
A new index for more accurate winter predictions

Judah Cohen1 and Justin Jones1

Received 8 September 2011; revised 5 October 2011; accepted 9 October 2011; published 5 November 2011.

[1] Seasonal climate prediction remains a challenge.
During Northern Hemisphere (NH) winter the large‐scale
teleconnection pattern the Arctic Oscillation (AO) explains
the largest fraction of temperature variance of any other
known climate mode. However the Arctic Oscillation is
considered to be a result of intrinsic atmospheric dynamics
or chaotic behavior and therefore is unpredictable. Here
we develop a snow advance index (SAI) derived from
antecedent observed snow cover that explains a large
fraction of the variance of the winter AO. The high
cor re la t ion between the SAI and the winter AO
demonstrates that the AO is most likely predictable and
that this index can be exploited for skillful seasonal
climate predictions. Citation: Cohen, J., and J. Jones (2011),
A new index for more accurate winter predictions, Geophys. Res.
Lett., 38, L21701, doi:10.1029/2011GL049626.

1. Introduction

[2] The most important advance in seasonal climate pre-
diction has been the linkage of the dominant mode of
tropical atmosphere and ocean variability (El Niño‐Southern
Oscillation or ENSO) with surface temperatures and pre-
cipitation patterns across the globe. However, predictive
skill for temperature forecasts outside of the tropics,
including the U.S., has been mixed [Spencer and Slingo,
2003; Cohen and Fletcher, 2007]. The most commonly
employed tool in seasonal forecasting at the operational
forecast centers is general circulation models or global cli-
mate models (GCMs). These highly complex dynamical
models represent many of the major processes in the ocean‐
land‐atmosphere climate system; however, at present nearly
all of their seasonal forecast skill can be attributed to vari-
ability in ENSO alone [van Oldenborgh et al., 2005a, 2005b;
Quan et al., 2006; Delsole and Shukla, 2006; Saha et al.,
2006]. But, the fact that ENSO variability offers only lim-
ited atmospheric predictability away from the tropics [Kumar
et al., 2007] has proven a natural constraint on improving
seasonal prediction skill in the extratropics. In light of limited
extratropical predictability associated with ENSO, a question
remains as to what are the prospects for skillful seasonal and
longer forecasts in the extratropical latitudes.
[3] A dominant mode of Northern Hemisphere (NH)

winter climate variability is the North Atlantic Oscillation
(NAO) or the Arctic Oscillation (AO). The surface‐
temperature and surface‐circulation signatures of the N/AO
are strongest in the North Atlantic sector [Ambaum et al.,
2001; Cohen and Saito, 2002]. It has been argued that a

better understanding of the N/AO variability could lead to
improved extratropical predictability, and is often recognized
as the most important anticipated advance in seasonal climate
forecasting [Cohen, 2003] especially for the eastern U.S. and
Europe, regions where temperature forecasts based on ENSO
have little or no skill [O’Lenic et al., 2008; Livezey and
Timofeyeva, 2008].
[4] The harsh winters of 2010/11 but especially 2009/10

across the NH mid‐latitudes coupled with a record minimum
value in the N/AO index focused greater attention on the
N/AO and its strong relationship with NH winter climate
anomalies. Studies of that winter have mostly concluded that
internal atmospheric dynamics drive the phase and ampli-
tude of the N/AO and that it is therefore unpredictable
[Seager et al., 2010; Jung et al., 2011]. In contrast one study
argues that the record low AO observed that winter was at
least partially attributed to above normal snow cover across
Eurasia during the preceding October [Cohen et al., 2010].
To what extent is the N/AO variability predictable and is it
related to varying boundary conditions? Linking the N/AO
to varying boundary conditions could therefore provide
greater predictability for seasonal climate variability in the
extratropics.
[5] In the NH, snow cover is the most variable land sur-

face condition in both time and space [Cohen, 1994] making
it a viable candidate for amplifying climate and atmospheric
anomalies. An early study demonstrated from the observa-
tions that the time series of fall Eurasian snow cover is
significantly correlated with the winter (December–February)
AO [Cohen and Entekhabi, 1999]. Therefore snow cover is a
potentially useful and important modulator of winter climate,
especially for those lands areas in the North Atlantic sector,
including the eastern US and Europe, where the influence of
the N/AO are the strongest.
[6] Follow‐up observational studies have established a

statistically significant link between fall snow cover extent
(SCE) and the winter AO and numerical modeling experi-
ments forced with varying Eurasian SCE, reproduce an
atmospheric AO response in winter similar to the observa-
tions [Gong et al., 2003; Cohen et al., 2007; Fletcher et al.,
2009; Orsolini and Kvamstø, 2009; Allen and Zender, 2010;
Mote and Kutney, 2011; Peings et al., 2011]. However
during October 2009 it was not the mean SCE that was
exceptional but rather the rapidity of the snow cover
advance that was exceptional [Cohen et al., 2010].
[7] Therefore rather than creating an index from monthly

SCE we created an index from the mean rate of change of
SCE from daily snow cover data [Ramsay, 1998], which we
refer to as the snow advance index or SAI.

2. Data and Methods

[8] For all climate data we used the National Center for
Environmental Protection (NCEP)/National Center for
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Atmospheric Research (NCAR) Reanalysis Project [Kalnay
et al., 1996]. Monthly and weekly SCE from 1973–2010
was derived from NOAA’s satellite‐sensed observations
[Robinson et al., 1993]. Daily snow cover data from 1997‐
2010 was taken from the Interactive Multisensor Snow and
Ice Mapping System (IMS), which generates daily 4km and
24km maps of snow, and ice cover derived from visible and
microwave satellite imagery [Ramsay, 1998]. The system has
incorporated new products as they have become available,
including the Advanced Very High Resolution Radiometer
(AVHRR) channel 4A in February 2001 and the moderate
resolution imaging spectroradiometer (MODIS) channel 1 in
February 2004 [Helfrich et al., 2007]. We only computed
snow cover for Eurasia, which we define as 25–85°N and 0–
180°E. The winter (December, January and February) AO
indexwas computed from themonthlyAOvalues published on
the Climate Prediction Center website (http://www.cpc.ncep.
noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml).
[9] Correlation and linear regression analysis are the two

statistical techniques employed throughout the study. Sta-
tistical significance of correlation coefficients were computed
using a Student two‐tailed t‐test. The snow advance index
(SAI) is the regression coefficient of the least square fit of
the daily Eurasian SCE equatorward of 60°N calculated for
the month of October. The units of the SAI index are million
km2/day. A plot of the October SAI for Eurasia correlated
with the winter AO at each latitude shows that the highest
correlations exist equatorward of 60°N (Figure S1 of the
auxiliary material).1 In the remainder of the Letter the SAI
index will be limited to all latitudes equatorward of and
including 60°N. In Figure S2 of the auxiliary material we
show the daily Eurasian snow cover equatorward of 60°N
for Octobers 2007, 2009 and the 14‐year mean with the
trend line associated with both years (and the mean) as

examples of two years with a low and high SAI value
respectively.

3. Results and Discussion

[10] In Figure 1 we plot the October SAI for Eurasian
SCE equatorward of 60°N correlated with the following
winter AO. The correlation between the two time series is
∼0.86. Daily snow cover has only been available for 14 years.
Over that time period the SAI has significantly out-
performed the SCE as a predictor of the winter AO. How-
ever because the SAI time series is only available for a
relatively short period, therefore in Figure 2 we computedFigure 1. Time series of the October daily snow advance

index (SAI in blue) and the December–February (DJF) Arctic
Oscillation (AO in black) for the years 1997/98 through
2010/11. Both time series are detrended and are shown as
standardized anomalies. The SAI index is multiplied by
−1 for ease of comparison. Correlation coefficient for the
two time series is 0.86, which is statistically significant at
the p < 0.01 level. The correlation coefficient is 0.75 when
2009 is removed.

Figure 2. Time series of the October SAI using weekly
data (blue) and the December–February AO (black) and
the October‐mean Eurasian snow cover extent (SCE in
red) for the years (a) 1973/74‐2010/11 and (b) 1997/98‐
2010/11. (c) Time series of the SAI using daily data for
weeks 40–44 (blue) and the December–February AO (black)
for the years 1997/98 through 2010/11. All values are
shown as standardized anomalies. Correlation coefficients
shown in blue are for SAI and the AO while correlation
coefficients shown in red are for SCE and the AO. The snow
indices are multiplied by −1 for ease of comparison. All cor-
relations between the SAI and the AO are significant at the p <
0.01 level.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049626.
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the SAI using weekly SCE for weeks 40‐44, which most
closely corresponds to October and correlated the time series
with the following winter AO. For comparison we included
the October SCE index going back to 1973 and the overlap
period of 1997–2010. Even the highly degraded weekly SAI
outperforms the October SCE index as a predictor of the
winter AO over the period of 1973–2010 and especially
the period of 1997–2010 (0.60 vs. 0.17). And importantly the
correlation remains above 0.6 for all time periods, which is
considered the minimum value required for skillful predictions.
[11] In Figure 3 we correlate the SAI with winter sea level

pressure (SLP) and for comparison we correlate the winter
AO with winter SLP. Given the strong coupling between the

surface AO and the stratospheric AO [Baldwin and
Dunkerton, 2001], we repeated the same analysis with the
geopotential height field at 50 hPa (Figure S3 of the
auxiliary material). Remarkably similar patterns are revealed
in both the SLP and 50 hPa height fields. The canonical AO
pattern can be seen when both variables are correlated with
SLP and 50 hPa geopotential heights, with one signed
anomaly over the Arctic and a ring of opposite signed
anomalies over the mid‐latitudes especially over the oceans.
The pattern correlation when correlating the AO and the SAI
with SLP and 50 hPa heights are both 0.94. Also shown in
Figure 3 are the values of the SAI and the AO correlated
with land surface temperatures (Ts). In the Ts field for both

Figure 3. (a) Correlation of DJF AO and DJF SLP. (b) Correlation of October SAI and DJF SLP. (c) Correlation of DJF
AO and DJF land surface temperatures. (d) Correlation of October SAI and DJF land surface temperatures.

COHEN AND JONES: NEW SNOW INDEX L21701L21701

3 of 6



plots the canonical quadropole pattern is seen with one
signed anomaly across Northern Eurasia and the United
States, east of the Rockies and an opposite signed anomaly
across the Mediterranean, North Africa and the North
American Arctic.
[12] One immediate potential benefit of the development

of this new index is improved seasonal climate predictions.
The ability to predict the winter AO is considered the single
most important advance in achieving successful winter
forecasts. We created cross validated hindcasts of winter
land Ts using as predictors the SAI, the winter AO and the
winter Niño 3.4 index; the anomaly correlation of all three
predictors are shown in Figure 4 (only positive values
shown). Even exact knowledge of the winter Niño 3.4 index

provides no forecast skill for the Eastern US and virtually all
of Eurasia. Instead, exact knowledge of the winter AO and the
SAI demonstrates positive forecast skill for the Eastern US
and large portions of Northern Eurasia. And considering that
the SAI index is known four months prior to the winter
AO, yet matches the skill of the winter AO so closely,
demonstrates great potential for improved real‐time winter
forecasts.

4. Conclusions

[13] The implications of this discovery are potentially
significant. Currently the AO is considered a product of the
stochastic behavior of internal atmospheric dynamics and

Figure 4. The anomaly correlation coefficient for cross‐validated hindcasts of DJF land surface temperatures using as a
predictor the (a) October SAI, (b) the DJF AO, and (c) the DJF Niño 3.4 index. Only positive values are shown.
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therefore chaotic. The fact that we discovered a single pre-
dictive index that explains close to 75% of the variance of
the winter AO (though the period is short and the degraded
SAI over a longer time period explains less of the AO
variance) is inconsistent with this thinking and demonstrates
that the AO, while thought to be unpredictable, may in fact
be one of the most easily predicted phenomenon known in
the climate system. Even the most sophisticated GCMs
achieve only marginal skill on the seasonal time scale in the
extratropics (for examples see Figure S4 of the auxiliary
material). Implementation of the SAI in winter seasonal
forecasts could potentially be a sea change in operational
seasonal forecasts (compare Figure 4a with Figure S4 of the
auxiliary material).
[14] Even on longer time scales these results have

important implications. Based on the presented results
snow‐atmosphere coupling is fundamental to winter climate
dynamics. Currently the state of the art GCMs are deficient
in simulating snow atmosphere coupling on seasonal time
scales [Hardiman et al., 2008]. Furthermore GCMs simulate
the variance in SCE more poorly than they simulate mean
SCE [Frei et al., 2003] and as we show here it is the vari-
ability in fall SCE that is more important than the mean fall
SCE in predicting the winter AO. Large improvements are
needed in simulating land‐atmosphere coupling before we
can be confident in numerical seasonal to interannual winter
climate predictions for the NH extratropics.
[15] An important question that we have not answered is

why the October SAI is more highly correlated with the DJF
AO than the October SCE index. One likely reason is that
the SAI is limited to latitudes equatorward of 60°N while the
SCE index includes all of Eurasia, which has a significant
amount of snow cover north of 60°N. Assuming that the
high albedo of snow cover is one if not the most important
snow characteristic that influences the overlying atmo-
sphere, this would favor the SAI, which is limited to regions
that are exposed to a higher sun angle more so than the SCE,
in predicting the atmospheric response to snow cover vari-
ability. Another possibility is that the SAI is sensitive to the
timing of snowfall, where snowfall at the end of the month
contributes to higher values of the SAI and snowfall at the
beginning of the month contributes to lower SAI values
while the monthly‐mean SCE is insensitive to the timing of
snowfall. A rigorous answer to the question is beyond the
scope of this concise Letter and will require more in‐depth
analysis.
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