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Abstract

We introduce a new inductive approach to the lace expansion� and apply it to
prove Gaussian behaviour for the weakly self�avoiding walk on Zd where loops of
length m are penalised by a factor e���m

p

�� � � � �� when�
��� d � 	� p � �

��� d � 	� p � ��d

� �
In particular� we derive results rst obtained by Brydges and Spencer �and revisited
by other authors� for the case d � 	� p � �� In addition� we prove a local central
limit theorem� with the exception of the case d � 	� p � ��
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� Introduction and main theorems

Since its introduction by Brydges and Spencer ��� in ���
� the lace expansion has been
developed into a powerful tool for the analysis of mean��eld behaviour for self�avoiding
walks� lattice trees and lattice animals� and percolation� Our purpose in this paper is
to describe a new inductive approach to the lace expansion� which is simple and direct�
We believe this approach to be su�ciently �exible so as to allow for a simpli�cation and
extension of the results that have been obtained with the lace expansion so far�

We develop the method in the setting of a model of weakly self�avoiding walks on
Z
d where loops of length m are penalised by a factor e���m

p

�� � � � ��� For d � ��
p � � we recover the results proved by Brydges and Spencer ��� for d � �� p � �� namely�
that the mean�square displacement is asymptotically linear in the number of steps and
that the scaling limit of the endpoint is Gaussian� For d � �� p � ��d

� we prove similar
results� thereby showing that di�usive behaviour persists for lower dimensions at the cost
of su�ciently lowering the penalty of long loops� In addition� we prove a local central
limit theorem for d � �� p � � and for d � �� p � ��d

� � This leaves open the important
case d � �� p � �� Other aspects of the model have been studied by Caracciolo et al� ���
and Kennedy ����

Several approaches to the lace expansion for self�avoiding walks have appeared previ�
ously in the literature� the principal di�erence between the approaches being the methods
used to obtain convergence of the expansion� Brydges and Spencer ��� used induction
on �nite memory and advanced the induction with the help of generating functions
�Laplace transforms� and complex analysis �to invert generating functions�� Slade ����
proved convergence via generating functions with no induction argument� while using
a �nite memory cuto�� Hara and Slade �� �see also Madras and Slade ����� proved

�



convergence via generating functions� but avoided the use of �nite memory� Golowich
and Imbrie �
� used induction on �nite memory together with a cluster expansion �also
called a polymer expansion�� Khanin et al� ���� used induction on the length of the walk
together with a cluster expansion�

Our method involves induction on the length of the walk� but does not use generating
functions� complex analysis� �nite memory� or a cluster expansion� The induction step
is direct and relatively simple�

To indicate the nature of the induction� we begin by introducing the fundamental
object of study� For x � Zd� we set c��x� � ���x and� for n � �� p � R� � � �� we de�ne

cn�x� �
X

� � �� x
j�j � n

e
��
P

��s�t�n
Ust���
js�tjp

�
X

� � �� x
j�j � n

Y
��s�t�n

�� � �stUst�	��
 �����

where

Ust�	� �

�
� if 	�s� � 	�t�
� if 	�s� �� 	�t�


 �����

�st � �st��
 p� � �� e
� �
js�tjp 
 ���	�

and the sum in ����� is over all n�step simple random walk paths from � to x� The
Fourier transform of ����� is written

�cn�k� �
X
x�Zd

cn�x�e
ik�x
 k � ���
 ��d
 �����

and we use the abbreviation

cn � �cn��� �
X
x�Zd

cn�x�� ���
�

We also need the characteristic function of the step distribution of simple random walk�
which is

�D�k� �
�

d

dX
l��

cos kl
 k � �k�
 � � � 
 kd�� �����

The lace expansion is a combinatorial identity in terms of a function ��m�k�� de�ned
in �A���� stating that

�cn���k� � �d �D�k��cn�k� �
n��X
m��

��m�k��cn���m�k�� ����

A basic step in any lace expansion analysis is the observation that ��m can be bounded
in terms of ��cj���j�m� We emphasise that here only � � j � m appear� not j � m�

	



This means that the right�hand side of ���� can be analysed solely in terms of ��cj���j�n�
which opens up the possibility of an inductive analysis� with the induction on n� This is
precisely what we shall do�

Our approach should be contrasted with the inductive approaches in Golowich and
Imbrie �
� �induction on �nite memory� and Khanin et al� ���� �induction on n�� In these
papers the authors expand the right�hand side of ���� by iteration� until all ��cj�k����j�n
have been replaced by ���i�k����i�n� and then use a cluster expansion to handle the myriad
factors of ��i�k�� Our approach� however� uses ���� in its current form� without further
iteration or expansion� In this way we avoid a signi�cant level of technical di�culty�

The following two theorems are our main results� We de�ne

� � p�
d � �

�
� �
 �����

which turns out to be the key parameter in the model� The �rst theorem extends the
results of Brydges and Spencer ��� for d � �� p � ��

Theorem �
� Suppose that either d � �� p � � or d � �� p � ��d
�
� Then there is a

�� � ���d
 p� � � such that for � � ���
�a�

cn � A�n�� �O�n����
 �����

�b�
�

cn

X
x

x�cn�x� �

�
Dn�� �O�n������ � �� �
Dn�� �O�n�� log n�� � � �


 ������

�c�
�

cn
�cn
� kp

Dn

�
� e�

k�

�d
���O	n��

�

�
 ������

where �
A
D � � are constants �depending on d
 p
 ��� � is given by ������ �� � ��
 �� ��
is arbitrary� and the error estimate in �c� is uniform in k � Rd provided kkk��log n�����
is su	ciently small�

The second theorem is a local central limit theorem� but leaves open the important
case d � �� p � �� �At the end of Section ���� we comment on what goes wrong in our
proof of of the local central limit theorem for this case��

Theorem �
� Suppose that either d � �� p � � or d � �� p � ��d
�
� Then there is a

�� � ���d
 p� � � such that for � � ���

cn�x�

cn
� �

�
d

��Dn

� d
�

e�
dx�

�Dn as n	

 ������

where n is taken to have the same parity as kxk�� and the error estimate is uniform in
x � Zd provided kxk��n log n����� is su	ciently small� For d � �� p � �� the following
weaker result holds


sup
x�Zd

cn�x�

cn
� O�n� d

� �� ����	�

�



Our paper is organised as follows� The lace expansion is discussed in Appendix A�
where ��m�k� is de�ned� and ���� is proved in Lemma A��� The induction hypotheses
used in the proof of Theorems ��� and ��� are stated in Section �� In Section ���� we show
how the induction hypotheses involving � � m � n can be used to bound ��n���k�� This
will be the primary driving force of the induction argument� The only fact that we will
subsequently need about ��m�k� is that� under our induction hypotheses� it satis�es the
bounds in Lemma ��	� This lemma requires standard lace expansion methods� described
in the Appendix in Section A��� that are present in one form or another in all previous
work on the problem� In Section 	� the induction is advanced� Finally� in Section �� the
completed induction is used to prove Theorems ��� and ���� the constants �
A
D are
identi�ed� and some discussion is provided of potential extensions of our method�

� The induction hypotheses �H��H��

��� De�nitions and statement of induction hypotheses

Let z� �
�
�d � and de�ne zn recursively by

zn�� �
�

�d

�
��

n��X
m��

��m���z
m
n

�

 n � �
 �����

with ��m��� given by the Fourier transform of �A��� at k � �� For z � � and n � �� de�ne

An�k� � zn�cn�k�
 �����

Bn � �dz �
nX

m��

r���m���z
m
 ���	�

Cn �
nX

m��

�m� ����m���z
m �����

�r is the gradient with respect to k� and

Dn �
Bn

� � Cn

� ���
�

The z�dependence of An�k�
 Bn
 Cn
Dn will be left implicit in the notation�
Let �� denote the vector in Rd whose components are all equal to the number �� Since

cn�x� is nonzero only when kxk� and n have the same parity� we have An�k � ��� �
����nAn�k�� Thus it is su�cient to consider k � ���

� 

�
� �� ���
 ��d���

The induction hypotheses below involve a number of constants� For � as de�ned in
������ we �x 
 �
 �� � � according to

� � �� �
�� �  �  � �� � � � �� �����






We also �x K�
 � � � 
K� according to

K
K� � K�
K�
K� � K� � �� ����

The amount by which� for instance� K� must exceed K� is independent of � and will
be determined in the course of the advancement of the induction �see Sections ��	 and
	���	�
��

We make separate induction hypotheses for small n and large n� using a k�dependent
time scale m�k� � � to separate �small� from �large�� For k � ���

�

 �
�
� � ���
 ��d�� such

that � � �D�k� � 	
� �recall ������� we de�ne

m�k� � 
�

� � �D�k�
log

�

� � �D�k�
� � log

��


�
� �
 �����

while for k such that � � �D�k� � 	
�
� we de�ne m�k� � ��

For n � �� we de�ne intervals

In � �zn �K��n
����
 zn �K��n

������ �����

Throughout the rest of this paper we require that either d � �� p � � or d � ��
p � ��d

�
� and we �x � � �� with �� � ���d
 p� � � su�ciently small� Our induction

hypotheses are that the following six statements hold� for all k � ���
� 


�
� � � ���
 ��d��

and all z � In�

�H�� For � � j � n � jzj � zj��j � K��j
�����

�H�� For � � j � n � jDj �Dj��j � K��j
�����

�H	� For � � j � n � m�k� � Aj�k� �
jQ

i��
���Di��� �D�k�� � Ei�k���� � Fi�

with jEi�k�j � K�k
�i�


�

 jFij � K�i

�����

�H�� For m�k� � j � n � jAj�k�j � K�k
���
j�����

�H
� For m�k� � j � n � jAj�k��Aj���k�j � K�k
���
j�����

�H�� For � � j � n � jr�Aj����r�Aj����� �DjAj�����j � K��j
���

Hypothesis �H	� is vacuous when n � m�k�� while �H��H
� are vacuous when n � m�k��
For k � �� �H	� reduces to Aj��� �

Qj
i���� � Fi��

We begin the induction by verifying �H��H�� for n � �� Since z� � z� �
�
�d
� �H��

holds� Since D� � D� � �� �H�� holds� Since A��k� � �dz �D�k�� with z � I�� �H	�

�



holds provided K � �dK� �take E��k� � � and F� � �dz � � � �d�z � z���� For �
small enough� we have jA��k�j � �dz � � for all z � I�� Hence we can choose K� large
enough that �H�� holds� and since A��k� � �� we can also choose K� large enough that
�H
� holds� Finally� since A��k� � �� r� �D��� � �� and z � I�� �H�� holds provided
K� � �dK��

��� Motivation

In this section� we motivate the induction hypotheses�

�
 Because of the sub�multiplicativity bound cm�n � cmcn �which is a simple consequence
of the de�nition of cn in ���
��� the limit � � limn�� c��nn exists� The factor zn in ������
with z � In de�ned by ������ is intended to approximate ��n� and hence to cancel the
exponential growth of cn� Our initial lack of a convenient expression for � prompts us
to formulate the induction hypotheses for a small interval of z�values� The sequence
zn will ultimately converge to ���� Hypothesis �H�� drives this convergence and gives
some control on the rate� Moreover� as we will see in Section ���� �H�� guarantees
that the intervals Ij are decreasing� I�  I�  � � �  In� Because the length of these
intervals is shrinking to zero� their intersection ��j��Ij is a single point� namely �

��� For
large n� if z � In� then zn is close to ��n� Consequently� as we will see in Section ��	�
limn�� An��� � A� where A is the amplitude in Theorem ����a��

�
 To motivate the recursion ������ we begin by substituting ����� into ����� obtaining

An���k� � �dz �D�k�An�k� �
n��X
m��

��m�k�z
mAn���m�k�� ������

Setting k � �� taking n	
� and replacing An���m��� by its limiting value A� we get

� � �dz �
�X

m��

��m���z
m ������

�with the series not yet shown to be convergent�� The recursion ����� approximates this
relation� namely� by discarding the ��m��� for m � n� � that cannot be handled at the
nth stage of the induction argument� In Section ��	� we will show that ������ holds for
z � ����

�
 The quantity Dn de�ned in ���
� is an approximation to the di�usion constant D of
Theorem ����b�� Hypothesis �H�� expresses the convergence of Dn to D and gives some
control on the rate� Ignoring the error terms in �H	�� replacing Di by D for � � i � j�
and using the fact that �� �D�k� � k�

�d
as k	 �� we see that the right�hand side of �H	�

is an approximation to the exponential behaviour

Aj�k� � Aj��� exp
h
�D

k�j

�d

i
������





consistent with Theorem ���� Note that for z � �
�d
and � � �� we haveDi � � for all i� so

that �H	� reduces to Aj�k� � �D�k�j � which is the correct simple random walk behaviour
for all j and k�

	
 For large j� we require less detailed control of Aj�k�� as expressed in �H��H
�� The
overlap of �H	� with �H��H
� for j � n � m�k� places restrictions on the values of K�

and K� �see Section ��	�� Hypothesis �H
� is needed only to advance �H���

�
 We will use �H	�H�� to obtain an estimate for kAjk� for � � j � n� This will provide
us with a bound on kcjk� for � � j � n and� by Lemma A��� on ��m�k� for � � m � n���
This mechanism drives the induction argument�

�
 For simple random walk with z � �
�d
and � � �� we have Aj��� � �� r�Aj��� � �j�

and the di�usion constant is �� The left�hand side of �H�� is therefore zero for simple
random walk� and �H�� is an appropriate generalisation for the interacting model� The
form ���
� of Dn�� can be motivated by the following rough argument� Di�erentiating
������ twice with respect to k� setting k � �� and using the fact that odd derivatives
vanish� we obtain

r�An����� � �dz�r�An����An���� ����	�

�
n��X
m��

h
��m���z

mr�An���m��� �r���m���z
mAn���m���

i
�

Approximating �dzr�An��� by ���Pn��
m�� ��m���z

m�r�An��� �recall ������� An���m��� by
An��� in the last term� and recalling ���	�� we get

r�An������r�An��� � �Bn��An����
n��X
m��

��m���z
m
h
r�An���m����r�An���

i
� ������

Next� approximating r�An���m����r�An��� by �m���Dn��An���� in accordance with
�H��� we get �recall ������

r�An����� �r�An��� � �Bn��An��� �Dn��Cn��An���� ����
�

Putting the right�hand side equal to Dn��An���� we �nd ���
��

��� Extension of �H��H	


In this section we show that �H��H	� imply �H��H
� for rm�k� � j � m�k�� provided r
is su�ciently close to �� This will be used in Section 	��� Here� and throughout the rest
of this paper�

C denotes a strictly positive constant that may depend on d
 p
 
 �
 ��
 r� but not
on K�
 � � � 
K�� not on k� and not on � �provided � is su�ciently small� possibly
depending on K�
 � � � 
K��� The value of C may change from line to line�

�



We have already checked that �H��H
� hold for j � �� so we can restrict attention
to j � �� which implies m�k� � j � � and hence �recall ������ � � �D�k� � 	

�
� �

�
� Since

D� � �� we have
jDi � �j � CK��
 � � i � j
 ������

by �H��� so all factors in the product in �H	� are strictly positive when � is su�ciently
small� Using � � x � ex� we therefore have

� � Aj�k� �
jY

i��

h
� �Di��� �D�k�� � Ei�k�

i
�� � Fi�

� exp
h jX
i��

n
�Di��� �D�k�� � jEi�k�j� jFij

oi
� �����

The bounds of �H	� now give

jAj�k�j � exp
h
� j��� CK������ �D�k�� � CK�j

��
�k� � CK�
i

� � exp
h
� j�� � C�K� �K������ �D�k��

i

 ������

where we use ������� � � �� � �� and the inequality �� �D�k� � Ck��
For rm�k� � j � m�k�� the right�hand side of ������ is maximal at j � rm�k�� while

the bound of �H�� is minimal at j � m�k�� To obtain �H��� it therefore su�ces to show
that K� can be chosen large enough to guarantee that

� exp
h
� rm�k���� C�K� �K������ �D�k��

i
� K�m�k�

����k���
� ������

The left�hand side equals ��� � �D�k��r		��C	K��K�
�
� For k 	 �� this term behaves
like a multiple of k�r		��C	K��K�
�
� while the right�hand side behaves like a multiple of
k���
�log �

k�
����� Thus ������ holds for all k� provided K� � � and

�r�� � C�K� �K��� � ��� �� ������

For � small and for r su�ciently close to �� ������ is satis�ed for any  obeying the
bound in ������ This completes the derivation of �H�� from �H	� for rm�k� � j � m�k��

To obtain �H
�� we start from the expression

Aj�k��Aj���k� � Aj���k�
nh
��Dj ��� �D�k�� � Ej�k�

i
�� � Fj�� �

o
� ������

For rm�k� � j � m�k�� the absolute value of the factor multiplying Aj���k� on the
right�hand side can be estimated� using �H	�� by

�� � C�K� �K������ �D�k�� � CK�j
���� � ��� � �D�k�� � CK�m�k�

����� ������

The right�hand side is bounded above by a multiple of k�� sincem�k� � Ck����� log k���
�recall ������� Since we have already shown that �H�� follows from �H	� for rm�k� � j �
m�k�� and since the di�erence between �H�� and �H
� is a factor K�k

��K�� it follows
that �H
� holds provided K� � K��

�



��� Preparations� bounds on ��m�k	� � � m � n
 �

In this section� we use the induction hypotheses �H��H�� to prove bounds on ��m�k� for
� � m � n� �� This will be the driving force behind the advancement of the induction
in Section 	�

Lemma �
� Assume �H��H� and �H���
�i� max��j�n Aj��� � eCK���

�ii� jjAjjj� � Kj�
d
� for � � j � n with K � C�� �K���

�iii� jr�Aj���j � K	j for � � j � n with K	 � eC	K��K�
� �K���

Proof� �i� This is an immediate consequence of �H	� with k � ��
�ii� Fix � � j � n� and de�ne

Rj � fk � ���
�

 �
�
�� ���
 ��d�� � m�k� � jg

Rc
j � fk � ���

�

 �
�
�� ���
 ��d�� � m�k� � jg� ����	�

Since Aj�k � ��� � ����jAj�k�� we have

jjAjjj� � �
Z
Rj

jAj�k�jdk � �
Z
Rc
j

jAj�k�jdk� ������

Using ������ on Rj �which follows from �H��H	�� and the inequality � � �D�k� � Ck��
and using �H�� on Rc

j� we get

jjAjjj� � �
Z
Rj

e�Cjk
�
dk � �

Z
Rc
j

K�j
����k���
dk� ����
�

The �rst term on the right�hand side is bounded above by Cj�d���
Since � � � � d

� � p� to complete the proof it su�ces to show that

j�p
Z
Rc
j

k���
dk � C� ������

The integral is bounded uniformly in j when � � � � d� so we need only consider the
case � � � � d� By ������ Rc

j � fk� � � �D�k� � C log j
j
g� But � � �D�k� � k�

�d
� and hence

Rc
j � fk� k� � C log j

j
g� Therefore� when �� � � d� the left�hand side of ������ is bounded

above by

j�p
Z
k�
C log j

j

k���
dk � Cj�p
�
log j

j

� d����
�

� Cj���
�
� �log j�

d����
� � C
 �����

where we use that � � �� �recall ������� A similar calculation applies in the borderline
case � � � � d� yielding the bound Cj�p

p
log j � C�

�iii� This is an immediate consequence of �H��H	� and �H��� �

��



Lemma �
� Assume �H��� Then I�  I�  � � �  In�

Proof� Recall ������ Suppose z � Ij for some � � j � n� Then by �H���

jz � zj��j � jz � zjj� jzj � zj��j � K��

j���
�
K��

j���
� K��

�j � �����

 ������

and hence z � Ij��� �

The next lemma is the key to our induction step� as it provides bounds� in particular�
on ��n���k��

Lemma �
� Assume �H��H� and �H��� For � � m � n � �� z � In� and k �
���

�

 �
�
�� ���
 ��d���

�i�
j��m�k�j zm � CK�m����
 ������

�ii�
jr���m�k�jzm � CK�m����
 ���	��

�iii� 			��m�k�� ��m��� � ��� �D�k��r���m���
			zm � CK�k�����m��������
 ���	��

where K is the constant in Lemma ����ii� and � � �� � � is arbitrary�

Proof� �i� By Lemma A���i��

j��m�k�j � �d��m�kcm��k� �
�X

N��

��N � ���N��
X

��m	�kcm�k�
N��Y
l��

��m�
l�kcm�

l
k�cml




���	��
where ��m� � ��e���mp � �m�p� cj �

P
x cj�x�� kcjk� � supx cj�x�� and the unlabelled

sum is over the set of m	
m�
m
�
�
 � � � 
mN��
m

�
N�� whose sum is m and for which m	 is

maximal and m�
l � ml for each l� The conditions on the unlabelled sum imply that all

cj on the right�hand side of ���	�� involve � � j � m� � � n only�
We multiply both sides of ���	�� by zm and associate a factor zj to each cj on the

right�hand side� By Lemma ���� z � Ij for each � � j � n� Using the relations
cj � z�jAj���� kcjk� � �����dz�jkAjk�� we then obtain

j��m�k�jzm � C
h
�m�pkAm��k� �

�X
N��

��N � ���N��
X

��m	��pkAm�k�

�
N��Y
l��

��m�
l�
�pkAm�

l
k�Aml

���
i
� ���		�

By Lemma ����i�ii�� and the fact that m	 � ��N�����m� the unlabelled sum is bounded
above by

KN�N��N � ��
d
��pm� d

��p

�
�P

m���

m�P
m��

�m���
d
��p

�N��

eCK��	N��


� KN�N��N � �����m����CN��
 ���	��

��



where we also insert d
�
� p � � � �� Hence� for � su�ciently small� the sum over N

in ���		� converges and is bounded above by CK���m����� The �rst term in ���		� is
bounded above by

C�m�pK�m� ���
d
� � CK�m����
 ���	
�

which dominates the second term for � su�ciently small because it has one factor � less�
This proves the claim�

�ii� The proof is similar� and uses Lemma A���ii� and Lemma ����iii��

�iii� This follows immediately from �ii� and Lemma A���iii�� where also the restriction
on �� appears� �

� The induction advanced

In this section we advance the induction hypotheses �H��H�� one by one� The compu�
tations are technical but not di�cult� Throughout this section� in accordance with the
uniformity condition on �H��H��� we have z � In���

��� Advancement of �H�


By ����� and the mean�value theorem�

zn�� � zn � � �

�d

�
nX

m��

��m����z
m
n � zmn��� � ��n�����z

n��
n

�

� � �

�d

�
�zn � zn���

nX
m��

m��m���y
m��
n � ��n�����z

n��
n

�

 �	���

where yn is between zn and zn��� By �H�� and ������ yn � In� It further follows from
�H�� that y��n � C� Hence� by Lemma ��	�i� and �H��� we have that

jzn�� � znj � �

�d

h
K��n

����
nX

m��

CK�m���� �K��n� ������
i

� �

�d
�CK�K�� �K���n� ������� �	���

Thus �H�� holds for n��� provided � is small enough andK� �
K
�d � SinceK � C���K���

it therefore su�ces that K� � K��

Now that �H�� holds for n��� it follows that In�� � In� as in the proof of Lemma ����
For n � �� de�ne

�n�� � �� � �dz �
n��X
m��

��m���z
m� �	�	�

As usual� we do not make the z�dependence explicit in the notation� and we recall that
z � In��� The following lemma� whose proof makes use of �H�� for n��� will be needed
in Sections 	�	�	�
�

��



Lemma �
� Uniformly for z � In���

j�n��j � CK���n� ������� �	���

Proof� By ����� and the mean�value theorem�

j�n��j �
			�d�z � zn��� �

n��X
m��

��m����z
m � zmn �

			
�

			�d�z � zn��� � �z � zn�
n��X
m��

m��m���y
m��
n

			
 �	�
�

where yn is between z and zn� Also� z � In�� � In and zn � In� and hence yn � In�
Therefore� by Lemma ��	�i��

j�n��j � �dK���n� ������ �K��n
����C

n��X
m��

CK�m����

� CK���� �K���n� ������ �	���

�recall that y��n � C�� �

��� Advancement of �H�


The de�nition of Dn in ���
� implies that

Dn�� �Dn �
�

� � Cn��
�Bn�� �Bn�� Bn

�� � Cn��� � Cn���
�Cn�� �Cn�
 �	��

where� by ���	������

Bn�� �Bn � �r���n�����z
n��
 Cn�� � Cn � n��n�����z

n��� �	���

By Lemma ��	�i�ii� and the fact that z � In�� � In� both di�erences are bounded above
by CK�n����� In addition� jBn��j � C�K��K�� and jCnj
 jCn��j � CK�� This leads
to

jDn�� �Dnj � ��� � CK����K��n� ������
 �	���

and hence �H�� holds for n � � provided � is small enough and K� � K� Since K �
C�� �K��� it therefore su�ces that K� � K��

��� Advancement of �H�


This section� which involves our principal induction hypothesis� is the most technical�
Throughout this section� we �x k and n � � � m�k�� Because �H	� has already been
veri�ed for n � �� we need only consider m�k� � �� which implies that

� � �D�k� � 

�
� �	����

�	



�
 The induction step will be achieved as soon as we are able to write An���k��An�k� ash
� �Dn����� �D�k�� � En���k�

i
�� � Fn���� and show that En���k� and Fn�� satisfy the

required bounds� For this� we will write

An���k�

An�k�
� ��Dn����� �D�k�� � E�

n���k� � Fn�� �	����

and then set

En���k� � �� � Fn���
��
h
E�
n���k� �Dn����� �D�k��Fn��

i
� �	����

To begin� we divide the recursion relation ������ by An�k�� and use �	�	�� to obtain

An���k�

An�k�
� � � �dz��� �D�k�� �

n��X
m��

��m�k�z
mAn���m�k�

An�k�
�

n��X
m��

��m���z
m � �n��� �	��	�

Using ���	������ we can rewrite �	��	� as

An���k�

An�k�
� � � �Bn�� �Dn��Cn������ �D�k�� � E�

n���k� � Fn��
 �	����

where
E�
n���k� � I � II � III � IV and Fn�� � V � �n�� �	��
�

with

I �
n��X
m��

h
��m�k�� ��m���� ��� �D�k��r���m���

i
zm
 �	����

II �
n��X
m��

��m���z
m

�
An���m�k�

An�k�
� An���m���

An���
� �m� ��Dn����� �D�k��

�

 �	���

III �
n��X
m��

���m�k�� ��m���� z
m

�
An���m�k�

An�k�
� An���m���

An���

�

 �	����

IV �
n��X
m��

���m�k�� ��m���� z
m

�
An���m���

An���
� �

�

 �	����

V �
n��X
m��

��m���z
m

�
An���m���

An���
� �

�
� �	����

Since Bn�� �Dn��Cn�� � Dn�� by ���
�� indeed �	���� yields �	�����

�
 Beginning with Fn��� we �rst note from Lemma 	�� that j�n��j � CK���n� �������
To estimate V � and for later purposes� we make use of the following elementary bounds�
For a vector x � �xl� with supl jxlj � �� de�ne ��x� �

P
l

jxlj
��jxlj

� The bound ��� t��� �
exp�t��� t����� together with Taylor�s Theorem applied to f�t� �

Q
l

�
��txl

� gives

					
Y
l

�

� � xl

					 � e�	x



					
Y
l

�

� � xl
� �

					 � ��x�e�	x

 �	����

��



					
Y
l

�

� � xl
� � �X

l

xl

					 � 	

�
��x��e�	x
� �	����

Applying �H	�� the second estimate of �	����� and Lemma ��	�i� to estimate V � we obtain

jV j �

						
n��X
m��

��m���z
m



� nY
j�n���m

�

� � Fj

� �

�

						

�
n��X
m��

CK�

m���

nX
j�n���m

CK�

j���
eCK�� � CKK�

�

�n� �����
� �	��	�

Therefore� if we take K � K� and � su�ciently small� then

jFn��j � j�n��j� jV j � CK�� � CKK�
�

�n� �����
� K�

�n � �����
� �	����

This advances the bound on Fn�� of �H	��

�
We next consider the contributions I
 � � � 
 IV to E �
n���k�� beginning with the simplest

terms I and IV �
For I� by Lemma ��	�iii� we have

jIj �
n��X
m��

			��m�k�� ��m��� � ��� �D�k��r���m���
			 zm

� CK�k�����
n��X
m��

�

m�������
� CK�k�����
 �	��
�

for any �� � �
�
�� By ������ since n� � � m�k�� we have

k� � C
logm�k�

m�k�
� C

log�n� ��

n� �
� �	����

So

jIj � CK�k�

�n � ��
�
�	���

for any �� � ��� �compatible with �������
For IV � we �rst combine Lemma ��	�ii�iii� with �� � � to obtain j��m�k� � ��m���j �

CK�k�m����� Then we argue as for V � to obtain

jIV j �
n��X
m��

CK�k�

m���

nX
j�n���m

CK�

j���
eCK�� � CKK�

�k�

�n� ���
� �	����

	
 For II� we �rst simplify the notation by de�ning

�m�n�k� �
nY

j�n���m

h
��Dj ��� �D�k�� �Ej�k�

i�� � ��
nX

j�n���m

h
Dj ��� �D�k��� Ej�k�

i
�

�	����

�




Since by �H	��

An���m�k�

An�k�
�

An���m���

An���

nY
j�n���m

h
��Dj ��� �D�k�� � Ej�k�

i��

 �	�	��

we can decompose II as
II � II�� II� � II �	�	��

with

II� �
n��X
m��

��m���z
mAn���m���

An���
�m�n�k�
 �	�	��

II� �
n��X
m��

��m���z
mAn���m���

An���

nX
j�n���m

h
�Dj �Dn������ �D�k��� Ej�k�

i

 �	�		�

II �
n��X
m��

��m���z
m

�
An���m���

An���
� �

�
�m� ��Dn����� �D�k��� �	�	��

The terms II� and II can be estimated with the help of �H	�� Lemma ��	�i� and
�	����� Namely� as in �	��	��

jIIj �
n��X
m��

CK�

m���

nX
j�n���m

CK�

j���
eCK��Ck� � CKK�

�k�

�n� ���

 �	�	
�

where we use the inequality � � �D�k� � k�

�d � and the bounds Dn�� � C by �H�� �which
was advanced in Section 	���� Also� using An���m����An��� � eCK�� by �H	�� and the
fact that �� � � by ������ we have

jII�j �
n��X
m��

CK�

m���
eCK��

nX
j�n���m

�
CK��k

�

j�
�
K�k

�

j
�

�
� CK�K� �K���k�

�n� ��
�
� �	�	��

�
 To deal with II�� we use �	���� to estimate �m�n�k�� This gives

jII�j �
n��X
m��

CK�

m���
eCK��

	

�
��m�n�k��

� e�m�n	k
 �	�	�

with

�m�n�k� �
nX

j�n���m

�� � �D�k��Dj � jEj�k�j
� � ��� �D�k��Dj � jEj�k�j

� �	�	��

But� by �H��H	�� �	���� and ������� for su�ciently small � we have

j�m�n�k�j � �m� ����� �D�k��q with q � q�k� � ���C�K��K������Ck��� �	�	��

In particular� since m � n � � � m�k�� it follows via ����� that

e�m�n	k
 � em	k
��� �D	k
�q � ��� �D�k���	q� �	����

��



Therefore� again using n� � � m�k� and ������ we have

jII�j � CK�q���� �D�k����	q
n��X
m��

�

m�
� CK�k���	qm�k���	���
� �	����

Inserting the de�nition of q� we �nd

jII�j � CK�k���
�
�
k�C		K��K�
�k�C	k

�

k���	��

�

m�k���	���

�
� �	����

�A harmless factor logm�k� should also appear in the right sides of �	���� and �	����
when � � ��� Now� k�C	k

�
is bounded and m�k� � Ck���� � log k��� �recall �������

Therefore� and in view of ������ the quantity in parentheses is bounded by a strictly
positive power of k �provided � is su�ciently small�� Since n�� � m�k�� it follows from
�	���� that k� � C�n� ���� logm�k�� and �	���� then gives

jII�j � CK�k�

�n� ��
�
� �	��	�

�
 To estimate III� we use the bound j��m�k� � ��m���j � CK�k�m����� �	�	��� �H	��
and �	����� to obtain

jIIIj �
n��X
m��

CK�k�

m���
eCK���m�n�k�e

�m�n	k
� �	����

By �	�	�� and �	���� therefore�

jIIIj � CK�k���� �D�k����	q
n��X
m��

�

m�
� �	��
�

This is equivalent to the �rst bound in �	����� and therefore III also obeys �	��	��

�
 Combining the above bounds on I
 � � � 
 IV � and recalling that �� � �� we have

jE�
n���k�j �

CK�k�

�n� ��
�
� �	����

�Note that the bounds on II�
 II
 IV have an extra factor � and therefore do not show
up in the constant for � su�ciently small�� In view of �	����� this advances the bound
on En���k� of �H	�� provided K � K� which means K � K� because K � C���K���

��� Advancement of �H��H	


Recall that� in Section ��	� �H��H
� were shown to follow from �H��H	� for rm�k� �
j � m�k� when r is su�ciently close to �� Therefore �H��H
� may in fact be assumed
to hold for rm�k� � j � n� In this section� we �x n � � � m�k�� and obtain �H��H
�
for n� �� using �H��H
� for rm�k� � j � n� We will also use �H	��

�



�
 We begin by rewriting �	��	� as �recall ���	��

An���k� � An�k�
n
� �Bn����� �D�k�� � I � �n��

o
� II
 �	���

with

I �
n��X
m��

���m�k�� ��m���� ��� �D�k��r��m����z
m
 �	����

II �
n��X
m��

��m�k�z
m �An���m�k��An�k�� � �	����

By Lemma 	��� j�n��j � CK���n� ������� By �	��
�� jIj � CK�k������ for any �� � �
�
��

It therefore remains only to estimate II�

�
 To that end� we rewrite II as

II �
n��X
j��

��n���j�k�z
n���j

nX
l�j��

�Al���k��Al�k��� �	�
��

We divide the sum over j into two parts� II� and II�� corresponding respectively to
� � j � rm�k� and rm�k� � j � n� �� Applying Lemma ��	�i�� we may then estimate

jII�j �
rm	k
X
j��

CK�

�n � �� j����

nX
l�j��

�Al���k��Al�k�� �	�
��

jII�j �
n��X

j�rm	k
��

CK�

�n� � � j����

nX
l�j��

�Al���k��Al�k��� �	�
��

The term II� is easy� Namely� by �H
��

jII�j �
n��X

j�rm	k
��

K�

�n� �� j����

nX
l�j��

CK�

k��
l���

� CKK��

k��
�n� �����
� �	�
	�

�
 For II�� we divide the sum over l into two parts� II �� and II ��� � corresponding respec�
tively to j � � � l � rm�k� and rm�k� � l � n� These can be estimated with the help
of �H	� respectively �H
�� Beginning with II ��� � we have

jII ��� j �
rm	k
X
j��

CK�

�n� �� j����

nX
l�rm	k
��

K�

k��
l���
� CKK��

k��
n���

rm	k
X
j��

nX
l�rm	k
��

�

l���
� �	�
��

The double sum is bounded uniformly in n and k� and hence �recall that m�k� � n� ��

jII ��� j �
CKK��

k��
�n� �����
� �	�

�

��



For II ��� we require an estimate for jAl���k� � Al�k�j valid for � � l � rm�k�� For
this range of l� it follows from �H	� that

jAl���k� �Al�k�j � Ce�Ck
�l

�
k� �

K�

l���

�
� �	�
��

Thus we have

jII ��j �
CK�

n���

rm	k
X
j��

rm	k
X
l�j��

e�Ck
�l

�
k� �

K�

l���

�
� CK�

�n � �����
C

k�
�� �K��� �	�
�

Summarizing the above bounds� we have

jIIj � jII ��j� jII ��� j� jII�j �
CK�

�n� �����
�

k��

�K� � � �K��� �	�
��

	
We are now in a position to advance �H
�� For this� we use �	���� �H��� the inequality
� � �D�k� � k�

�d
� and the bounds found above� to obtain

			An���k��An�k�
			 � jAn�k�j j �Bn����� �D�k�� � I � �n��j� jIIj

� K�

�n� �����k��


�
k�

�d
Bn�� � CK�k����� �

CK��

�n � �����

�

�
CK��� �K��

�n� �����k��

� �	�
��

Since jBn�� � �j � C�K� �K��� and �n � ������ � m�k����� � Ck�� �H
� follows for
n � � provided K� � K���d and � is su�ciently small�

�
 To advance �H��� we begin by using �H�� and arguing as above� to obtain

jAn���k�j � jAn�k�j
			� �Bn����� �D�k�� � I � �n��

			� jIIj
� K�

n���k��


n
j� �Bn����� �D�k��j� CK�k����� �

CK��

�n� �����

o

�
CK��� �K��

�n� �����k��

� �	����

We need to argue that the right�hand side is no larger than K��n � ������k���
� To
achieve this� we will use separate arguments for �� �D�k� � �

� and �� �D�k� � �
�� These

arguments will be valid only when n is large enough� However� this is su�cient� since
�H�� clearly holds for any �nite set of values of n� if K� is taken to be large enough�

Suppose that �� �D�k� � �
� � For � su�ciently small�

� �Bn����� �D�k�� � �� �	����

��



Hence� the absolute value signs on the right side of �	���� may be removed� To obtain
�H�� for n� �� it now su�ces to show that

� � c��� �D�k�� �
CK��

�n � �����
� n���

�n� �����

 �	����

for c within order � of �� The term c��� �D�k�� has been introduced to absorb Bn�����
�D�k�� and the order � terms in �	���� involving k����� and ���K��� By ������ �� �D�k� �
Cm�k��� logm�k� � C�n����� log�n���� Thus �	���� holds for n su�ciently large and
� su�ciently small�

Suppose� on the other hand� that � � �D�k� � �
�
� Since k � ���

�

 �
�
�� ���
 ��d��� we

have �
�
� � � �D�k� � �� �

d
� Therefore

j� �Bn����� �D�k��j � j �D�k�j�jBn����j j�� �D�k�j � ��� �
d
�� �

�
�jBn����j��� �

d
�� �	��	�

Hence

j� �Bn����� �D�k��j� CK�k����� �
CK��

�n� �����
� �� � �

d
� � �

� � C�
 �	����

and the right side of �	���� is no greater than

K�

n���k��


h
�� � �

d
� � �

� � C�
i
�

CK��� �K��

�n� �����k��

� K�

n���k��


h
��� �

d
� � �

� � C ��
i
� �	��
�

This is less than the required bound K��n� ������k���
 if � is su�ciently small and n
is large enough�

��	 Advancement of �H


We begin by adding �r�An��� � Dn��An��� to both sides of ����	�� and then using
Dn�� � Bn�� � Dn��Cn�� on the right�hand side� together with ���	����� and �	�	��
This leads us to

r�An������r�An��� �Dn��An��� � I � II � �n��r�An��� �	����

with

I �
n��X
m��

��m���z
m
h
r�An���m��� �r�An���� �m� ��Dn��An���

i

 �	���

II �
n��X
m��

r���m���z
m �An���m��� �An���� � �	����

��



To estimate I� we use �H��� Lemma ��	�i�� �H�� �which was advanced in Section 	����
and �H	� for k � �� to obtain

jIj �
n��X
m��

CK�

m���

nX
j�n���m

n
jDjAj������Dn��An���j�K��j

��
o

�
n��X
m��

CK�

m���

nX
j�n���m

n
Dj jAj������An���j� jDj �Dn��jAn��� �K��j

��
o

� CK�K� �K �K���
��n� ����� �	����

To estimate II� we use Lemma ��	�ii�� and �H	� for k � �� to obtain

jIIj � CKK�
��n� ����� �	���

Hence I�II is bounded by a multiple of ���n������ which is a factor � smaller than the
bound in �H��� Thus� the main term in �	���� is �n��r�An���� which by Lemma ����iii�
and Lemma 	�� is bounded above by CK	K���n � ����� Since K	 � C � K��� �H��
holds for n� � provided � is small enough and K� � K��

	 Proof of the main theorems

Theorem ��� is proved in Section ��� and Theorem ��� is proved in Section ���� As a
consequence of the completed induction� we now know that there exist constants �� A
and D such that the following estimates hold for n	
 uniformly in z � In�

z � ��� � O�n����� �����

An����A � O�n��� �����

Dn �D � O�n���� ���	�

To see the �rst of these statements� note that Lemma ��� gives I�  I�  I  � � �� so
��n��In consists of a single point� which we call �

��� Clearly� ����� follows from �H�� and
������ The second statement follows from �H	�� and the third from �H��� The constants
�� A and D are identi�ed in Section ��	 in terms of ��m��� and r���m����

��� Proof of Theorem ���

Proof of Theorem �
��a�� By ���
�� ����� and ���������� we have

cn � z�nAn��� � �nA�� �O�n����� �����

�

��



Proof of Theorem �
��b�� Using r�A���� � �� �H�� and �������	�� we have

�

cn

X
x

x�cn�x� � � �

An���
r�An���

�
�

An���

nX
j��

�DjAj����� �O�j����

�

�
Dn�� �O�n������ � �� �
Dn�� �O�n�� log n�� � � �

� ���
�

�

Proof of Theorem �
��c�� Suppose k � Rn� Then� by ����	�� n � m�k� and hence
�H	� applies� Therefore� using ���	�� �� � � � � � � �recall ������� and the fact that
� � �D�k� � k�

�d
�O�k��� we obtain

�cn�k�

cn
�

An�k�

An���

�
nY
i��

h
� �Di

h
�� �D�k�

i
�O��k�i�
���

i

� e�
k�

�dDneO	k�n�k�n���
�

� �����

But by ������ k � Rn if n is su�ciently large and k� is less than a su�ciently small
multiple of n�� log n� Hence for k�

p
Dn less than a su�ciently small multiple of log n�

we have
�

cn
�cn
� kp

Dn

�
� e�

k�

�d ���O	n��
�

�
 ����

as required� �

��� Proof of Theorem ���

Our starting point for Theorem ��� is the relation

cn�x�

cn
�

�

����d

Z
	�����d

�cn�k�

cn
e�ik�xdk
 �����

which we rewrite� using symmetry� as

cn�x�

cn
�
�
� � ����n�jjxjj�

� �

����d

Z
	� �

���
�
����	�����

d��

�cn�k�

cn
e�ik�xdk� �����

We split the integral in ����� into the regions Rn and Rc
n� with these sets de�ned in

����	��

��



Equation ����� can be used to write the integral over Rn in ����� as

�

����d

Z
Rn

e�
k�

�dDn���O	n�������
�e�ik�xdk �
�

d

��Dn

� d
�

e�
dx�

�Dn as n	
� ������

The asymptotic formula in ������ is uniform in x � Zd provided kxk��n log n����� is
su�ciently small� For the integral over Rc

n� we note that �cn�k��cn � An�k��An���� and
use �H�� and ������ to obtain as upper bound

CK�

n���

Z
Rc
n

�

k��

dk �

CK�

n
d
��p

Z
Rc
n

�

k��

dk� ������

The integral in the right�hand side of ������ was estimated in ����������� There it was
shown that either the integral times n�p decays as a power of n� or the integral converges�
In the former case� ������ represents an error term compared to ������� In the latter case�
������ represents an error term compared to ������ if p � �� but not if p � �� This proves
�������

For d � �� p � �� the integral in ������ converges� and hence ������ is bounded by a
multiple of n�d��� This proves ����	�� �

��� Identi�cation of �� A� D

In this section we abbreviate An � An���� The formulas appearing in the following
theorem were �rst derived in Brydges and Spencer ��� �see also Madras and Slade �����
for the case d � �� p � ��

Theorem 	
� The limits ���� A� D of zn� An� Dn satisfy

� � �d��� �
�X

m��

��m����
�m ������

A �

�
�d��� �

�X
m��

m��m����
�m

���
����	�

D � A

�
�d��� �

�X
m��

r���m����
�m

�
� ������

Proof� We have already observed that ��n��In � f���g� Therefore ������ follows after
we let n	
 in �	�	�� with z � ���� and use Lemma 	���

To determine A� we need a summation argument because the recurrence relation
������ for An is linear� Fix z � ���� For n � �� ������ gives

An � �d���An�� �
nX

m��

��m����
�mAn�m� ����
�

�	



De�ning Sn �
Pn

k��Ak� and combining ����
� with A� � �� we �nd

Sn � � �
nX

k��

Ak � � �
nX

k��

�
�d���Ak�� �

kX
m��

��m����
�mAk�m

�

� � � �d���Sn�� �
nX

m��

��m����
�mSn�m� ������

By �	�	� with z � ���� this gives

Sn � Sn�� � ��
nX

m��

��m����
�m�Sn�� � Sn�m� � Sn���n
 �����

which is the same as

An � ��
nX

m��

��m����
�m

�
� n��X
k�n�m��

Ak

�
A �

�
n��X
k��

Ak

�
�n� ������

Finally� we use limn��An � A� and note from Lemma 	�� that the last term in ������
vanishes� to obtain

A � ��
�X

m��

��m����
�m�m� ��A� ������

This gives A � �� �
P�

m���m� ����m���zm���� which by ������ gives ����	��
The proof of ������ is straightforward� Use ���	�� ���	���
� with z � ���� and

Lemma ��	� �

��� Discussion

Our method has used induction on the number of steps in the walk to provide a direct
proof of Gaussian behaviour� The use of generating functions has been avoided� We
have used the Fourier transform� but this seems harmless enough� There remains the
possibility that induction hypotheses could be formulated directly in x�space rather than
in k�space� However� this would likely make the argument more technical�

The induction hypotheses �H��H�� have a universal character� they explicitly involve
few parameters �essentially only � and �� and do not involve any detailed information
about the nature of the self�avoidance interaction� The hard part of the analysis sits in
guessing the precise form of �H��H��� Once these are adequately chosen� the proof of the
induction step is mechanical� In guessing �H��H��� we were partially guided by earlier
work on the problem� predominantly when setting up the de�nitions in Section ����
Interestingly� �H��H�� provide us with quite detailed information about the approach to
Gaussian behaviour for �nite n�

We have left open the important problem of proving the local central limit theorem
for d � �� p � �� where our method is inadequate� We have also not treated the case

��



d � �� �d��
�

� p � �� in which loops receive a penalty which increases� rather than
decreases� with their length�

It is possible that our method could be applied to obtain an alternate proof of Gaus�
sian behaviour of the strictly self�avoiding walk �� �
� in all dimensions d � 
 �Hara
and Slade ����� but this would involve serious e�ort� The role of small � would have to
be taken over by �

�d
� and this would involve� among other things� a more delicate choice

of the constants K�
 � � � 
K��
It would be of interest to extend our method to lattice trees and percolation� In

both these models� the inversion of generating functions poses serious technical problems
�Derbez and Slade �	� ��� Hara and Slade ����� and their removal would lead to improved
results� Our method would require the formulation of induction hypotheses suitable
for convergence to integrated super�Brownian excursion �ISE�� rather than to Brownian
motion� as this is what arises as the scaling limit in these two models� Perhaps the
previous work on application of the lace expansion to lattice trees and percolation can
be helpful in the formulation of appropriate replacements for �H��H���

Finally� it may also be possible to extend the methods and results of Nguyen and
Yang ���� �	� for high�dimensional oriented percolation� by a reformulation in a similar
inductive scheme�

A The lace expansion

This section contains standard material on the lace expansion� and consists of the min�
imum necessary to make our paper self�contained� The lace expansion was introduced
in Brydges and Spencer ��� and is discussed at length in Madras and Slade ����� A brief
discussion with a more combinatorial �avour is given in Zeilberger ��
��

A�� De�nition of ��
m
�k	

In this section� we de�ne ��m�k� and prove ����� This requires the introduction of the
following standard terminology�

Given an interval I � �a
 b� of integers with � � a � b� we refer to a pair fs
 tg �s � t�
of elements of I as an edge� To abbreviate the notation� we write st for fs
 tg� A set of
edges is called a graph� A graph  on �a
 b� is said to be connected if both a and b are
endpoints of edges in  and if� in addition� for any c � �a
 b� there is an edge st �  such
that s � c � t� The set of all graphs on �a
 b� is denoted B�a
 b�� and the subset consisting
of all connected graphs is denoted G�a
 b�� A lace is a minimally connected graph� i�e�� a
connected graph for which the removal of any edge would result in a disconnected graph�
The set of laces on �a
 b� is denoted L�a
 b�� and the set of laces on �a
 b� consisting of
exactly N edges is denoted L	N
�a
 b��

Given a connected graph  � the following prescription associates to  a unique lace
L�� The lace L� consists of edges s�t�
 s�t�
 � � �� with t�
 s�
 t�
 s�
 � � � determined� in that

�




order� by
t� � maxft � at �  g
 s� � a


ti�� � maxft � �s � ti such that st �  g
 si�� � minfs � sti�� �  g�
Given a lace L� the set of all edges st��L such that LLfstg � L is denoted C�L�� Edges
in C�L� are said to be compatible with L�

For integers � � s � t� de�ne �recall �������	��

Vst�	� � �stUst�	�
 �A���

and� for integers � � a � b�

K�a
 b��	� �
Y

a�s�t�b

��� Vst�	��� �A���

Then
cn�x� �

X
� � �� x
j�j � n

K��
 n��	�
 �A�	�

where the sum is over all n�step simple random walk paths from � to x�
Expanding the product in the de�nition of K�a
 b��	�� we get

K�a
 b��	� �
X

��B�a�b�

Y
st��

��Vst�	��� �A���

For � � a � b we de�ne an analogous quantity� in which the sum over graphs is restricted
to connected graphs� namely�

J �a
 b��	� �
X

��G�a�b�

Y
st��

��Vst�	��� �A�
�

This allows us to de�ne the key quantity in the lace expansion�

�m�x� �
X

� � �� x
j�j � m

J ��
m��	�
 m � �� �A���

The identity in ���� now follows by taking the Fourier transform of the identity given
in the following lemma�

Lemma A
� For n � ��

cn���x� �
X

y�kyk���

cn�x� y� �
n��X
m��

X
v�Zd

�m�v�cn���m�x� v�� �A��

��



Proof� Suppress 	 in the notation� It su�ces to show that

K��
 n� �� � K��
 n� �� �
n��X
m��

J ��
m�K�m
n� ��
 �A���

since �A�� is obtained after insertion of �A��� into �A�	� followed by factorisation of the
sum over 	�

To prove �A���� we note from �A��� that the contribution to K��
 n � �� from all
graphs  for which � is not in an edge is exactly K��
 n� ��� To resum the contribution
from the remaining graphs� we proceed as follows� When  does contain an edge ending
at �� we let m� � denote the largest value of m such that the set of edges in  with at
least one end in the interval ��
m� forms a connected graph on ��
m�� We lose nothing
by taking m � �� since Va�a�� � � for all a� Then resummation over graphs on �m
n���
gives

K��
 n� �� � K��
 n� �� �
n��X
m��

X
��G���m�

Y
st��

��Vst�K�m
n� ��
 �A���

which with �A�
� proves �A���� �

We next rewrite �A��� in a form that can be used to obtain good bounds on �m�x��
For this� we begin by partially resumming the right�hand side of �A�
�� to obtain

J �a
 b� �
X

L�L�a�b�

X
��L��L

Y
st�L

��Vst�
Y

s�t���nL

��Vs�t��

�
X

L�L�a�b�

Y
st�L

��Vst�
Y

s�t��C	L


�� � Vs�t��� �A����

For � � a � b� we de�ne J 	N
�a
 b� to be the contribution to �A���� coming from laces
consisting of exactly N bonds�

J 	N
�a
 b� �
X

L�L�N��a�b�

Y
st�L

��Vst�
Y

s�t��C	L


��� Vs�t��
 N � �� �A����

Then

J �a
 b� �
�X

N��

J 	N
�a
 b� �A����

and by �A����

�m�x� �
�X

N��

����N�	N

m �x�
 �A��	�

where we de�ne

�	N

m �x� � ����N X

� � �� x
j�j � m

J 	N
��
m��	� �A����

� ����N X
� � �� x
j�j � m

X
L�L�N����m�

Y
st�L

Vst�	�
Y

s�t��C	L


��� Vs�t��	���

�



A�� Bounds on ��m�k	

In this section� we obtain bounds on ��m�k� in terms of cj �
P

x cj�x� and kcjk� �
supx cj�x� with � � j � m� This serves as a key step in the proof of Lemma ��	�

A lace L is a collection of edges s�t�
 � � � 
 sNtN � Let ��
 ��
 � � � 
 ��N�� represent an
ordered relabelling of the si and tj� For a lace L on ��
m�� by de�nition �� � � and
��N�� � m� De�ne the intervals �Ij � ��j��
 �j� �j � �
 � � � 
 �N � ��� and write j�Ijj �
�j � �j��� Note that j�Ijj � � is possible if and only if N � 	 and j � �l � � for some
l � f�
 � � � 
 N � �g� De�ne j	 to be the smallest j for which j�Ij�j � maxj�f�������N��g j�Ijj�

A walk giving a nonzero contribution to �A���� must intersect itself N times� to
ensure that Ust �� � for each st � L� For example� when N � �� the walk must undergo
a trajectory of the form

�
� �

�
J

J
J
J �

�
�
� J

J
J
J �

�
�
� J

J
J
J �

�
�
� J

J
J
J �

�
�
�

� �



�

�

�

�

�

�

��

��

��

�

��

��

��

��

��

��

�� ��

� x

where the labels on subwalks correspond to the labels of the intervals �Ij� Here� any of
the subwalks labelled 	� 
� � �� ��� �	� �
� �� �� can have length zero�

Given a lace L with its corresponding j	� denote by �I�
 � � � 
 �I�N�� the ordered set of
intervals �Ij with �Ij� removed� For each i � �
 � � � 
 N � �� de�ne I �i � �I�i�� and Ii � �I�i
if j�I�i��j � j�I�ij� otherwise de�ne I �i � �I�i and Ii � �I�i��� We have thus partitioned our
original �N � � intervals �Ij into a maximal interval �Ij� and N � � pairs of intervals Ii
 I �i
in which the maximal interval in each pair has been associated with a prime� Note that�
by construction�

j�Ij�j � m

�N � �
� �A��
�

Since �st is a function of js� tj� we write �st � ��js� tj� in the following lemma�

Lemma A
� For any k � ���
 ��d and m � �� the following hold

�i� For N � ��

� � ��	�

m �k� � �	�


m ��� � �d��m�kcm��k�� �A����

For N � ��

j��	N

m �k�j � ��N � ���N��

X
��m	�kcm�k�

N��Y
l��

��m�
l�kcm�

l
k�cml


 �A���

where the unlabelled sum is over the set of m	
m�
m
�
�
 � � � 
mN��
m

�
N�� whose sum is m

and for which m	 is maximal and m�
l � ml for each l� Possibly ml � �� but m�

l � � for
all l� and m	 � ��

��



�ii� For N � ��

jr���	N

m �k�j � ��N � ���N���N � ��

X
��m	�kcm�k� �A����

�
N��X
r��

��m�
r�kcm�

r
k�r��cmr���

Y
� � l � N � �

l �� r

��m�
l�kcm�

l
k�cml

�

�iii� For N � �� and for any � � �� � ��

			��	N

m �k�� ��	N


m ���� k�

�d
r���	N


m ���
			 � Ck�����m��� � �R�H�S� �A������ �A����

The same bound holds with k���d replaced by � � �D�k� on the left�hand side�

Proof� �i� The equality in �A���� is a consequence of the fact that �	�

m �x� is nonzero

only for x � �� The inequality in �A���� follows from

�	�

m ��� � ��m�

X
� � �� �
j�j � m

Y
� � s� � t� � m
	s�� t�
 �� 	��m


����s�t�Us�t��	�� � ��m�
X

y�jyj��

cm���y�� �A����

For �A���� we begin with the bound

j��	N

m �k�j �X

x

j�	N

m �x�j� �A����

The indices m	
m�
m
�
�
 � � � 
mN��
m

�
N�� in �A��� represent the lengths of the corre�

sponding lace subintervals �Ij�
 I�
 I ��
 � � � 
 IN��
 I
�
N��� The factor �N � � arises from the

number of ways of choosing which of the �N � � subintervals has maximal length� For
each of the remaining N � � pairs of subintervals� there is a factor � associated with the
choice of the longer subinterval� which explains the overall factor �N��� Suppose now
that the lengths of all the subintervals are �xed� So� in particular� it is known which are
the maximal intervals�

Using � � Vs�t� � � in �A���� whenever s� and t� belong to di�erent subwalks� we get
an upper bound in which distinct subwalks no longer interact� However� each subwalk
remains self�interacting� The norms appearing in �A��� arise when bounding the sum
over N � � diagram vertices �an additional vertex is �xed at ��� Rather than writing
down a formal proof� we illustrate the bound with an example� Consider the case N � 
and suppose that �Ij� � �I�� I� � �I�� I �� � �I�� I� � �I�� I �� � �I� I � �I�� I � � �I�� I� � �I��
I �� � �I�� I� � �I��� I �� � �I��� I� � �I��� I �� � �I�� The relevant diagram is bounded by

X
x��x��x��x��x	�x


cm��x��cm�
�
�x��cm��x� � x��cm�

�
�x��cm��x� � x��cm�

�
�x � x��

�cm��x � x��cm��x� � x�cm�
�
�x� � x�

�cm	�x� � x��cm�
	
�x� � x��cm
�x� � x��cm�



�x� � x��� �A����

��



We bound each of the factors corresponding to the maximal subintervals by using the
supremum norm� This leavesX
x��x��x��x��x	�x


cm��x��cm��x��x��cm��x��x��cm��x��x�cm	�x��x��cm
�x��x��� �A��	�

We then do the sum in the order x�
 x
 x�
 x�
 x�
 x��
There is a factor of � associated with each diagram loop� evaluated at the length of

the loop� Since ��m� is monotone decreasing in m� the factor � associated to a loop can
be bounded by � evaluated at an appropriate subwalk of the loop� It is not di�cult to
see that it is always possible to choose the subwalks corresponding to �Ij�
 I ��
 � � � 
 I

�
N���

�In the above example� we get a factor ��m�
�� from the �rst loop and ��m�

�� from the
second� Since I � � �I�� we take a factor ��m�

� from the third� rather than taking ��m	��
which we take instead from the fourth loop� The remaining loops are straightforward��

�ii� We begin with the bound

jr���	N

m �k�j �X

x

x�j�	N

m �x�j� �A����

The displacement x can be written as a sum of subwalk displacements yj� and we can
always choose these displacements from among the nonmaximal subwalks� i�e�� from
I�
 I�
 � � � 
 IN��� �In the above example� we would write x � x�� �x�� x�� � �x�� x�� �
�x��x��� �x�� x���� We use the Cauchy�Schwarz inequality in the form �

PN��
j�� yj�� �

�N � ��
P

j y
�
j � Then the argument proceeds as for �A����

�iii� We start with the observation that� by symmetry�

��	N

m �k�� ��	N


m ��� � k�

�d
r���	N


m ��� �
X
x

h
cos�k � x�� � �

�

�
�k � x��

i
�m�x�� �A��
�

Using j cos t� � � �
�
t�j � Ct����� �valid for any � � �� � ��� and �k � x������ � k�����x����� �

k�����m���x�� we obtain

			��	N

m �k�� ��	N


m ��� � k�

�d
r���	N


m ���
			 � Ck�����m���

X
x

x�j�	N

m �x�j� �A����

But the last sum is what we bounded in �ii�� Replacement of k����d� by � � �D�k� is
possible because � � �D�k� � k���d �O�k��� �
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