://creativecommons.org/licenses/by-nc-nd/4.0/


as either brand-new components, extensions or replacements for the components of the orig-
inal version of the simulator. These improvements allow for new simulations that were not
previously feasible, or required complicated programming to be executed.

Most of the presented extensions (CellEngine, CellPro, CellNutrient and CellSignals)
are provided as standalone external libraries that couple with gro. CellEngine acts as a
replacement for Chipmunk, while the rest of the libraries add new features. It should be
noted that all these standalone libraries can be used by any other software. The protein
oriented specification language ProSpec was built as an extension to the CCL language.
Finally, the conjugation method was implemented as a property of plasmids triggered by
proteins. All these extensions integrate into the main workflow of gro as shown in Figure 2.

i. Nutrient Uptake and molecule diffusion 

[CellNutrient] and [CellSignals]

ii. Update cell state

for each cell:

a) Increase volume according to 

nutrient uptake 

b) Check for conditions of protein 

expression /degradation [CellPro]

c) Execute actions of proteins : 

Conjugate, Die, Glow… 
d) Check for divisions and create 

daughter cells if necessary

iii. Apply shoving algorithm [CellEngine]

iv. Remove dead cells

t 
=

 t
+
Δt

Figure 2: New gro execution workflow. This workflow summarizes the update steps that
the simulator applies to each cell in the colony and the environment at each time step. Each
new task is mostly executed by a single library: Cell mechanical interaction - CellEngine,
Nutrient uptake - CellNutrient, Gene expression and cell behavior - CellPro, Environmental
and intercellular signals - CellSignals.

CellEngine

We implemented a physics engine, called CellEngine, in C. It is focused on the fast simulation
of growing bacterial colonies. Physics computation has been optimized for rigid rod-shaped
bodies, like e. coli bacteria, in 2D non-inertial systems. Using our new algorithm explained
below, a speedup of two orders of magnitude was achieved when compared to the original
version of the software.

In a bacterial colony, each cell grows a certain percentage of its size during each time
interval. In a physics engine, this small size increment generates an overlap among the bod-
ies, which are the physical representation of cells. The basic workflow to resolve the overlap
consists of two stages:27 collision detection and collision response. The collision detection
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stage28 identifies overlaps among bacteria and stores contacts with information about the
collision, such as the contact point, magnitude and direction. Then, collision response29

performs the physical arrangement of the bodies (i.e., cells). In our case, rigid-body dynam-
ics are used for the computation of linear and angular displacement of the bodies (Figure S3).

Typically, after contact resolution and due to bacteria packaging and lack of free space,
the collision response stage generates other contacts, which must in turn, get resolved. There-
fore, contacts are resolved through an iterative method that finally displaces the overlap
outwards of the colony. This type of problem belongs to the many-body problem,30 whose
direct methods are computed in O(N2), being N the number of bodies involved. The solu-
tion proposed by the original gro belongs to this computational complexity order. In our
case of study, the population grows exponentially, causing simulations to quickly become too
computationally costly. The proposed solution presents a novel method able to compute an
accurate approximation in O(N) for the same problem.

The reduction in computational complexity is based on two fundamental assumptions:
First, the location and angular orientation of a bacterium depend mostly on the neighboring
bacteria. Second, colonies tend to grow outwards radially.

Within the scope of these two assumptions, we approximate the solution to this problem
by identifying two types of forces exerted for any given bacterium (see Figure 3a):

1. Local forces, exerted by nearby bacteria within a distance k, that dictate the degree of
precision for the movement and rotation of the current bacterium.

2. A global force that pushes the bacterium outwards of the colony. This force depends on
the number of bacteria between the current bacterium and the location of the center
of the colony.

The proposed approximation is based on the splitting of the colony into concentric rings
of one bacterium width. The rings are grouped into sets of width w rings that represent the
radius k of the local force action, while the global force will be exerted by the bacteria from
the inner rings (see Figure 3a). The algorithm transforms the colony into concentric annular
sub-colonies of width w bodies. When the colony increases in population, the number of
rings increases, but the width of every subset, w, will remain constant leading to a O(N)
global solution. Algorithm 1 describes the transfer of overlap in the colony outwards using
the rings as guides. It is executed at each time step and has two main stages: Ring tagging
and expansion.

The ring tagging stage of the algorithm assigns each bacterium of the colony to a ring
(see Figure 3b). It starts from the edge towards the center of the colony. Ring tagging is
composed of two phases: edge detection (Algorithm S1) and ring assignment (Algorithm S2).

The second stage of the algorithm is the expansion stage (see Figure 4). It involves the
grouping of rings and seeks to relax pressure in the colony. It takes place in an outward
manner (from the center of the colony towards the edge) and is composed of two phases:
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relaxation (Algorithm S3) and relocation (Algorithm S4). The expansion stage selects a set
of w rings to be grouped and upon which the relaxation phase will be applied. The relax-
ation phase solves overlap within the set of w grouped rings. For each set, bacteria inwards
of the set are assumed to have infinite mass, and bacteria outwards of the set are assumed
to be non-existent. Taking these constraints into account, a cycle of collision detection and
collision response is executed to relieve the pressure of the set. This phase generates over-
laps with bacteria in the outward group. To resolve this new overlap, a relocation phase is
entered. In this phase, the outer overlapping ring is moved outwards preserving the contact
points and relative positions with its neighbors.

a. b.

R0
R1

R2
R3

R4
R5

R6
R5

R4
R3

R2
R1

R0

F
R

k

Figure 3: a) Representation of the proposed approximation of colony expansion. The com-
puted forces over each individual bacterium are divided into two types. Local forces are
generated by the nearby bacteria that exert pressure when growing. Local forces are com-
puted only from pressure coming from bacteria that lie within a distance k (yellow region).

There is also a global force, ~FR that is exerted radially from the center of the colony. It is a
force proportional to the number of cells inwards of the red bacterium (green region). This
thrust drives the red bacterium and relocates it at a distance proportional to the module of
~FR. If k is kept constant throughout the simulation, the calculation of force and position
for each cell is made independent of the colony size, achieving an O(N) solution. b) Visu-
alization of the ring assignation. Each ring has a width size of a single bacterium. Rings
are identifiers of equal pressure bacteria that adapt dynamically as the colony grows. Outer
rings experience less pressure than inner rings. The highest pressure of the colony is located
in the center ring. Rings act as guides to apply the expansion algorithm.
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Input : All bodies B, width w of grouped rings.
Output: All bodies B with resolved overlap.
begin

/* RING TAGGING (from the edge to the center) */

E := edge detection(B);
/* R represents the set of rings and |R| its size */

R := ring assignment(E);

/* EXPANSION (from the center to the edge) */

for i := |R|− 1 to w do

S := bodies from ring Ri to Ri−w+1, both included;
relaxation phase(S);
relocation phase(Ri−w);

end

end

Algorithm 1: Top-level CellEngine algorithm. It involves two stages: ring tagging
and expansion. In the ring tagging stage, each body is assigned to a ring, starting from
the edge towards the center of the colony. In the expansion stage, the selection of each
group S (formed by w contiguous rings) will shift outwards one ring at a time after
each iteration of the relaxation/relocation phases (see Figure 4). This happens until the
selected ring group S reaches the colony edge. The relaxation phase solves the contacts
generated by bacterial growth by applying rigid-body dynamics. The relocation phase
displaces the next outer ring from the current set. The native algorithm implemented
in gro (using Chipmunk) applies the relaxation process to the whole colony, whereas in
CellEngine, the relaxation phase is applied separately into grouped ring sets of width
w.

We contrasted the performance and quality of CellEngine with the original algorithm of
gro (using Chipmunk). Cross validation showed that no significant differences are observed
in terms of quality when using the proposed algorithm (see Figure S1). Still, CellEngine is
able to simulate a hundred times more bacteria for the same computation time.

CellPro

The original version of gro defines a functional, rule-based programming language for spec-
ifying bacterial and environment behaviors. Rules are codified as guarded commands G : C
in which the block of instructions C is only executed if the guard G is satisfied. The abstrac-
tion of cell behavior into a rule-based paradigm involves, first, the translation of all elements
into variables. Then, it is necessary to describe the relation among these variables in terms
of rules. These rules will ultimately update the values of the variables, implementing the
specific behavior of the cell. This programming paradigm allows for a broad range of sim-
ulations to be implemented, since any level of abstraction may be reached. For instance,
a cell response to a given signal can be directly programmed on a high level abstraction,
or it may be reached through the specific simulation of a genetic network whose product is
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signal-sensitive.

Relaxation: Relocation:

Expansion of the next set of w rings

Ring set selection:

Figure 4: Depiction of the expansion stage. Expansion is performed by, first, relaxing the
bodies belonging to the set of blue rings and, later, by relocating bodies belonging to the
green ring. The colony on the left shows the organization of bodies before the expansion is
performed. At this phase, a set of rings is selected for relaxation and relocation phases. In the
central image, the relaxation phase of blue bodies is performed. In this phase, overlaps among
blue cells are resolved. Gray cells, inwards of the blue ones, are assumed to have infinite
mass. Orange zooms show the overlap resolution at blue-blue (same ring set) and gray-blue
(with the inner ring) interfaces performed by the relaxation phase. As a consequence of
relaxation, blue bodies dramatically overlap with the outer ring bodies in green. During
the relocation phase (right) the green ring bodies are directly re-positioned to maintain the
relative position they had with respect to their neighbors before the expansion phase. Yellow
zooms shows how the green-blue interface remains invariant thanks to the relocation phase.
The whole process is repeated over all subsets of w rings in an outwards manner.

This freedom of choice and apparent simplicity of the rule-based programming implies a
rigorous and case-sensitive analysis for every change in the design of the simulation. This is
one of the largest drawbacks for the average use of gro, as it scales poorly. Our proposed
motivation is to shift towards a more constrained representation in which behavior of the
cells emerges from the interactions occurring at the genetic level. Although this alternative
is not as open as the original approach, it fits better with how cells interpret environmental
and genetic information. Under this paradigm, genetic circuits are defined in terms of inter-
actions among proteins. Specifically, our hypothesis is that bacterial behavior is driven by
protein expression levels. Therefore, cell reaction to its environment is given by cell protein
levels.
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We have developed a library, CellPro, that simulates gene expression dynamics using
digital proteins. Proteins are digital entities with two possible states. When the protein is
produced, its value is set to true, and when the protein is degraded or is otherwise absent,
its value is set to false. Protein state values are unequivocally defined by the evaluation
of the promoter that regulates the protein-associated gene. Promoters are represented as
Boolean functions (YES, NOT, AND, OR) and their evaluation is given by the state of the
transcription factors regulating them.

Suppose a promoter Prom regulates a gene Gi whose expression output is protein Pi. If
promoter Prom is ON for more than tact minutes, then the expression value of protein Pi

goes from 0 to 1. Alternatively, if promoter Prom is OFF for more than tdeg minutes, then
the value associated to the expression of protein Pi goes from 1 to 0. tact and tdeg are two
characteristic mean times associated to each protein. They follow a normal distribution that
captures the cell to cell variability.

CellPro is formed by an interconnected set of binary asymmetric noisy channels31 where
each channel represents a protein. The asymmetric noise behavior of every channel (i.e.,
protein) is given by the two probabilities p(0|1) and p(1|0) of misevaluation associated to
each promoter. This can be seen as a mutation or an anomaly in the promoter that makes
it insensitive to its transcription factor.

The reader can relate the model here presented to a Probabilistic Timed Automata
(PTA).32,33 For each time step during the simulation, every bacterium has an associated
state given by the set of all of its protein expression values. Figure 5 shows the representa-
tion of a GFP reporter protein induced by araC in terms of our proposed PTA.

The entities represented in CellPro are organized hierarchically. Proteins are the fun-
damental logic unit. Above them, Operons cluster a set of Proteins under the control of a
single promoter. Finally, Operons might be distributed in Plasmids, which are at the top
of the hierarchy. This hierarchy must be taken into account when a genetic circuit is being
specified (see Figure S4).

ProSpec

As a support for CellPro we have built a new specification language layer: ProSpec. The
philosophy behind CellPro and the protein-oriented specification ProSpec is to implement
simulations in a way that is easily translatable from a genetic circuit description. Prototyping
a circuit as directly as possible helps quickly tinker with and test designs that come from
the lab and vice versa (i.e., implement the design with fewer abstraction barriers in the lab).
Defining an experiment using ProSpec can be broken down into four parts:

1. Library inclusion, parameter setting and definition of global variables and values.

2. Genetic entities from CellPro and their interactions. Proteins, Operons and Plasmids
are defined in this part.
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Figure 5: Probabilistic Timed Automata model and simulation data for a YES(araC) gate.
a) The output of the circuit (i.e.,GFP) is triggered by the value of araC. For the sake of
simplicity, we assume arabinose to be always present in the environment. b) The dynamics
of the circuit, when no noise or delays are present, is represented in the form of an automaton
where the state is given by the value of araC in the system. c) A detailed version of the
dynamics is modeled by a PTA. The delays for transitions between states are dictated by
tact, tdegr and their associated variabilities. Also, noisy behavior can lock the system in the
state to where it transitions. Black edges correspond to the transitions shown in subfigure
b, while light gray edges are transitions stemming from noise in the system. Both kinds of
transitions occur with a certain probability. d) Depiction of the circuit running in a single
cell with no noise. tact and tdeg direct the behavior of the system. e) The circuit running in
a colony is shown in different scenarios: i) No variability in the activation time of GFP (20
minutes) and no noise. ii) Variability of 10 minutes in the activation time of GFP and no
noise. iii) No variability in the activation time of GFP and an activation noise probability
(i.e., p[GFP=0|araC=1]) of 0.5 after 100’.
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3. Actions associated to the protein state. Actions are hard-coded functions that execute
a specific function of the cell. The presence or absence of a protein (or of several of
them) triggers specific actions that direct cell behavior. Examples of these actions are
shown in Table 1.

4. Top level programs (main function and other functions) and global control.

Parts one and four have not changed from the original gro specification language. However,
in part one, we have extended the set of parameters that correspond to the new libraries:
CellNutrient and CellSignals. These parameters and their definition are shown in Table S1.

Simulation data can be collected at two different levels: single cell data or aggregated
colony data. Functions for collecting data in .csv file format were implemented for both
scenarios. In the single cell case, the physical features of the cell and its protein state
are recorded at each time step of the simulation. For colony-level data collection, logical
conditions depending on protein expression values are stated and evaluated on the colony.
Cell counts satisfying these conditions are then dumped into the output file at each time step.

Figure S4 shows a comparison between guarded commands and a ProSpec specification for
the simple system presented in Figure 5. Both specifications are equivalent. The guarded
command based specification provides a flexible framework for describing an experiment.
However, it needs to explicitly handle many aspects of the simulation such as clock update,
protein value control and delay calculations. This solution scales poorly for more complex
circuits as all of the elements for the simulation must be manually controlled. CellPro and
ProSpec encapsulate many of these tasks, and require that the programmer only input core
parameters to define the behavior of the genetic circuit. The dynamics of the circuit is then
automatically run.

Clauses of our specification language layer may be used in conjunction with the guarded
commands of the original gro language and do not invalidate them, but on the contrary, are
complementary.

Other libraries: CellNutrient, CellSignals and Bacterial Conjuga-

tion

CellNutrient

gro imposes an exponential growth for each bacterium described by Eq. 1:

dV

dt
= kV (1)

where V is the volume of the bacterium and k is the growth rate of the bacterium, which
was a constant parameter in the original version of gro. However, in a petri dish, the growth
rate of a given bacterium can be modulated by external factors such as nutrient availability,
waste accumulation or even pressure.34,35
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Table 1: Description of actions performed by cells in our version of gro

Action Description Input parameter
Glow Change bacterium color RGB color code

Die Removes cell from the simula-
tion

Growth rate Change growth rate kmax [µm/min]

Conjugate Transfers plasmid to
random neighbor bacterium

� [events/generation time]

Lose plasmid Remove plasmid from cell plasmid id

Entry exclusion Prevents plasmid conjugation plasmid id

Read signal Check signal at cell location signal id

Emit signal Deposit Emax signal
at cell location

signal id,
Emax [molecules/∆t]

Absorb signal Absorbs Amax signal
at cell location

signal id,
Amax [molecules/∆t]

Absorb signal
(Cross-feeding)

Absorbs Amax signal and
modulates growth

signal id,
Amax [molecules/dt],
interaction type: (+, -)

Absorb signal
(Quorum sensing)

Absorbs Amax signal and
acts as a protein for CellPro

signal id,
Amax [molecules/dt],
signal threshold,
protein id
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To simulate a more realistic limitation of growth, we implemented CellNutrient,36 a
library that offers a built-in Monod-based growth dynamics. If used, CellNutrient modulates
the growth rate k as a function of nutrient availability in the vicinity following a Monod
equation37 shown in Eq. 2:

k = kmax

S

+ S
(2)

where kmax represents the maximum growth rate, S is the available nutrients, and  is the
half saturation constant.

The consumption rate of the nutrients, their initial amount and their distribution in the
environment can be set in the library inclusion part of the experiment specification (see Ta-
ble S1). Nutrients are consumed by the cells from a grid that stores the amount of nutrient
at their specific given location (see Algorithm S6). The grid is dynamic in size, extending
its size whenever a bacterium reaches any border of the grid.

A key parameter in the growth dynamics of a single colony is the radial growth. This
is the speed of the front of the colony.38 If growth is unlimited (as it is implemented in the
original version of gro), bacteria within the colony grow and divide continually, leading to
global exponential growth. This unlimited population growth translates to an exponential
radial growth rate. The area of the colony ⇡R2 increases exponentially, therefore the colony
radius R, varying proportionally to the square root of the area, increases exponentially as
well. However, actual agar plate bacteria do not follow this dynamics. When bacteria from
the inner regions of the colony stop growing after some time, the radial growth slows down
and becomes linear for long time periods.39–41 Since only the external bacteria divide, the
expansion is driven solely by the outer ring of non-exhausted bacteria. Using CellNutrient,
we can observe this linear radial growth when the number of bacteria that do not grow is
much larger than the number of bacteria still growing (see Figure S5). Other experimentally
observed colony morphologies42 can also be simulated by tuning the correspondent initial
profile of nutrients in the grid (see Figure S6).

CellSignals

One of gro’s hallmarks is the simulation of environmental signals. Externally inoculated
signals like chemical inducers (such as arabinose, IPTG, or aTc) enable or disable the ex-
pression of proteins. The most frequently studied form of intercellular communication with
signals is quorum sensing (QS).43–45 QS is a mechanism in which cells emit small diffusible
molecules into the environment which are then read by other cells. Through absorption of
the molecules, cells can quantify their density in terms of the concentration of molecules
in the environment. QS has been extensively used in Synthetic Biology for intercellular
communication. Examples of QS-based systems include pattern formation,46,47 population
control,48 bacterial ecology49 and computing logic gates50 among other applications.

Signals in the original version of gro are implemented through a set of grids (one for
each signal) that store the signal concentration at each grid location. At each time step of
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the simulation, diffusion and degradation are applied to update the concentrations of the
signals over the whole grid. One limitation we found with the implementation is that the
grids have a static size. This implies that the programmer must have a good idea of what
size the colony will reach in the simulation, which is not always the case. Another important
shortcoming is that gro uses a finite element model51 for signal diffusion and degradation
with fixed coefficients. Since the user cannot introduce any parameters related to the diffu-
sion method, the variety of experiments that can be specified using signals is limited.

In order to improve the signal implementation, we reorganized the structure, extended
and encapsulated its functionality into a new external library called CellSignals. This library
preserves the signal diffusion and degradation methods used in the original implementation.
It also provides the option of customizing the diffusion method by tuning the coefficients
that govern how the signal expands through the grid. It also provides a dynamic-sized grid
that automatically resizes whenever it is needed (see Algorithm S8).

Along with the extension of CellSignals, we included some signal-related actions (see
Table 1). Absorption of molecules can now trigger the expression of binary proteins or
modulate growth. These dynamics seek to simulate QS and cross-feeding mechanisms re-
spectively. The QS mode of absorption checks for a given amount of signal concentration,
and consumes this signal from the environment. If the amount of absorbed signal is over a
given threshold set by the user, it triggers the expression of a binary protein. This protein
then integrates into the rest of the protein specification handled by CellPro. In the cross-
feeding mode, a given amount of signal is also consumed from the environment. However,
the effect of absorbing the signal in this case affects the growth rate of the bacterium. If the
interaction type is set to positive (+), then bacteria would need to absorb a given amount
of signal to grow normally: The amount of absorbed signal directly modulates the bacterial
growth rate. On the other hand, if the interaction type is set to negative (-), bacteria are still
forced to absorb, but now the signal effect is detrimental, slowing down the growth of the cell.

Bacterial conjugation

Cell-cell communication mechanisms are key in coordinating tasks in bacterial communities.
The two main types of communication methods are bacterial signaling, such as QS, and hor-
izontal gene transfer (HGT). HGT are a class of short-range communication methods that
exchange large amounts of information in the form of DNA to nearby cells.52 One example
of an HGT process is bacterial conjugation.53

IbMs are best suited to simulate communication mechanisms since the transfer of informa-
tion highly depends on the spatial arrangement of the individuals. gro natively implements
intercellular signaling as a communication method. However, no other intercell communi-
cation method is present. Conjugation proves to be a programmable local communication
system for bacteria,16 making it a valuable synthetic tool. Also, the inclusion of conjugation
provides a platform for studying and understanding HGT processes. We are unaware of any
other IbM simulator implementing more than a single intercelluar communication mecha-
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nism to date.

The conjugation method is programmed as an action triggered by the involved proteins.
Its specification is done trough ProSpec (Table 1). When the conjugation action is triggered,
it transfers a plasmid to a random neighbor bacterium at a specified conjugation frequency,
�. The logic for the conjugation algorithm is summarized in Algorithm S7.

In order to complement and add realism to the behavior of conjugation, we added some
plasmid-related actions : plasmid segregation and entry exclusion. A transferred plasmid
may not be able to survive within the receiving cell. It happens mainly because another
plasmid of the same family is already residing in the receiving cell. This mechanism is
called entry exclusion.54 A plasmid may also be lost upon division. Plasmid segregation
is specially critical when a plasmid has a low copy number.55 Even though conjugation is
not well understood, we believe that the presented plasmid operations can reproduce most
scenarios involved in bacterial conjugation.

Systems biology studies and synthetic biology examples

To illustrate the capabilities and flexibility of the new libraries we present two systems bi-
ology case studies: plasmid propagation and bacterial ecological interactions. These case
studies show that gro can be a useful tool for research fields such as microbial evolutionary
biology, ecology or epidemiology. In addition, we show two brand-new synthetic circuits. All
examples were simulated with the new version of gro. Experiment descriptions and videos
can be found in the supporting information.

In the first case study we show how conjugation is implemented. We enquired the fac-
tors affecting conjugative plasmid propagation in a surface-associated bacterial population.56

Specifically, we studied the influence of space clumping for the infection to thrive. Results
are shown in Figure 6.

A critical factor affecting plasmid propagation is the ability of the infected cells to con-
tact uninfected ones. In Figure 6 we present results from the plasmid propagation exper-
iments and its relation with different spatial initial conditions. The simulation considers
plasmid-free bacteria and plasmid-bearing bacteria that grow and interact trough physical
contact. All experiments were run under the same conditions, apart from the initial spa-
tial distribution. Half of the initial population are plasmid-bearing bacteria that carry an
extra metabolic burden imposed onto them as they must conjugate. Plasmid conjugation
frequency � was fixed at 0.3 conjugative events during the cell life cycle, which was set to 44
minutes. After 300 minutes of experiment time, resulted colonies were analyzed. As it can
be observed in Figure 6, the infected population fraction drops from a 0.9 in the well-mixed
case, to a 0.5 for the single focus scenario. Results are consistent with the basic condition for
plasmid propagation: large contact surface between plasmid-free and plasmid-bearing cells
improves plasmid spread trough conjugation. Still, it is worth noticing that clumping has
a dramatic effect which should not be overseen in precise computations of plasmid invasion.57
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Figure 6: Spatial clumping affects plasmid propagation. Simulations were run for four
different spatial arrangements ranging from a single focus (maximal patchiness) to a well-
mixed case (minimal patchiness). All experiments shared the same conditions: half of the
initial population was infected with a conjugative plasmid that transferred at a conjugation
frequency of 0.3 while the other half was susceptible to the infection. Plasmid-bearing cells
had a generation time of roughly 44 minutes while plasmid-free cells divided around every
40 minutes. Results are shown in the bar graph. Each bar corresponds to the spatial
arrangement right below. Error bars display data corresponding to five runs. As it can be
observed, the final fraction of infected bacteria drops from a 0.9 in the well-mixed case, to a
0.5 for the single focus scenario.
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To further illustrate the new capabilities of the software, the second case study drives
along the lines of pattern formation. Bacterial ecological interactions are tested in simulations
in which two strains either compete or cooperate through cross-feeding signals. In this setup,
diffusive molecules are emitted by bacteria themselves, and their effect on the opposite
strain results in diverse spatial patterns which are shown in Figure 7. Three ecological
interactions were programmed for a two-strain consortium. The neutralism case represents
a colony of two types of bacteria that interact only through mechanical contact. In the
cooperative consortium, bacteria emit a signal which is required by their counterpart to
grow appropriately. The absorption of the molecule induces growth which in turn triggers
the emission of the outgoing bacterial signal. The requirement of each other force them to
grow as closer as possible. Thus, inter-mixing patterns arise in this particular case.58 On
the other hand, when the absorption of a molecule is set to be detrimental for the other,
bacteria repel each other as their emissions are toxic and prevent growth. In this scenario,
the contact surface between the two strains is minimized, leading in some cases to the total
annihilation of one of the strains. Studies of this kind can be further elaborated to include
a variety of ecological behaviors between two or more strains59,60

Apart from the two exposed systems biology experiments, we also designed and simu-
lated two original synthetic circuits based on cell-cell communication. In the first design, a
three level bullseye pattern is generated based on a simple diffusible environmental signal
(IPTG) as template (see Figure 8a). This first circuit is composed of three conjugative plas-
mids distributed equally within the initial population. Only two of the three plasmids are
sensitive to the presence of IPTG. In these two plasmids, reporting is respectively induced
and repressed under IPTG, discriminating the space into high and low IPTG levels. An
intermediate diffusible signal is expressed by both plasmids in order to repress the reporting
generated by the third plasmid. This dynamics, along with a low metabolic cost of the third
plasmid result in the concentric alignment of the three synthetic strains shown in Figure
8a. In all cases, plasmid conjugation and reporting are regulated together, reinforcing the
plasmid presence wherever it reports.

The last synthetic circuit we present here is a distributed circuit that sequentially ex-
presses three different proteins (reporting proteins in this case) in a specific order and for
a given duration. Each step of the sequence translates to the expression of a single protein
which is encoded in a plasmid. In this way only bacteria bearing the applicable plasmid
will express the corresponding protein. A cell can only execute one step of the sequence,
since no cell bears more than one of the three implicated plasmids. Each plasmid encodes
for a different diffusible signal that triggers the start of the next step of the sequence in
nearby cells. This same signal initiates the destruction of the signaling plasmid, stopping
the current step of the sequence through a delayed negative feedback. We depict the design
and results obtained for this circuit in Figure 8b. Although it is only a proof of concept, the
idea behind this design is to mimic a well mixed bioreactor where every one of the agents is
specialized in one stage of the path.61 Crosstalk and inefficiency are avoided by inducing the
different steps of the path sequentially. In addition, every cell is involved in a single step of
the sequence, allowing every step to be more complex and metabolically heavy for the host.
The presented design is scalable, making it feasible to arrange larger sequential paths.
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Figure 7: Ecological cross-feeding interactions and their resulting spatial patterns. Three
ecological interactions were programmed for a two-strain consortium. The neutralism case
represents a colony of two types of bacteria that interact only through mechanical contact. In
this case the spatial pattern is created only by the random distribution of growing bacteria.
When the interaction type is set to cooperation, bacteria emit a signal which is required by
their counterpart to grow and emit its signal appropriately. The emission rate Emax is set
externally, leading to different interaction strengths. When the emission rate Emax is low,
molecule concentration in the environment is limited, and cooperation becomes forced. The
outcome is a pattern of highly mixed strains that try to maximize access to the molecule.
When the emission rate Emax is high, the abundance of signal does not force bacteria to
grow as close and the spatial patterns tend to the neutralism case. In the competition
case, the logic is similar to a toxin emission that only affects the counterpart strain. Such
interaction results in the avoidance of the other strain and bacteria arrange in clusters to
minimize contact surface. However, when toxin concentration is in shortage, the toxicity in
the medium is low and coexistence is possible. Nevertheless, bacteria at the interface will not
grow nor emit. In the case of environmental signal abundance, the toxicity rises leading to a
strong competition, which is highly sensitive to initial conditions. Images from different runs
are shown proving that many scenarios are possible ranging from inhomogeneous coexistence
to total annihilation of one of the strains.
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Figure 8: Spatial and temporal patterns simulated with gro. a) A three-level bullseye spatial
pattern is depicted. The pattern described by the cells arises from processing a diffusible
IPTG environmental signal as template (in blue). IPTG is found in higher concentration
in the center of the colony and decreases radially. Cells in presence of a high concentration
of IPTG express RFP and emit AHL. A middle crown is formed by cells expressing YFP
that cannot survive in a zone where there is a high concentration of IPTG. These cells also
emit AHL (gray). An outer crown of GFP expressing cells results from the expression of
a toxin (triggered by the detection of AHL) that kills them and drives them towards the
edge. In summary, IPTG eliminates YFP and GFP expressing cells from the center of the
colony, and AHL forces GFP cells to grow on the outer part of the colony by triggering their
death in the inner part of the bacterial population. The shown pattern is obtained after
300 simulated minutes. b) A signal based circuit for producing sequential protein expression
pulses at a colony-level is shown. The circuit uses intercellular signals to guide the colony to
dominantly express one of the three fluorescent proteins in a sequential order. Each signal
has a double purpose: to trigger the destruction of its emitting plasmid and to activate the
next pulse. Pulses reach their peak at 37 minutes (RFP), 61 minutes (YFP) and 89 minutes
(GFP). Further details and both design specifications can be found in Figure S8.

Discussion

We presented a new version of gro, an open-source fast prototyping tool for the simulation of
microbial multicellular colonies. The presented software is useful for studying and simulating
complex intercellular processes. This gro version executes between one and two orders of
magnitude faster than the original version and around an order of magnitude faster than
other proficient IbM simulators like CellModeller. The modifications made to gro seek to
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improve the performance of the simulator and to extend its capabilities to make it attractive
and accessible for a broad audience coming from multiple fields such as synthetic biology,
systems biology, evolutionary microbiology or epidemiology.

As a proof of concept, we show comprehensive and easy to implement examples related
to these diverse fields. Each example exhibits a high degree of precision within the scope of
its theme, proving that gro is a versatile tool.

We believe that this new version of gro can overcome performance barriers, such as
computing speed and colony size.23 We expect gro to evolve and become even more intuitive
and scalable. Once it evolves, more realistic simulation of synthetic biology circuits will be
achieved. At that point, analysis of multicellular systems biology problems and microbial
ecosystems will bear better and more accurate results.

Future work

The modular architecture of gro enables enables a relatively straightforward attachment of
additional biological tools. We foresee the inclusion of more tools such as phages, CRISPR
and RNA regulation, which are at present under development in our lab.

We are also currently looking at other platforms onto which the application of CellEngine
could boost their performance. Other types of bacteria with different shapes, like yeast, are
being considered as an extension to CellEngine. We plan to make CellNutrient a part of
CellSignals, as nutrients may be treated as a specific case of signal. We are also currently
researching on diffusion methods using binary valued signals to extend the capabilities of
CellSignals.

Direct import/export of the models is another interesting direction: Use of SBOL 2.062

enriched with quantitative modeling data in the form of annotations could serve as the ba-
sis of a standard description language for IbM simulations. Additionally, a graphical user
interface (GUI) for assisting in experiment specification is being developed. We wish to min-
imize human error when specifying an experiment and to provide an intuitive and easy way
for manipulating simulations. These are natural improvements, since ProSpec was designed
keeping genetic circuit structure in mind.

Material and Methods

CellEngine and CellNutrient were implemented in C as external libraries that integrate with
gro. CellSignals and CellPro were implemented in C++ and are also external libraries that
integrate with gro. Conjugation was implemented as a direct extension to the source code
of gro in C++. The latest version of QT Creator framework (5.7) was used as the IDE
to implement these features. Both the external libraries and the modified gro version were
tested on Linux CentOS 6.6 and 7.0, and on MacOS X 10.10, 10.11 and 10.12. All examples
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were run on a Mac Mini Quad core i7, 2.1 GHz with 16 GB RAM and on Intel based Quad
core machines 2.5 GHz with 32 GB RAM. The source code for the simulator and all of the
simulations may be found at: http://www.lia.upm.es/software/gro/
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49. Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H.,
Quake, S. R., and You, L. (2008) A synthetic Escherichia coli predator–prey ecosys-
tem. Mol. Syst. Biol. 4, 187.

50. Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011) Robust multicellular computing using
genetically encoded NOR gates and chemical ’wires’. Nature 469, 212–215.

51. Douglas, J., Jr, and Russell, T. F. (1982) Numerical methods for convection-dominated
diffusion problems based on combining the method of characteristics with finite element
or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885.

52. Ortiz, M. E., and Endy, D. (2012) Engineered cell-cell communication via DNA messag-
ing. J. Biol. Eng. 6, 16.

53. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C., and de la Cruz, F.
(2010) Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452.

54. Garcillán-Barcia, M. P., and de la Cruz, F. (2008) Why is entry exclusion an essential
feature of conjugative plasmids? Plasmid 60, 1–18.

55. Gordon, S., Rech, J., Lane, D., and Wright, A. (2004) Kinetics of plasmid segregation
in Escherichia coli. Mol. Microbiol. 51, 461–469.

56. Zhong, X., Droesch, J., Fox, R., Top, E. M., and Krone, S. M. (2012) On the meaning
and estimation of plasmid transfer rates for surface-associated and well-mixed bacterial
populations. J. Theor. Biol. 294, 144–152.

57. Magal, P., and Ruan, S. (2014) Susceptible-infectious-recovered models revisited: from
the individual level to the population level. Math. Biosci. 250, 26–40.

58. Momeni, B., Brileya, K. A., Fields, M. W., and Shou, W. (2013) Strong inter-population
cooperation leads to partner intermixing in microbial communities. eLife 2013, 1–23.

59. Blanchard, A. E., and Lu, T. (2015) Bacterial social interactions drive the emergence of
differential spatial colony structures. BMC Syst. Biol. 9, 59.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2017. ; https://doi.org/10.1101/097444doi: bioRxiv preprint 

https://doi.org/10.1101/097444
http://creativecommons.org/licenses/by-nc-nd/4.0/


60. Reichenbach, T., Mobilia, M., and Frey, E. (2007) Mobility promotes and jeopardizes
biodiversity in rock-paper-scissors games. Nature 448, 1046–1049.

61. Widder, S. et al. (2016) Challenges in microbial ecology: building predictive understand-
ing of community function and dynamics. ISME J. 10, 2557–2568.

62. Roehner, N. et al. (2016) Sharing Structure and Function in Biological Design with
SBOL 2.0. ACS Synth. Biol. 5, 498–506.

63. Bonnet, J., Subsoontorn, P., and Endy, D. (2012) Rewritable digital data storage in live
cells via engineered control of recombination directionality. Proc. Natl. Acad. Sci. U. S.
A. 109, 8884–8889.

64. Scott, S. R., and Hasty, J. (2016) Quorum Sensing Communication Modules for Microbial
Consortia. ACS Synth. Biol. 5, 969–977.

65. Lakshmi, O. S., and Rao, N. (2009) Evolving Lac repressor for enhanced inducibility.
Protein Eng., Des. Sel. 22, 53–58.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 2, 2017. ; https://doi.org/10.1101/097444doi: bioRxiv preprint 

https://doi.org/10.1101/097444
http://creativecommons.org/licenses/by-nc-nd/4.0/

