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A new improved Kurtogram was proposed in this paper. Instead of Kurtosis, correlated Kurtosis of envelope signal extracted from
the wavelet packet node was used as an indicator to determine the optimal frequency band. Correlated Kurtosis helps to determine
the fault related impulse signals not a	ected by other unrelated signal components. Finally, two simulated and three experimental
bearing fault cases are used to validate the e	ectiveness of proposedmethod and to compare with other similarmethods.�e results
demonstrate it can locate resonant frequency band with a high reliability than two previous developed methods by Lei et al. and
Wang et al. especially for the incipient faults under low load.

1. Introduction

Costs caused by failure of key components are huge for most
complex and expensive machineries. Taking drivetrains as
an example, they are widely used in wind turbines, nuclear
power plants, hydropower stations, airplanes, helicopters,
and so forth. In these drivetrains, bearings are critical com-
ponents. �ey usually operate under hostile environments
with high stress. �e cost of replacement of bad bearing on
o	shore wind turbine gearbox will be 8,000$ and 60,000$ in
addition to renting a crane [1]. If a bearing of helicopter gear-
box fails, it may lead to a catastrophic disaster.�ose �ndings
emphasize why bearing fault diagnosis is very important in
order to prevent unplanned failure and maintenance cost.

Fault diagnosis of rotating machinery has half-century
history. In recent 15 years, many fault diagnosis methods
were developed based on machine learning methods [2–4].
�ese methods mainly rely on amount of fault samples to
train the model becoming very useful for online automotive
fault diagnosis. However, because of the complex operating
conditions, the high rate of false alarm is a signi�cant
problemwhich a	ects their performance. Implementing only
machine learning methods for fault diagnosis methods does

not give a desirable result. Operating conditions of rotating
machinery are usually very hostile and it is not rare case
with simultaneously multiple faults. Even more, for complex
machinery, it is very di�cult to collect enough fault samples
in order to properly train the machine learning methods.
�is is also the reason why many researchers prefer using
frequency spectrum analysis methods for fault diagnosis.
�ese frequency analysis methods have universal property
and need less fault samples.

Randall and Antoni [5] gave a detailed tutorial on rolling
element bearing diagnosis and consider envelope analysis
(high frequency resonance technique) as fundamental and
e	ective method for bearing fault detection. However, �rst
step is to �nd the frequency band that contains intense
impulse signals produced by bearing faults, and on the
other hand, frequency band selection directly a	ects the
performance of envelope analysis. �ere are two major
research directions during 21st century in bringing bearing
fault frequencies more obvious.

�e �rst one is to enhance the impulse signals pro-
duced by faults. Sawalhi et al. [6] used minimum entropy
deconvolution (MED) technique to deconvolve the e	ect of
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transmission path which can bring clear impulses. �en,
spectral Kurtosis (SK) was used to determine the appropriate
frequency band which can be used to do the envelope anal-
ysis. Barszcz and Sawalhi [7] used MED to enhance the fault
diagnosis of bearing of wind turbine. In the paper, parameters
selection problem ofMEDhas been discussed. A�erwards, in
order to overcome the de�ciency ofMED,McDonald et al. [8]
developed a new deconvolution method named maximum
correlated Kurtosis deconvolution (MCKD). Besides of these
two deconvolution methods, Karimi [9] used blind deconvo-
lution, an image processing method, to improve the signal-
to-noise ratio (SNR) of bearing fault signal. Recently, Raj and
Murali [10] used Lucy-Richardson deconvolution to enhance
the bearing fault detection. In addition, there are many other
methods for enhancing the impulse signals produced by
faults. However, these methods also have their limitations.
Fault signals of interest are not present independently.Usually
there is presence of fault signals from other components with
noise in addition. Take gearbox, for example, as complex
machinery with multiple gears, sha�, and bearing as fault
potential components. �e vibrations of gear faults are
stronger than bearing faults making it very di�cult to detect
the bearing fault.

�e second one is to �nd the frequency band which
contains the strongest impulse signals produced by bearing
fault [11–14]. Since spectral Kurtosis has been de�ned by
Antoni [15], it was investigated for the diagnosis of rotating
machinery faults. �en, Antoni [16] proposed two methods
to calculate spectral Kurtosis. It is based on short time Fourier
transform (STFT) (called Kurtogram for �nding the optimal
�lter) and the other is based on 1/3 binary �lter banks
(fast Kurtogram for online condition monitoring and fault
diagnosis). Recently, Lei et al. [12] indicated that a STFT
based or �lters-based spectral Kurtosis was not as precise
as wavelet packet decomposition (WPD). �ey used WPD
to replace the STFT in extracting transient characteristics
and measured the Kurtosis of the temporal signal �ltered by
WPD. Barszcz and Jabłoński [11] proposed a new frequency
band determination method named protrugram which is
based on theKurtosis of the envelope spectrumof the demod-
ulated signal rather than the Kurtosis of the �ltered time
signal. Wang et al. [13] developed an enhanced Kurtogram.
In this case Kurtosis values were calculated based on the
power spectrum of the envelope of the signals extracted
from wavelet packet nodes at di	erent depths. Instead of
traditional Daubechies wavelets, Chen et al. [14] used dual
tree complex wavelet transform to decompose the signal.
And then, a new enhanced signal impulsiveness evaluating
indicator, named “spatial-spectral ensemble Kurtosis,” was
used to determine the optimal frequency band which will
be used for the envelope analysis. Wang and Liang [17]
developed a multifault diagnosis method based on adaptive
spectral Kurtosis analysis of the vibration signal. A theoretical
model of multiple bearing faults was established in this
paper. For the adaptive spectral Kurtosis technology, themain
contribution was to determine the bandwidth and center
frequency adaptively [18]. Tse and Wang [19] proposed a
new method named sparsogram to quickly determine the
resonant frequency bands. �e sparsogram was constructed

using the sparsity measurements of the power spectra from
the envelopes of wavelet packet coe�cients at di	erent WPD
depths. �en, they presented an automatic selection process
for �nding the optimal complex Morlet wavelet �lter with
the help of genetic algorithm that maximizes the sparsity
measurement value [20]. Liu et al. [21] proposed an adaptive
spectral Kurtosis �ltering based on Morlet wavelet and
applied it to detect the signal transients.

However, Kurtosis also has its limitations for re�ecting
the impulse signals due to faults. For vibration time domain
signals, single impulse produced by noise can have high
Kurtosis value. However, the impulse signals repeat with
specify frequency is the need signal. According to this, Kur-
tosis could have a false judgment in optimal frequency band
selection. Similar to the Kurtosis of vibration time domain
signals, Kurtosis of power spectrum also has its limitations.
For bearing with severe stage faults, the fault frequency and
its harmonics will dominate the whole spectrum shown in
Figure 1. �is represents the case of faulty bearing operating
under relatively simple structure like electrical motor. For
bearings in gearbox or bearings in other structures, especially
for the incipient fault, the dominant frequency of power
spectrum will not be the bearing fault frequency and its
harmonics shown in Figure 2. In this case, the optimal
frequency band cannot be determined throughKurtosis value
of power spectrum. For bearing fault diagnosis inside the
gearbox and its early stage of bearing fault, the dominant
frequency in power spectrum will be the rotating frequency
and mesh frequency of gear. However, compared to Kurtosis,
the correlated Kurtosis (CK) developed by McDonald et al.
[8] can detect the impulse signal according to the desired
frequency and could be used to solve the above-mentioned
problems.Compared toKurtosis, CKmainly pays attention to
the impulses repeated at a certain frequency (fault frequency).
�erefore, it will not be a	ected by some noise similar to
impulse. In gearbox, even if the impulses produced by gear
fault are intense, CK only detect the desired impulses like
bearing fault. CK takes advantage of the repetitiveness of
the faults, and it is used in this work to detect impulses
introduced by a faulted bearing [8]. It will be more precise
than Kurtosis and can detect the weak signal produced by
bearing incipient faults. In this paper, we used this indicator
to select the optimal WPD node for bearing fault diagnosis.

In order to solve the above-mentioned dilemmas, time
synchronous technology was used to delete the discrete
frequency noise. �is is very similar to another technique
named blind source separation (BSS). For BSS technique,
Bouguerriou et al. [22] proposed a new BSS algorithm
based on the second statistical properties and applied it
to the bearing defect diagnosis. Tse et al. [23] developed
an enhanced eigenvector algorithm that consists of channel
extension and a postprocessing method to recover multiple
sources of vibrations. Wang and Tse [24] proposed a new
blind component separation method which can decompose
the mixed signal into two parts. �ey are periodic and tran-
sient subsets. �e periodic subset is the signal related to the
imbalance, misalignment, and eccentricity of a machine. �e
transient subset is the signal that refers to abnormal impulsive
phenomena. Li et al. [25] put forward a new fault diagnosis
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Figure 1: Schematic diagram of power spectrum of bearing fault (bearing fault frequency and its harmonics are dominant).
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Figure 2: Schematic diagram of power spectrum of bearing fault (bearing fault frequency and its harmonics are undominant).

method for gearboxes based on the BSS and nonlinear feature
extraction techniques. �e kernel independent component
analysis algorithm was used as the BSS method in the paper.
Zhang et al. [26] proposed a fast BSS algorithm. A novel
cost function was formulated for BSS through combining
some kinds of temporal priori information. Keziou et al. [27]
developed a new BSS approach by minimizing the empirical
���-divergence between copula densities. Hwang and Ho
[28] proposed a novel operator-based model called the null
space component analysis (NCA) to solve the noisy blind
source separation problem. Compared to the ICA-based and
the sparsity-based approaches, NCA is a deterministic and
data-adaptive algorithm that can solve both the underdeter-
mined and the overdetermined BSS problems. In contrast
to the study of Lei et al. [12] and Wang et al. [13], a�er
separation, WPD was used to decompose the bearing fault
signals into di	erent frequency band and CK was selected as
an indicator to determine the optimal WPD node. Finally,
power spectrumwas applied to the envelope signal of optimal

node to �nd the bearing related fault frequencies. Two
simulated bearing fault cases and three experimental bearing
fault cases were used to demonstrate the e	ectiveness of
proposed method.

�e remainder of this paper is organized as follows.
Section 2 put forward the new improved Kurtogram method
for bearing fault detection. In Section 3, two simulated
bearing fault data sets and three experimental bearing fault
data sets from the laboratory are used to validate the proposed
method. Simultaneously, comparison of proposed method
and study of Lei et al. [12] and Wang et al. [13] has been
investigated. Section 4 concludes the work.

2. Proposed Method for Bearing
Fault Diagnosis

2.1. Brief Introduction to WPD. Suppose a space is V0, and
discrete wavelet only decomposes V0 to V1 and W1. �en,
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continue to decomposeV1 toV2 andW2, and so on.However,
it does not decompose the W1, and so forth. Whereas,
WPD can further decompose the high frequency band (W�).
So, the fault signal information of whole frequency band
can be acquired through WPD. In general, a space V� of
a multiresolution approximation is decomposed in a lower
resolution space V�+1 adding a detailed space W�+1. �is is

done through dividing the orthogonal basis {��(� − 2��)}�∈�
of V� into two new orthogonal bases:

{��+1 (� − 2�+1�)}�∈� of V�+1,
{��+1 (� − 2�+1�)}�∈� of W�+1.

(1)

�en, the decompositions of��+1,� = ∑+∞�=−∞ ℎ[�−2�]��,� and
��+1,� = ∑+∞�=−∞ �[� − 2�]��,� of ��+1 and ��+1 in the basis

{��(� − 2��)}�∈� are speci�ed by a pair of conjugate mirror

�lters ℎ[�] and �[�] = (−1)1−�ℎ[1 − �].
�en, a theorem was generalized.

Let {��(�−2��)}�∈� be an orthonormal basis of a spaceU�.
Let ℎ and � be a pair of conjugate mirror �lters. De�ne

�0�+1 (�) =
+∞
∑
�=−∞
ℎ [�] �� (� − 2��) ,

�1�+1 (�) =
+∞
∑
�=−∞
� [�] �� (� − 2��) .

(2)

�e family

{�0�+1 (� − 2��) , �1�+1 (� − 2�+1�)}�∈� (3)

is an orthonormal basis ofU�. Because of the complex theory
of WPD and limited pages, this is omitted in this paper.

WPD is actually a kind of wavelet transform where
the signal is passed through more �lters than the dis-
crete wavelet transform. Usually, WPD can be repre-
sented as wavelet tree form. For example, three-level
WPD is shown in Figure 3. Taking a bearing fault sig-
nal as an example, if the sampling frequency is �
,
three WPD depths will divide the frequency into 8 fre-
quency bands. �ey are 0�
/16Hz, �
/16�
/8Hz, �
/8–
3�
/16Hz, 3�
/16�
/4Hz, �
/4-5�
/16Hz, 5�
/16–3�
/8Hz,
3�
/8-7�
/16Hz, and 7�
/16�
/2Hz.

2.2. WPD Nodes Based Kurtogram. A�er WPD and recon-
struction of node signal, a series of frequency band signals
is acquired. �en, CK values of envelope signals can be
calculated for each of the frequency band according to the
following equation:

Correlated kurtosis of �-shi� = CK� (�)

= ∑
�
=1 (∏��=0� (� − ��))

2

(∑�=1 � (�)2)
�+1 .

(4)

�(�) is the envelope signal of reconstructed wavelet packet
coe�cient in this paper. � is the interesting period of the
fault. � is the number of samples in the input signal �(�).
If � = 0 and� = 1, this indeed is the traditional Kurtosis.
It can detect the impulse signals e	ectively than traditional
Kurtosis [8]. For example, if the desired frequency is 100Hz
and the sampling frequency is 12,000Hz, the value of �will be
120 samples. �e �owchart of the new improved Kurtogram
method in this paper is shown in Figure 4 and the detailed
processes are described below.

(1) �e original accelerometer vibration signal and tac-
hometer signal are used as input. In gearbox or other
complex machineries, the vibration signals produced
by bearing are veryweak even if the bearing has faults.
Time synchronous averaging (TSA) technique is used
to reduce the nonsynchronous noise which mainly
contains the random noise and bearing vibration
signal. �is is a well-known technique for gear and
sha� fault diagnosis. On the contrary, it is possible
to use this technique to separate the gear and sha�
signal out in process of bearing fault diagnosis. Klein
et al. [29] found that the residual signal (mainly
containing the bearing fault signals) is possible to
obtain using synchronous signals minus the TSA
signals and proposed a novel method called the De-
phase algorithm. �e De-phase algorithm demon-
strated a good performance to separate the bearing
fault signals from the discrete frequencies (signals of
sha�s, gears, etc.).

(2) WPD is used to decompose the residual signal at
di	erent depths for dividing the fault signal into
di	erent frequency bands. As declared in Wang et
al., the minimum bandwidth decomposed by WPD
at maximum depth needed to be three times longer
than the desired fault frequency so that su�cient
bearing fault-related signatures could be retained in
the desired frequency band.�is also can be regarded
as a method to determine the maximum depth for
WPD. A�er decomposition, the signals obtained at
each speci�c node were reconstructed making it have
the same temporal length as the original signal.

(3) CK values of envelope signals of each node (frequency
band) at di	erent depth are calculated.

�en, the new improved Kurtogram can be obtained
according to the work of Lei et al. �e new improved
Kurtogram is a colored map in which the depth of the color
values is proportional to the CK values. Usually, only one
optimal WPD node will be found. However, sometimes the
bearing fault may have multiresonance frequencies. In this
case, we need to analyze signals of �rst few maximum values.
Finally, the power spectrums of envelope signals of selected
frequency bands can be calculated and the bearing fault
characteristic frequencies can be observed visually.

2.3. Main Di	erences between Proposed Method and Lei et al.
and Wang et al. Methods. In this section, proposed method
will be compared to other two previous developedKurtogram
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Figure 3: �ree-level wavelet packet decomposition.
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Figure 4: Flowchart of the proposed method.

methods of Lei et al. and Wang et al. Here, we reviewed the
key steps of these two Kurtogram methods and declare the
main di	erence with proposed method in this paper. Key
steps of Kurtogram method proposed by Lei et al. are as
follows.

(1) WPD is used to decompose the signal in order to get
a signal of di	erent frequency bands.

(2) Kurtosis values of each decomposed frequency band
signals are calculated.

(3) Kurtogram is formed using calculated Kurtosis val-
ues. �en, frequency band (WPD node) with highest
Kurtosis value is selected for the envelope analysis.

(4) Finally, the envelope spectrum is acquired to judge if
it contains the bearing fault frequencies.

Key steps of Kurtogram method proposed in Wang et al.
are as follows.

(1) Autoregressive model (AR) is used for prewhitening
the signal �rst. A�er this WPD is used to decompose
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the random signal. Similarly, a number of frequency
bands signals are acquired.

(2) Kurtosis values of power spectrumof envelope of each
decomposed frequency band signals are calculated.

(3) Kurtogram is formed using calculated Kurtosis val-
ues. Similarly, frequency band with maximumKurto-
sis value is selected for the envelope analysis.

(4) Finally, the power spectrum of envelope signals is
acquired to judge if it contains the bearing fault
frequencies.

�ere are two main di	erences between proposed
method in this paper and method by Lei et al. First, method
of Lei et al. directly decomposes the fault signal using WPD,
while the proposed method in this paper �rst separates the
bearing fault signals from discrete frequency and noise using
De-phase algorithm in order to get a residual signal. �en,
residual signal is used as input for the decomposition. Second,
method of Lei et al. calculates Kurtosis values of decomposed
node signals which are implemented in time domain, while
the proposed method in this paper calculates CK values of
envelope decomposed node signals. Similarly, there are two
main di	erences between proposed method in this paper
and method by Wang et al. First, method of Wang et al.
use AR model to extract bearing fault signals, while the
proposed method uses De-phase algorithm for it. Second,
method of Wang et al. calculates Kurtosis values of envelope
spectrums of decomposed node signals which are conducted
in frequency domain, while the proposed method in this
paper calculates CK values of envelope decomposed node
signals.

3. The Proposed Method Validated by
Simulated and Experimental Case Studies

3.1. Case 1: Simulated Bearing Fault Signals with Single Reso-
nant Frequency. First, signals with single resonant frequency
under di	erent SNRwere considered. Similar to Lei et al. and
Wang et al. work [12, 13], Daubechies 10 wavelet was used
in proposed method to decompose the signal. �e simulated
signal with single resonant frequency is given as

� (�) = �0�−�×2���×−� sin(2��� × √1 − �2 × � − �) , (5)

where � is equal to 0.1, �� is the resonant frequency equal to
1,700Hz, and � is used to simulate the randomness caused by
slippagewhich is subject to a discrete uniformdistribution.�0
(equal to one) is the amplitude of simulated bearing impulse
signal. Suppose the sampling frequency is 12,000Hz. �en,
we can simulate the bearing fault signals according to fault
frequency (equal to 100Hz). A total of 24,000 samplings were
used for each simulated signal. Finally, a random signal with
a mean of zero and a standard deviation of 0.1 were added to
(5).

Figures 5(a)–5(c) show simulated signal, noise signal, and
mixed signal. �e proposed method was used to analyze
the mixed signal shown in Figure 5(c). �e new improved

Kurtogram is shown in Figure 6(a). As shown, node (1, 1)
has the highest CK value of all nodes. �en, the signal of
node (1, 1) was reconstructed. �e power spectrum of the
envelope signal extracted from node (1, 1) by WPD is given
in Figure 6(b), in which the fault frequency, 100Hz, and its
harmonics are obvious. It should be noted that the CK value
was calculated based on the desired period of bearing fault.
For this simulated signal, the period of fault is 120 samples
(corresponding to the � in (4)). In this case, the parameter�
of CK equals 15.

Beside of this, the improved Kurtogram proposed by Lei
et al. and enhanced Kurtogram proposed by Wang et al. are
applied to analyze the same mixed signal with one resonant
frequency in the case of the same noise level of 0.1. �eir
performance is given in Figures 7 and 8. It can be found that
Lei et al. improved Kurtogram has the same diagnosis result
with proposed method in this paper. Wang et al. enhanced
Kurtogram result is shown in Figure 8.�e amplitudes of fault
frequency and its harmonics are smaller compared to those
determined by the proposed new improvedKurtogram in this
paper.

Next, we increased the noise level to 0.5 and analyze
the mixed signal. �e results can be seen in Figures 9–11.
�e result of new improved Kurtogram is shown in Figure 9
and it is possible to see the obvious fault frequency and its
harmonics. However, it can be found that Lei et al. improved
Kurtogram fail to detect the single resonant frequency node.
In addition, compared to Figure 9, the harmonics amplitudes
of fault characteristics frequency of 100Hz in this case, shown
in Figure 11, are smaller.�is con�rms that the proposed new
improved Kurtogram is superior to the enhanced Kurtogram
proposed by Wang et al.

A�erwards, we continue to decrease the SNRof simulated
bearing fault signal. We add a random Gaussian noise with
zero mean and standard deviation 0.8 to the impulse signal.
�en, we compare the performance of three Kurtograms.
�e result of the new improved Kurtogram is shown in
Figure 12(a). Node (3, 4) is selected as the optimal node
which contains bearing fault information. Similarly, the
power spectrum of the envelope signal extracted from the
reconstructed signal of node (3, 4) is given in Figure 12(b).
We can see that the fault frequency and its second and third
harmonics are very clear. Compared to the noise level 0.5,
the optimal frequency band determined by new improved
Kurtogram is the same. �e optimal frequency band and its
power spectrum determined by Lei et al. and Wang et al.
Kurtogram are shown in Figures 13 and 14. According to
this both methods fail to detect the bearing fault frequency,
though, for the noise level of 0.5, Kurtogram developed by
Wang et al. can detect the bearing fault e	ectively. However,
when the impulsive signal of bearing fault mixed with strong
noise, the Wang et al. Kurtogram loses its primary goal. On
the contrary, the new improved Kurtogram based on the CK
value can diagnose the bearing fault even if the SNR is very
low, noise level of 0.8.

When the noise level is 0.1, the resonance frequency
falls in the optimal frequency band determined by proposed
Kurtogram and Lei et al. improved Kurtogram methods.
�is is because of the low noise level. When the noise level
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Figure 5: Simulated time domain signal: (a) simulated impulse signal with one resonance frequency, (b) the noise signal with zero mean and
standard deviation of 0.1, and (c) the �nally mixed signal.
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Figure 6: �e results obtained by the proposed method for processing the mixed signal with one resonant frequency. (a) �e new improved
Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (1, 1) by WPD.

is increased, the reconstructed signal of di	erent frequency

band may be distorted by noise or the inherent de�ciencies
of WPD and reconstruction process. �is will lead to the
frequency band containing the resonant frequency without
biggest impulsive signal. �erefore, in the case with noise

level of 0.5 and 0.8, the best frequency band determined by
new improved Kurtogram does not contain the 1,700Hz.

3.2. Case 2: Simulated Bearing Fault Signals with an Inter-
ference. In industrial application, bearings always operate
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Figure 7:�e results obtained by the improved Kurtogram proposed by Lei et al. for processing themixed signal with one resonant frequency.
(a) �e improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (1, 1) by WPD.
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Figure 8: �e results obtained by the enhanced Kurtogram proposed by Wang et al. for processing the mixed signal with one resonance
frequency. (a) �e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 7) by WPD.
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Figure 9: �e results obtained by the proposed method for processing the mixed signal with one resonant frequency. (a) �e new improved
Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (3, 4) by WPD.

together with other components like gears and sha�s and
because this vibration signal usually contains broad range of
frequencies. In the process of bearing fault diagnosis, those
other frequencies are called interference frequencies. For the
evaluation of performance of new improved Kurtogram, we

add another interference frequency of 13Hz with resonant
frequency at 600Hz.�e amplitude of 13Hz frequency in this
casewas set to 5.�ismeans this frequency hasmore intensity
than desired bearing fault frequency 100Hz with amplitude
of 1. �e standard deviation of added noise is 0.5. Similar
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Figure 10:�e results obtained by the improvedKurtogramproposed by Lei et al. for processing themixed signal with one resonant frequency.
(a) �e improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 6) by WPD.
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Figure 11: �e results obtained by the enhanced Kurtogram proposed by Wang et al. for processing the mixed signal with one resonant
frequency. (a) �e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 7) by WPD.
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Figure 12: �e results obtained by the proposed method for processing the mixed signal with one resonant frequency under the noise level
0.8. (a) �e new improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (3, 4) by WPD.
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Figure 13:�e results obtained by the improvedKurtogramproposed by Lei et al. for processing themixed signal with one resonant frequency
under noise level of 0.8. (a) �e improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 6) by
WPD.

Table 1: Characteristic frequencies of bearings (Hz).

Bearing type BPFO BPFI BSF FTF

RBC NICE 81.12 118.88 63.86 10.14

to analysis of Case 1, the performance of three Kurtogram
methods are evaluated. �e Kurtograms and related power
spectrums are shown in Figures 15–17. We can see that both
Lei et al. and Wang et al. methods only can detect the
13Hz interference frequency. However, the proposed new
improved Kurtogram based on CK can detect the desired
bearing fault frequency and its harmonics. �is case study
further demonstrates the superiority of proposed method to
the other two methods. In this case, the value of� is 15.

3.3. Case 3: Experimental Case Studies. �e vibration fault
data set used in this case study was obtained from the
Mechanical Failures Prevention Group (MFPT) assembled
and prepared on behalf of MFPT by Dr. Bechhoefer [30].
Only the outer race and inner race faults are considered
for evaluation and discussion it this study. Bearing faults
are implanted arti�cially. �e test bearing which supports
the motor sha� is radial ball bearings produced by RBC
NICE with following parameters: roller diameter 71.628mm,
pitch diameter 379.476mm, number of elements is 8, and the
contact angle equal to 0∘. In this case study data set with 25Hz
input sha� rate, 48,828Hz sampling frequency, 3 s sampling
duration, and 50 lbs. load is used. If we de�ne the four bearing
fault frequencies as ball pass frequency inner race (BPFI), ball
pass frequency outer race (BPFO), ball spin frequency (BSF),
and fundamental train frequency (FTF), fault frequencies
could be calculated according to the geometric parameters
[31] shown in Table 1.

3.3.1. Outer Race Fault Analysis. According to the framework
of proposed method shown in Figure 4, the results are
acquired. As shown in Figure 18(a), the optimal WPD node
containing the impulsive signal produced by bearing fault

is (3, 7). From the power spectrum shown in Figure 18(b),
we can see that the BPFO and its harmonics are very clear.
�is demonstrates the e	ectiveness of proposedmethod with
value of� being equal to 2.

Similarly, the results of Lei et al. andWang et al. methods
are shown in Figures 19 and 20, respectively. Application
results show that these two methods can diagnose the outer
race fault e	ectively. In these threemethods, Lei et al. method
has shown the best result because the BPFO fault frequency
and its harmonics are clearer than that of Wang et al. method
and the proposed method in this paper.

3.3.2. Inner Race Fault Analysis. Similar to the outer race fault
analysis, the results of three Kurtogram methods are shown
in Figures 21–23. Comparing these results, it shows that new
improved Kurtogram method is superior to the other two
methods.�e BPFI and its harmonics are very clear in power
spectrum compared to Lei et al. andWang et al. methods with
value of� being equal to 2.

3.4. Case 4: Implanted Bearing Outer Race Fault in Gearbox.
A complete description of the test-rig and instrumentation
can be found in [32] and only a brief review of the experimen-
tal testing is provided here. �e power to one stage gearbox
type ZD10 is provided by a three-phase asynchronous motor
type YCT180-4A.�emotor speed can be adjusted by a speed
controller, provided an option for testing under di	erent
speed and load. A water cooled magnetic powder brake FZJ-
5 connected to the output sha� is used to provide load for
gearbox.�e torque can be controlled by di	erent DC power
of the brake. Two speed and torque sensors are used for
record the speed and torque information related to the input
sha� and output sha�, respectively. Speed sensor produces
60 impulses per revolution. Input sha� is supported by 6206
and output sha� by 7207 bearings. Gear on input sha� has
30 teeth and meshes with gear on output sha� which has 50
teeth. Input sha� rotating frequency is 19.60Hz, which gives
588Hz the meshing frequency.
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Figure 14: �e results obtained by the enhanced Kurtogram proposed by Wang et al. for processing the mixed signal with one resonance
frequency under noise level of 0.8. (a) �e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node
(4, 8) by WPD.
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Figure 15:�e results obtained by the proposed method for processing the mixed signal with interference frequency under noise level of 0.5.
(a) �e new improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (3, 4) by WPD.

0 1000 2000 3000 4000 5000 6000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10

15

20

Frequency (Hz)

D
ep

th
s

(a)

0

90 95 100 105 110 115

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frequency (Hz)

A
m

p
li

tu
d

e

(b)

Figure 16:�e results obtained by the improved Kurtogram proposed by Lei et al. for processing themixed signal with interference frequency
under noise level of 0.5. (a) �e improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 2) by
WPD.

�e arti�cial fault was 0.5mm width, 1.5mm depth on
groove, which was cut on the outer race of input sha� bearing
(6206) using wire-electrode cutting. �e sampling frequency
was 12,800Hz and the sampling time was 2.56 seconds. Char-
acteristic fault frequencies for bearing 6206 bearings under

1Hz sha� rate are (BPFO, 3.5806Hz), (BPFI 5.4194Hz), (BSF,
2.3452Hz), and (FTF, 0.3978Hz). For 19.60Hz input sha�
rotating frequency BPFO is 70.2Hz.

Di	erent from the previous case studies, the bearing
fault signal in this case has interference from the gear and
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Figure 17: �e results obtained by the enhanced Kurtogram proposed by Wang et al. for processing the mixed signal with interference
frequency under noise level of 0.5. (a) �e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node
(4, 2) by WPD.
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Figure 18:�e results obtained by the proposedmethod for processing the outer race fault of NICE bearing. (a)�enew improvedKurtogram
and (b) power spectrum of the envelope of the signal extracted from node (3, 7) by WPD.
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Figure 19: �e results obtained by the improved Kurtogram proposed by Lei et al. for processing the outer race fault of NICE bearing. (a)
�e improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 14) by WPD.

sha� vibration and we acquired the residual signal using De-
phase algorithm for prewhitening. A�er this we compared
new improved Kurtogramwith other ones mentioned earlier.
Testing results are shown in Figures 24–26. It shows the
optimal frequency band determined by Lei et al. and Wang

et al. methods providing the same results. From the power
spectrum, the BPFO fault frequency and its harmonics can
be found. However, the optimal frequency band determined
by new improved Kurtogram in this paper has better e	ect
because the BPFO fault frequency and its harmonics in
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Figure 20:�e results obtained by the enhanced Kurtogram proposed byWang et al. for processing the outer race fault of NICE bearing. (a)
�e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 2) by WPD.
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Figure 21:�e results obtained by the proposedmethod for processing the inner race fault of NICE bearing. (a)�enew improvedKurtogram
and (b) power spectrum of the envelope of the signal extracted from node (4, 13) by WPD.
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Figure 22:�e results obtained by the improved Kurtogram proposed by lei et al. for processing the inner race fault of NICE bearing. (a)�e
improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 21) by WPD.

envelope spectrum have higher amplitude compared with
other two methods, with value of� being equal to 15.

3.5. Case 5: Naturally Developed Multifault of Bearing in
Gearbox. It is necessary to say that this experiment is not
an implanted fault test. �e bearing faults were progressed

naturally with the gear full life test [33]. In order to research
the weak signal diagnosis method, we acquired the vibration
signal again a�er adjusting the transducers’ location. In the
full life test, all the gears in this gearbox had di	erent level of
wear. A�er test, the bearings in this gearbox are cut into halves
to observe the defects. Figure 27 shows the experimental



14 Shock and Vibration

0 0.5 1 1.5 2

1

2

3

4

5

6

500

1000

1500

2000

2500

3000

3500

4000

×10
4Frequency (Hz)

D
ep

th
s

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Frequency (Hz)

A
m

p
li

tu
d

e

(b)

Figure 23: �e results obtained by the enhanced Kurtogram proposed byWang et al. for processing the inner race fault of NICE bearing. (a)
�e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 6) by WPD.
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Figure 24:�e results obtained by the proposedmethod for processing the outer race fault of 6206 bearing in gearbox. (a)�e new improved
Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (2, 1) by WPD.
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Figure 25: �e results obtained by the improved Kurtogram proposed by Lei et al. for processing the outer race fault of 6206 bearing in
gearbox. (a) �e improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 1) by WPD.

test rig used in this paper to verify the performance of
the proposed method. It contains a gearbox, a 4 kW three-
phase asynchronous motor for driving the gearbox, and a
magnetic powder brake for loading. �e motor allows the

tested gear to operate under various speeds. �e load is
provided by the magnetic powder brake connected to the
output sha� and the torque can be adjusted by a brake
controller. �e gearbox has three sha�s, which are mounted
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Figure 26: �e results obtained by the enhanced Kurtogram proposed by Wang et al. for processing the outer race fault of 6206 bearing in
gearbox. (a) �e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 1) by WPD.
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Figure 27: A schematic of the experimental two-stage gearbox test rig.

to the gearbox housing by bearings. Gear 1 on low speed
(LS) sha� has 81 teeth and meshes with gear 3 with 18 teeth.
Gear 2 on intermediate speed (IS) sha� has 64 teeth and
meshes with gear 4, which is on the high speed (HS) sha�
and has 35 teeth. In order to acquire the speed and torque
information, a speed and torque transducer is installed on the
HS sha�. Four accelerometers weremounted on the top of the
gearbox casing and the vibration signals were collected from
accelerometer at position S1.

During bearing inspection, we found that all the bearings
have di	erent faults level. Because of the page limitation, only
bearings on high speed sha� were selected as the analyzing
object. �e bearing of le� side has outer race fault as shown
in Figure 28(a). �e bearing of right side has outer race fault,
inner race fault, and ball fault as shown in Figures 28(b) and
29. In this case, only HS bearing faults under load 0Nm and
405Nm are considered.

3.5.1. Results of Bearing Faults under Load 0Nm. Similar
to Case 4, the residual signal is acquired using De-phase
algorithm. �en, three di	erent Kurtogram methods are
applied to the residual signal.�e results are shown in Figures
30–34. In this case, the value of� is 15. Because this case has
three fault types, so we need three di	erent CK to detect the
corresponding fault. In other words, the � of CK is di	erent
for di	erent fault type. �e four base fault frequencies (1Hz
sha� rate) are (BPFO, 3.585), (BPFI, 5.415), (BSF, 2.357), and
(FTF, 0.398). In this case input sha� speed was 20.0222Hz.
�erefore, the fault frequencies are (BPFO, 71.78Hz), (BPFI,
108.4Hz), and (BSF, 47.19Hz). From Figure 30, we can see
that the outer race fault is detected e	ectively. �e BPFO and
its second and third harmonics are very clear. Similar to the
outer race fault detection, the BPFI and its second harmonic
are clear in Figure 31. However, we cannot �nd the BSF and its
harmonics fromFigure 32. Comparedwithmethod proposed
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(a) (b)

Figure 28: HS sha� bearing BPFO faults: (a) le� bearing and (b) right bearing.

(a) (b)

Figure 29: HS right bearing faults: (a) BPFI and (b) BSF.

in this paper, improvedKurtogramdeveloped by Lei et al. and
enhanced Kurtogram developed byWang et al. cannot detect
the bearing faults.

3.5.2. Results of Bearing Faults under Load 405Nm. Similar to
case study under load 0Nm, the results of three Kurtogram
methods are shown in Figures 35–39. In this case, the value
of� was 15. Input sha� speed was 19.66Hz and bearing fault
frequencies are (BPFO, 70.5Hz), (BPFI, 106.5Hz), and (BSF,
46.35Hz). From Figures 35–37, we can see that outer race and
inner race faults can be detected; however, the ball fault is
missed. Figure 38 shows that improved Kurtogram method
developed by Lei et al. can both detect the outer race and
inner race faults. Similar to the new improved Kurtogram
method, the ball fault is undetected. However, the enhanced
Kurtogram developed by Wang et al. cannot detect any of
bearing faults.

3.6. Discussions. In this paper, using �ve case studies, we
demonstrated the e	ectiveness of proposed method. How-
ever, there are some issues which should be further discussed.

(1) �e bearings always operate with other components
simultaneously and the bearing faulty signals o�en
interfere by other components. As we know, the
signature of faulty bearings in electric motor are
relatively simple compared to the signal of faulty
bearings in gearbox.�is is whyWang et al. enhanced
Kurtogram method is useful for motor bearing fault

diagnosis other than gearbox bearing fault diagnosis
(Case 5).

(2) Unlike the implanted bearing faults, naturally devel-
oped bearing faults are very weak and sometimes
those are the distributed faults (like Figure 30).�is is
why proposed new improved Kurtogram gives good
results in Case 5, while Lei et al. and Wang et al.
methods have not demonstrated so good results. It is
well known that implanted bearing faults have severe
level in comparison to those naturally developed
and this is major reason why Lei et al. and Wang
et al. methods are successful in diagnosis of faults,
presented in Cases 3 and 4.

(3) In the proposed new improved Kurtogram, the selec-
tion of� value needs to be further investigated. Dif-
ferent� value will lead to di	erent results. Recently,
the fault diagnosis becomes a hot research topic and
can save great cost for customers. Extracting degra-
dation indicator, which can re�ect the bearing state
condition using proposed new improved Kurtogram
automatically, will be researched in future. A good
degradation indicator will be useful for the remaining
useful life prediction [34].

4. Conclusions

�is paper proposes a new CK value based Kurtogram, called
a new improved Kurtogram that uses time synchronous
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Figure 30:�e results obtained by the proposedmethod for processing the outer race fault of 6205 bearing in gearbox. (a)�e new improved
Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (3, 5) by WPD.
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Figure 31:�e results obtained by the proposed method for processing the inner race fault of 6205 bearing in gearbox. (a)�e new improved
Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (2, 4) by WPD.
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Figure 32: �e results obtained by the proposed method for processing the ball fault of 6205 bearing in gearbox. (a) �e new improved
Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (3, 7) by WPD.
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Figure 33: �e results obtained by the improved Kurtogram proposed by Lei et al. for processing the 6205 bearing in gearbox. (a) �e
improved Kurtogram, (b) power spectrum of the envelope of the signal extracted from node (2, 2) by WPD, and (c) power spectrum of the
envelope signal extracted from node (4, 8) by WPD.
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Figure 34: �e results obtained by the enhanced Kurtogram proposed by Wang et al. for processing the 6205-bearing fault in gearbox. (a)
�e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 16) by wavelet packet transform.

technique to separate the discrete frequency in �rst step using
De-phase algorithm. �en, WPD was used to decompose
and reconstruct the signal and a�er this step CK value
was used as an indicator to select the optimal node which
contains the impulse signal produced by bearing fault. Two

simulated bearing fault signals were used to demonstrate
the method’s e	ectiveness. New improved Kurtogram can
detect the bearing fault even if the SNR is very low. Two
implanted bearing fault data sets and one naturally developed
bearing fault data set were used to further validate the
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Figure 35: �e results obtained by the proposed method for processing the outer race fault of 6205 bearing in gearbox under load 405Nm.
(a) �e new improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (4, 11) by WPD.
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Figure 36: �e results obtained by the proposed method for processing the inner race fault of 6205 bearing in gearbox under load 405Nm.
(a) �e new improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 30) by WPD.
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Figure 37: �e results obtained by the proposed method for processing the ball fault of 6205 bearing in gearbox under load 405Nm. (a) the
new improved Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 1) by WPD.
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Figure 38: �e results obtained by the improved Kurtogram proposed by Lei et al. for processing the 6205 bearing in gearbox under load
405Nm. (a) the improved Kurtogram, (b) power spectrum of the envelope of the signal extracted from node (2, 3) by WPD, (c) power
spectrum of the envelope signal extracted from node (5, 11) byWPD, (d) power spectrum of the envelope signal extracted from node (5, 14)
by WPD.
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Figure 39: �e results obtained by the enhanced Kurtogram proposed byWang et al. for processing the 6205-bearing fault in gearbox under
load 405Nm. (a) �e enhanced Kurtogram and (b) power spectrum of the envelope of the signal extracted from node (5, 13) by WPD.

proposed method. Compared to the methods of Lei et al.

and Wang et al., new improved Kurtogram can detect the
bearing faults more precisely. However, the ball fault is not

able to be detected using proposed method since this type of

fault is too weak compared to other bearing faults especially

with presence of gear faults. Based on proposed method,

extraction of degradation indicator will be researched in
future.



Shock and Vibration 21

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

�is project was supported in part by the Natural Science
Foundation of Hebei Province (E2015506012) and China
Scholarship Council.

References

[1] A. Lesmerises and D. Crowley, “E	ect of di	erent workscope
strategies on wind turbine gearbox life cycle repair costs,”
International Journal of Prognostics and Health Management,
vol. 4, article 017, 7 pages, 2013.

[2] J. S. Lin and Q. Chen, “Fault diagnosis of rolling bearings based
onmultifractal detrended �uctuation analysis andMahalanobis
distance criterion,” Mechanical Systems and Signal Processing,
vol. 38, no. 2, pp. 515–533, 2013.

[3] X. Y. Zhang and J. Z. Zhou, “Multi-fault diagnosis for rolling
element bearings based on ensemble empirical mode decom-
position and optimized support vector machines,” Mechanical
Systems and Signal Processing, vol. 41, no. 1-2, pp. 127–140, 2013.

[4] X.H. Zhang, L. Xiao, and J. S. Kang, “Application of an improved
Levenberg-Marquardt back propagation neural network to gear
fault level identi�cation,” Journal of Vibroengineering, vol. 16, pp.
855–868, 2014.

[5] R. B. Randall and J. Antoni, “Rolling element bearing
diagnostics—a tutorial,”Mechanical Systems and Signal Process-
ing, vol. 25, no. 2, pp. 485–520, 2011.

[6] N. Sawalhi, R. B. Randall, and H. Endo, “�e enhancement
of fault detection and diagnosis in rolling element bearings
usingminimum entropy deconvolution combinedwith spectral
kurtosis,”Mechanical Systems and Signal Processing, vol. 21, no.
6, pp. 2616–2633, 2007.

[7] T. Barszcz and N. Sawalhi, “Wind turbines’ rolling element
bearings fault detection enhancement using minimum entropy
deconvolution,” Diagnostyka-Diagnostics and Structural Health
Monitoring, no. 3, pp. 53–59, 2011.

[8] G. L. McDonald, Q. Zhao, andM. J. Zuo, “Maximum correlated
Kurtosis deconvolution and application on gear tooth chip fault
detection,”Mechanical Systems and Signal Processing, vol. 33, pp.
237–255, 2012.

[9] M. Karimi, Rolling element bearing fault diagnostics using the
blind deconvolution technique [Ph.D. thesis], School of Engi-
neering Systems, Faculty of Built Environmental Engineering,
Queensland University of Technology, 2006.

[10] A. S. Raj and N. Murali, “A novel application of Lucy-
Richardson deconvolution: bearing fault diagnosis,” Journal of
Vibration and Control, vol. 21, no. 6, pp. 1055–1067, 2015.
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