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It is shown that a new integrable nonlinear evolution equation 

iq,+ ( V1!JqJ2) XX =O 
is solved exactly by the inverse scattering method. From the Gelfand-Levitan equation, one 
soliton solution is obtained. It is found that one-soliton solution has two interesting limits, 
a small amplitude soliton and a bursting soliton. 

§ 1. Introduction 

In this paper, Vie shall study a newly found integrable nonlinear evolution 
equation1J 

(1-1) 

under the boundary condition 

q (x, t) ~o as lxl~=. (1·2) 

Equation (1·1) has been obtained as an example of a generalization of the inverse 
scattering scheme.2J Compared with the already known systems such as the non­
linear Schrodinger equation3J and the derivative nonlinear Schrodinger equation;) 
Eq. (1·1) is highly nonlinear and even has the saturation effect. Therefore its 
analysis is quite interesting mathematically and physically. 

The main purpose of the present paper is the application of the inverse scat­
tering method. 5J.BJ In § 2, we shall introduce fundamental equations of the inverse 

scattering method and discuss the scattering problem, in particular, the asymptotic 
expansions of the ]ost functions. Using the results, we shall derive the Gelfand-
Levitan equation for our system in § 3. 

tion from the Gelfand-Levitan equation. 

In § 4, we shall obtain one-soliton solu­

W e find that the Gelfand-Levitan equation 
does not give one-soliton solution explicitly in a usual sense, but provides us a 
sufficient information to describe it. The last section is devoted to discussion. 
There, we point out two interesting cases of one soliton solution. One is the 
small amplitude soliton which has the same properties as that of the nonlinear 

Schrodinger equation, and the other is a bursting soliton whose amplitude diverges 

under some condition. 
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A New Integrable Nonlinear Evolution Equation 

§ 2. Scattering problem 

We consider the following eigenvalue problem: 

</J1x + iJ..cf;1 = J..q</;2 , 

</J2x-iJ..cf;2= -J,q*cf;1 • 

The time dependence of the eigenfunctions is chosen to be 

where 

A=- (2ij([)) A2, 

B = (2qj(/)) A2 + i (qj(/)) xA, 

C =- (2q* /(/)) A2 + i (q* /@) xA, 

(/)= v'1 + lql 2• 

809 

(2·1a) 

(2·1b) 

(2 · 2a) 

(2. 2b) 

(2 · 3a) 

(2 ·3b) 

(2 ·3c) 

(2. 3d) 

Assuming a A./at= 0, we find that the integrability condition for Eqs. (2 ·1) and 
(2 · 2) yields Eq. (1·1). 

We introduce the Jost functions by 

¢ ~ ( 6 ) exp (- i Ax) 

¢ ~ ( _ ~) exp (iJ..x) 

~~(~)exp(iJ..x) 

¢ ~ ( 6) exp (- iJ..x) 

} 

} 
and the scattering coefficients by 

¢=a?J +bcf;, 

¢ = -acf;+b¢, 

where 

aa+bb=l. 

We note that 

as x~-oo, 

as x~oo, 

(2·4) 

(2·5) 

(2 · 6a) 

(2·6b) 

(2·7) 

(2·8a) 
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810 T. Shimizu and M. Wadati 

(2 -8b) 

from whence it follows that 

a (it) =a* (it*), b (A) = b* (it*). (2·9) 

We investigate the analytic properties of a (A) and the Jost functions for 
large liZ I. From Eqs. (2 · 6), (2 · 4) and (2 · 5), we have 

where 

Define 

tJ = }!__ log {¢1 exp (ih)}. ox 

91 = <P1 exp (ih), 

Then, Eqs. (2 ·1) become 

Substitution of Eq. (2 ·11) with Eqs. (2 ·12) into Eqs. (2 ·13) yields 

We expand tJ in the power series of iZ: 

= 
tJ= ~ tJn/(iJ.)n. 

n=-1 

(2 ·10) 

(2 ·11) 

(2·12a) 

(2 ·12b) 

(2 ·13a) 

(2 ·13b) 

(2 ·14) 

(2 ·15) 

Inserting this into Eq. (2 ·14) and equating the terms of the same powers of A, 
we obtain the conserved densities tJn (n = -1, 0, 1, · · ·). The first two conserved 

densities which vanishe for q = 0 are 

6_1 =1-W=1- v'1+ JqJ 2 , 

6 0 = _5!!:_(__!_-1) _ __!_}!__log W. 
2q (]) 2 ox 

From Eqs. (2 ·10) and (2 ·15), we see that 

log a =iiZe + ,a+O( ~ ), 

(2 ·16a) 

(2 ·16b) 

(2 ·17) 
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where 
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e = s_== G -ldx , 

f.1= s_==G0dx. 

Using Eqs. (2 ·11) ,...,_, (2 ·13), we have 

log[¢1 exp(ih)] =iJ... Sx (}_1dx+ Sx Godx+o(I.), 
-= -= J... 

811 

(2·18) 

(2 ·19) 

(2 · 20a) 

(2·20b) 

Similar analysis is possible for other Jost functions. Summing up the results, as 

IJ...I~oo, we have 

where 

a exp(-iJ...e) =exp(p) +0(~), (2·21a) 

¢ exp [iJ... (x- e_)] = (. 1 ) exp (p_) + 0 (I.), 
l (1- (/)) jq J... 

¢ exp [ -iJ... (x+ e+)] = (i (1 -~) /q*) exp (- p!) +0( ~ ), 

CfJ exp [ i J... ( x + e +) ] = ( . 1 ) exp ( - p +) + 0 (I.) , 
l (1- (/)) jq J... 

¢ exp [ -iJ... (x- e_) J = (- i (1-= ~) jq*) exp (p':) +0( ~ ), 

e_ (x) = r=(}_ldx' 

e+ (x) = t= 0"_1dx, 

11- (x) = r=Godx, 

11+ (x) = t= Gadx . 

§ 3. Gelfand-Levitan equation 

(2·21b) 

(2·2lc) 

(2 ·21d) 

(2 ·21e) 

(2·22a) 

(2·22b) 

(2·23a) 

(2·23b) 

In this section we shall derive the Gelfand-Levitan equation for a system 
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812 T. Shimizu and M. Wadati 

(2 ·1). 
We assume that q 1s on compact support. Then, a (A) exp (- iA.e), ¢ exp [iit 

X (x-e_)J, </Jexp[ -iit(x+e+)], ¢ exp[iit(x+e+)J and (/) exp[ -iit(x-e_)J are 
entire functions of it. 

From Eq. (2 · 6a), we have 

(3 ·1) 

We define an integral path C to be the contour in the complex }, plane, starting 
from }, = - oo + iO+, passing over all zeros of a (it), and ending at it= + oo + iO+. 
Similarly, Cis the contour starting from it= -oo+iO-, passing under all zeros 
of Zi (J.), and ending at it=+ oo +iO-. 

Consider the integral: 

As the contour C becomes far away, then from Eqs. (2·2la) and (2·21b), we 
have 

L.H.S. of Eq. (3·2)=-irr(~)exp(-f.L+). 

From Eq. (2 · 2ld), similarly, we have 

R.H.S. of Eq. (3 · 2) 

= - 2in (J1 (it) ) exp [iit (x + e +)] 
C/h (it) I it 

l dit' ( ¢1(it') ) ["''( +~ )] + ····- _ exp ZA X "+ 
cit'- it ¢2 Cit') I it' 

f d}' '?_iit') ( ¢1 (it') ) ex [iJ,' (x + e ) J 
+ Jc?-ita(it') I/J2(il')lit' p + 

= - 2in (J1 (it) ) exp [iit (x + e +)] +in (1) exp (- f.L+) 
¢2(il)lit 0 

+ f d!_~ b(~J-( ¢1 (it') )exp[iit'(x+e )]. 
Jc it'- it a (it') I/J2 (it') I it' + 

Therefore, we obtain 
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Ll New Integrable Nonlinear Evolution Equation 813 

We introduce a kernel K by 

tlh/ },) = (0) exp [i}, (.x + c: +) - !J+ *] 
\ cfJz 1 

+exp(iJ,c:+) s=(K1 (x,s)exp(-JJ+) )exp(ds)ds. (3·4) 
x K 2 (x, s) exp (- 11+ *) 

The kernel K 1s assumed to satisfy 

lim K 1 (x, s) =0, 

lim K 2 (x, s) = 0. 
(:3. 5) 

The relation between K 1 (x, x) and q (x) 1s obtained as follows. By a partial 

integration, we can show from Eq. (3 · 4) that 

Comparing Eq. (3·6) with Eq. (2·21c), we have 

Now we are in a position to derive the Gelfand-Levitan equation. From Eqs. 

(2 · 8b) and (3 · 4), we have 

X exp ( -iJ..s) ds. (3 ·8) 

Substitution of Eqs. (3 · 4) and (3 · 8) into Eq. (3 · 3) gives 

2 ' exp (- iJ.s) ds S=( K *(x s)) 
x -K1*(x,s) 
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814 T. Shimizu and l'vl. lVadati 

_ ~x_p ~- ih). f cl,_A'_ !!_ foo ( J.' K1 (x, s) ) 
2ni Jc }.'-A a Jx K 2 (x, s) / }.' 

Xexp[i}.' (s+x-i-2e+)Jds=0. (3 ·9) 

Taking a Fourier transform of Eq. (3 · 9), we arrive at the Gelfand-Levitan equa­
tion: 

Kl(x,y)-F*(x+y)- IxK2*(x,s)F*(s+y)ds=0, 

K 2*(x, y)- IooK1 (x,s)F"(s+y)ds=0 

for x<y. Here F (z) and F" (z) are defined by 

F(z)=l_ fb~J.) l_exp[iJ.(z+2z+(x))]d},, 
2n Jc a (}c) }. 

F"(z)=a2~=-l_ f_b~J.) Jcexp[iJ.(z+2z+(x))]dJ,. 
(Yz" 2n Jca (X) 

(3 ·lOa) 

(3 ·lOb) 

(3 -lla) 

(3-llb) 

The time-dependence of the scattering coefficients are determined from Eqs. 
(2 · 2) . The result is 

a (l, t) =a U, 0) , 

b (}., t) = b ()., 0) exp (4iJ.'t). 

The zeros of a(}.) in the upper half X-plane 
which we shall designate by lk (/? = 1, 2, · · ·, N). 
simple, F (z) can be represented by 

(3 ·12a) 

(3 ·12b) 

are the bound state eigenvalues, 
When all the zeros of a (}.) are 

+ l_ s= p (}., t) exp [iJ. (z + 28 +) J d}. ' 
2n -CD }, 

(3 ·13) 

where the time dependence of ck (t) and p (}., t) are 

Ck(t) =Ck(O)exp(4iXk2 t), (3·14a) 

p (l., t) = p (l, 0) exp (4i}h). (3 ·14b) 

The set of Eqs. (3 · 7), (3 ·1 0), (3 ·13) and (3 ·14) determines a sought func­
tion q (x, t). Given the scattering data {p (}., 0), }. real; J.k, C k (0), lc = 1, 2, · · ·, N}, 
we construct F (z, t) by Eq. (3 ·13) with Eqs. (3 ·14), then vve solve Eqs. (3 ·10) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/63/3/808/1920811 by guest on 20 August 2022



A New Integrable Nonlinear Evolution Equation 815 

for Kt(x,y;t), and by Eq. (3·7) we can obtain q(x,t). However, aswe shall 
see in the next section, the analysis is quite complicated due to the presence of 

e+(x) and ~+(x). 

§ 4. One-soliton solution 

We shall analyze a one-soliton solution. For the purpose, we restrict our­
selves to the case that a (A) has only one simple zero in the upper half A-plane 
and p (A, 0) = 0 for real A. Then, Eqs. (3 ·11) become 

F(z) =2._Ct(t)exp[iAt(z+2e+)], 
At 

F" (z) = - AtCt (t) exp [iAt (z + 2e+)]. 

The bound state eigenvalue At is denoted by 

(4 ·1a) 

(4·1b) 

(4·2) 

Substitution of Eqs. ( 4 ·1) into the Gelfand-Levitan equation (3 ·10) yields 

Kt(x y) =£*(t) exp[ -iAt*(x+y+_2e+(x))] _ (4 · 3) 
' At* I C (t) 12 A • 

1+ ~r/-I~~ exp[ -477(x+e+(x))] 

Combining Eq. (3·7) and Eq. (4·3), we obtain 

_ Ct*(t) exp[ -2iAt*(x+e+(x))] 

At* 1 + JC~C:~b; -exp [ ~477(~+ e+(x))]. 

From Eq. (3 ·14a), we have 

2._ Ct (t) = exp [- 8~77t + 4i (~2 -772) t + o0], 

277 

where the constant 00 is defined by 

exp 00=Ct (0) /277. 

With Eq. (4·5), Eq. (4·4) yields 

(4·4) 

(4·5) 

(4· 6) 

JqJ 2 = 4772 
__ cosh2 [277(x+~~t) +277e+(x)] ~772/W+772) ( 4 ·7) 

~2 + 77 2 {cosh2 [277 (x+ 4~t) + 277e+ (x) J- 2772/ W+ 772) } 2 ' 

q = -277 __ __ cosh [277 (x :t 4~t2_ + 277e2j_~_ + i0:l_ __ 
V~2 + 772 cosh2 [277 (x + 4~t) + 277e+ (x )] -2772/ W + 772) 

X exp [ -2i (~x+2 W-772) t+ ~e+ (x))] ·exp c~+ *-fl.+)' (4·8) 
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816 T. Shimizu and lvf. vVadati 

where 

a = tan -l ( r; / ~) . (4· 9) 

Here and in the following, the constant Oo is omitted for simplicity. 

Let 

u=.r+4~t. (4·10) 

We can prove that 8+ is a function of u. Hereafter we shall write 8+ (u) instead 

of s+ (.r) to emphasize the u-dependence of 8+. There should be no confusion about 

this notation. Then from Eq. (2·22b) with Eq. (2·16a), we have 

(4·11) 

Substitution of Eq. (4·7) into Eq. (4·11) gives 

Lcu+ 8+(u))= _ cos_~2 [2r;(u+8+(u))]_ _ 
du cosh2 [2r;(u+8+(u))] -2r;2/(e+r;2) 

(4 ·12) 

where we have assumed that 

(4·13) 

Integrating Eq. (4·12), we obtain 

2+(u) =_r;_ {tanh[2r;(u+8~(u))J -1}. e+ r;2 . 
(4 ·14) 

This relation can be rewritten as 

(4 ·15) 

We can also prove that (!t+ *- !J.+) is a function of u. 

Eq. (2 ·16b), we have 

From Eq. (2·23b) with 

Substitution of Eqs. (4·7) and (4·8) into Eq. (4·16) gives 

* 4i~r;2 roo d.r 
P+ - P+ =~2+-;;2 Jx cosh2[2r; (~-+ 8+ (~)) ]_:-n2/(~2+ r;2) 

2r;2 roo (p+ *- fl+) xd.r 
- e + r;2 Jx cosh2 [2-r;(u + 8+ (u ))] 

Solving Eq. (4·17), we obtain 

fJ.+ * _ fJ.+ =log {cosh [2r;i_z~+ 8 + (u)) ---: ia]_}. 
cosh[2r;(u+s+(u)) +ia] 

(4 ·16) 

( 4 ·17) 

(4 ·18) 
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t)Ul 
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Fig. 1. The curve of E + (u) for 

n=l/2 and ~/n=-./3. 

u 

\q (U)\ 
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u 

Fig. 2. The envelope of one-soliton solution for 17 = 1/2 and 

~ 117 = 13, .f2 and 1. 

Substituting Eq. ( 4 ·18) into Eq. ( 4 · 8), we obtain an expressiOn for one-soliton 

solution: 

q (:r, t) = =-~YJ . cosh [~1(x + 4'fll +~s+ (x_±4U2_.=ia]_ 
V ~2 + Y/ cosh2 [2YJ (x + 4~t) + 2Yjs + (x + 4~t)]- 2YJ2/ (e + Y/) 

X exp [- 2i {~X+ 2 (e- Y/2) t + ~8 + (x + 4~t)}]. (4 ·19) 

Since e+ (u) is given by Eq. ( 4 · 15), we can evaluate q (x, t) numerically. The 

function e+ (u) for YJ=1/2 and NYJ=v':f and the one-soliton envelope lq(x, t) I 
= lq(u) I for YJ=1/2 and various values of ~/YJ are shown in Figs. 1 and 2, 

respectively. The peak of the soliton is obtained by the condition dlql 2/du=0: 

- 21~1'7 - 21'7/~1 
lqlmax- ,_2 - 2 - 1 (' /'") 2 

<; -YJ - "fJ > 
( 4. 20) 

From Eqs. (4·13) and (4·20), we find that the larger the peak amplitude of the 

soliton is, the smaller its speed 4; for constant YJ, as shown in Fig. 2. 

Another expression for one-soliton solution is obtained as follows. Let 

q(x, t) = lql exp(i(}). (4·21) 

From Eqs. (4·11) and (4·12), we have 

8YJ3 V1 + lql 2 sinh[2YJ(zt+s+(ulllcosh[2YJ_(u+~±_C~2l1 
~2 + YJ 2 {cosh2 [2YJ (u + s+ (u))]- 2YJ2/ W+ YJ 2) } 2 

(4. 22) 
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Since Eq. ( 4 ·12) yields 

we obtain 

where 

T. Shimizu and A1. lVadati 

¢o = W + 'fJ2) / W- 'fJ2) • 

( 4. 23) 

( 4. 24) 

(4· 25a) 

(4. 25b) 

(4 · 25c) 

The solitary wave solution exists under the condition ( 4 ·13), and then the integra­

tion of Eq. ( 4 · 24) gives 

log(~~:=~~!~~::=~)+ 2~~~~ 1 (ifjom~ m2
)

1
1

2 

= ± ~2w(ma-1) (u-ua). (4. 26) 

Here u 0 is an integration constant and + (-) is for Y>Yo (Y<Yo). Equation 

(4·26) determines the shape of the envelope [q[=~m2 -l. Next we consider the 

phase part of q(x, t). From Eq. (4·19) we find that 

e (x, t) = -2~x-4 ce-r;2) t+ f(u)' (4· 27) 

where 

f ( u) = - 2~ c + ( u) -arctan ( ; tanh f). (4. 28) 

Differentiating Eq. ( 4 · 28) and using Eq. ( 4 · 23), we obtain 

df m2 p. 
- = -4~ -+2,-. 
du 1+m 

( 4. 29) 

Therefore, the envelope and the phase of q(x, t) can be determined by Eqs. (4·26) 

and ( 4 · 27) with Eq. ( 4 · 29), respectively. 

§ 5. Discussion 

In the present paper, using the inverse scattering method, we have solved 

a newly found integrable equation 

(1·1) 
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A New Integrable Nonlinear Evolution Equation 819 

under the boundary condition 

q(x,t)-->0 as lx]--c>oo. (1·2) 

In particular, we have examined one soliton-solution 111 detail. Here we point 

out two interesting limits of one-soliton solution. 

First, when ~~'f/, Eq. (4·19) or Eq. (4·26) reduces to 

q(x, t) = 2 '(/ sech[2'lJ(x+4~t)Jexp[ -2i~x-4iW-r/)t], (5·1) 
p. 
S" 

which is 111 the same form as one-soliton solution of the nonlinear Schrodinger 

equation. The phase factor exp [- 4i (- 'lJ2) t] in Eq. (5 ·1) is left for comparison. 

From Eq. (5 ·1), we see that the soliton with small amplitude may be approxi­

mately described by the nonlinear Schroclinger equation. We show this fact direct­

ly from the original nonlinear evolution equation. Assuming that lq I is small, we 

have 

Suppose that the phase changes much faster than the envelope does. Then, for 

q"-'exp (- 2i~x), vve set 

Therefore, we obtain 

(5. 4) 

Equation (5 · 4) is the nonlinear Schriidinger equation whose one-soliton solution 

is given by Eq. (5 ·1). 

Second, we consider the limit I;; 1->'f/ + 0. We have shown that one-soliton 

sol uti on has the properties: 

q (x. t) "-'exp (- iuJt), (5. 5) 

(5. 6) 

where 

(5. 7) 

We notice that as the frequency cu approaches zero the peak amplitude of the 

soliton increases infinitely, a bursting soliton. This situation reminds us of a kind 

of resonance phenomena. From this viewpoint, the application of Eq. (1·1) to the 

physical system, such as nonlinear optics, is under research. 
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