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1. Introduction

In many economic activities individuals often face risks and uncertainties concern-

ing future events. The probabilities of these events are rarely known, and individuals

are left to act on their subjective beliefs. Since the work of Ellsberg (1961), the con-

ventional theory based on (additive) expected utility has become somewhat contro-

versial, both on descriptive and normative grounds. There is a cumulative indication

that individuals often do not use regular (additive) subjective probability. Rather,

they exhibit what is referred to as an uncertainty aversion.1

Schmeidler (1989) proposed one of the most influential alternative theories to that

of additive subjective probabilities. In Schmeidler’s model, individuals make assess-

ments that fail to be additive across disjoint events. The expected value of utility with

respect to a non-additive probability distribution is defined according to the Choquet

integral. The decision maker chooses the act that maximizes the expected utility.

Following Choquet, a possible non-additive probability is referred to as a capacity.

Since Schmeidler’s breakthrough, the Choquet integral has been extensively used in

decision theory (see, Gilboa (1987), Wakker (1989), and Sarin and Wakker (1992)).

Dow and Werlang (1992, 1994) applied the Choquet integral to game theory and

finance. Schmeidler (1986) and Groes et al. (1998) provided a few characterizations

of the Choquet integral.

Another prominent integral is the Sugeno (or fuzzy) integral (see, Sugeno, 1974).

It is expressed in maximum-minimum terms and it corresponds to the notion of the

median, rather than to that of the average. As opposed to the Choquet integral

and the one introduced here, the Sugeno integral does not coincide with the regular

integral when the capacity is additive.2

This paper presents a new integral with respect to capacities, which differs from

the Choquet integral on non-convex capacities. The new integral makes use of the

concavification of a cooperative game that appeared in Weber (1994) and later in

Azrieli and Lehrer (2007b). It is axiomatically characterized in two ways.

The key property of the new integral is concavity. This means that the sum of the

integrals of two functions is less than or equal to the integral of the sum. In the con-

text of decision under uncertainty this property might be interpreted as uncertainty

aversion.

1A myriad of empirical evidence of choices, that are not consistent with conventional subjective
probability and expected utility, have been documented in the literature (see, Camerer and Weber
(1992), Starmer (2000)).

2For further discussion of this issue the reader is referred to Murofushi and Sugeno (1991).
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Three more axioms are necessary in order to characterize the integral. The first

requires that when the underlying probability space consists of one point, the integral

coincides with the conventional integral. The second is an axiom of monotonicity with

respect to capacities. It states that an additive capacity P assigns to every subset a

value which is greater than or equal to that assigned by v, if and only if the integral

of any non-negative function with respect to P is greater than or equal to the integral

taken with respect to v.

The last axiom states that when integrating an indicator of a set S, the integral

depends only on the values that the capacity takes on the subsets of S. In other

words, the integral of an indicator of S does not depend on the values that the

capacity ascribes to any event outside of S.

In Section 9 we introduce an integral w.r.t. fuzzy capacities. Fuzzy capacities assign

subjective expected values to some, but not all, random variables (e.g., portfolios). In

particular, a fuzzy capacity may assign subjective probabilities only to some events

and not to all. The new integral aggregates all available information, and enables one

to calculate an average value also when there is partial information and the capacity

does not provide the likelihood of every possible event.

The integral w.r.t. fuzzy capacities is inspired by Azrieli and Lehrer (2007a) who

used the operational technique (concavification and alike) extensively and employed

it to investigate cooperative population games.

It turns out that there a strong relation exists between the minimum over additive

capacities and the new integral. A full equivalence between the representation of an

order over random variables as a minimum over additive capacities3 and a represen-

tation by the integral w.r.t. fuzzy capacities is shown in Section 9.

It might be that a capacity is specified over a subset of events and not over all of

them. The definition of fuzzy capacities also covers this case. That is, the integral

w.r.t. fuzzy capacities enables one to define the integral of a partially-specified ca-

pacity. This is particularly important when the capacity is additive (i.e., a regular

probability distribution) and the decision maker is not informed of the probability of

all events.

The paper is organized as follows. Section 2 presents the new integral and Section 3

illustrates it through a few examples including Ellsberg’s paradox. Section 4 compares

the new integral and Choquet integral. Example 3 is meant to convince the reader

that sometimes the new integral results in more intuitive decisions than those derived

from Choquet integral. This section also shows that the new integral is an extension

3See Gilboa and Schmeidler (1989) for the case of probability distributions.
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of Lebesgue integral. Section 5 provides the two characterization theorems whose

proofs appear in Section 6. Section 7 refers to capacities with large core where the

new integral is obtained as the minimum over the core’s members of the corresponding

expectations. Section 8 discusses first order stochastic dominance. Section 9 extends

the integral to fuzzy capacities. Final comments are found in Section 10. The first

comment refers to an example by Machina (2007), the second to risk measures and

their relation to the new integral, and the third comment is about the extension of

the integral to large spaces.

2. The new integral

A capacity is a function v that assigns a non-negative real number to every subset

of a finite set N (|N | = n) and satisfies (i) v(∅) = 0; and (ii) if S ⊆ T ⊆ N , then

v(S) ≤ v(T ). Such a capacity is said to be defined over N . A capacity P defined over

N is additive if for any two disjoint subsets S, T ⊆ N , P (S) + P (T ) = P (S ∪ T ).

A random variable over N is a function X : N → R. A random variable is non-

negative if X(i) ≥ 0 for every i ∈ N . The following definition introduces the new

integral. As will be discussed in subsection 4.2, the definition is analogous to that of

Lebesgue integral.

Definition 1. Let v be a capacity defined over N . Fix a non-negative random variable

X. Define,

(1)

∫ cav

Xdv = min{f(X)},

where the minimum is taken over all concave and homogeneous functions f : Rn
+ → R

such that 4 f(1lR) ≥ v(R) for every R ⊆ N .

Remark 1. Since the minimum of a family of concave and homogeneous functions

over Rn
+ is concave and homogeneous, so is

∫ cav
Xdv, as a function of X.

Let v and w be two capacities. We say that v ≥ w if v(S) ≥ w(S) for every S ⊆ N .

The following lemma provides an explicit formula for the new integral.

Lemma 1. (i) For every non-negative X defined over N ,∫ cav

Xdv = max
{ ∑

R⊆N

αRv(R);
∑
R⊆N

αR1lR = X, αR ≥ 0
}

.(2)

(ii)

∫ cav

Xdv = min
P is additive and P≥v

∫
XdP.

41lR is the indicator of R: 1lR = (1l1R, ..., 1lnR), where 1liR equals 1 if i ∈ R and 0, otherwise.
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The proof of the lemma is based on the fact that, as a function of X,
∫ cav

Xdv is

concave. This is rather standard and is therefore omitted. Note that Lemma 1 (ii) the

capacities P need not be probability distribution, nor do they satisfy P (N) = v(N).

Zhang et al. (2002) discussed expressions similar to that on the right-hand side of

eq. (2) with a further restriction that all the sets are required to be mutually disjoint.

With this restriction the integral becomes analogous to a Riemann integral.

The sum
∑

R⊆N αR1lR is a decomposition of X, if αR ≥ 0 for every R ⊆ N and∑
R⊆N αR1lR = X. It is an optimal decomposition of X w.r.t. v if it is a decomposition

of X w.r.t. v and
∫ cav

Xdv =
∑

R⊆N αRv(R). When talking about decompositions,

the reference to v will be often dropped.

3. Examples

Example 1: Let N = {1, 2, 3}, v(N) = 1, v(12) = v(23) = 2
3
, v(13) = 1

4
and

v(i) = 0 for every i ∈ N . A function over N is a 3-dimensional vector. Consider

X = (1, 2, 1). Note that (1, 1, 0) + (0, 1, 1) is a decomposition of X. Furthermore, it

is an optimal decomposition of X:
∫ cav

Xdv = 2
3

+ 2
3

= 4
3
.

Example 2 (resolving Ellsberg paradox): Suppose that an urn contains 30 red

balls and 60 other balls that are either green or blue. A ball is randomly drawn from

the urn and a decision maker is given a choice between the two gambles.

Gamble X: to receive $100 if a red ball is drawn.

GambleY: to receive $100 if a green ball is drawn.

In addition, the decision maker is also given the choice between these two gambles:

Gamble Z: to receive $100 if a red or blue ball is drawn.

GambleW: to receive $100 if a green or blue ball is drawn.

It is well documented that most people strongly prefer Gamble X to Gamble Y and

Gamble W to Gamble Z. This is a violation of the expected utility theory.

There are three states of nature in this scenario: R, G and B, one for each color.

Denote by N the set containing these states. Each of the gambles corresponds to a real

function (a random variable) defined over N . For instance, Gamble X corresponds

to the random variable X, defined as X(R) = 100 and X(G) = X(B) = 0.

The probability of four events are known: p(∅) = 0, p(N) = 1, p({R}) = 1
3

and

p({G, B}) = 2
3
. The probability p is partially specified: it is defined only on a

sub-collection of events and not on all events. Although the new integral has been

introduced so far in relation to capacities defined over all events, the same idea may

be used for what will be later called fuzzy capacities (among which capacities that
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may be defined only over a sub collection of events). This is explained here in order

to resolve Ellsberg paradox and will be elaborated on later in Section 9.

The integral of a function X is defined in a fashion similar to eq. (1). When p

is defined only over familiar events, X is allowed to be written as a positive linear

combination of characteristic functions of familiar events only. Using only the four

familiar events, X is optimally decomposed as X = 100 · 1l{R}. And thus,
∫ cav

Xdp =

100 · 1
3
. When doing the same for Y (the random variable that corresponds to Gamble

Y), one cannot obtain a precise decomposition of Y . The maximal non-negative

function which is lower than or equal to Y and can be written only in terms of

the four familiar events is 0 · 1lN . The integral of Y is therefore equal to 0. Since,

100 · 1
3

> 0, X is preferred to Y .

A similar method applied to Z and W yields: Z ≥ 100·1l{R} and the right-hand side

is the greatest of its kind. Thus,
∫ cav

Zdp = 100 · 1
3
, while W is optimally decomposed

as 100 · 1l{G,B}. Therefore,
∫ cav

Wdp = 100 · 2
3
. Since 100 · 1

3
< 100 · 2

3
, Gamble W is

preferred to Gamble Z .

The intuition is that the decision maker bases her evaluation of unknown random

variables on known figures: the probabilities of the familiar events. Using simple

functions that can be expressed by these events, the decision maker approximates

from below any unknown random variable and the maximal simple function of this

kind in the one used by the new integral.

4. The new integral and Choquet integral

4.1. The new integral and Choquet integral. Let v be a capacity defined over

N . The Choquet integral of non-negative X w.r.t. v, denoted
∫ C

Xdv, is defined by∑n
i=1(Xσ(i) − Xσ(i−1))v(Ri), where σ is a permutation over N that satisfies Xσ(1) ≤

... ≤ Xσ(n) and Ri = {σ(i), ..., σ(n)} (X(σ(0)) = 0, by convention).

Note that,

X =
∑

αi1lR(i),(3)

where αi = Xσ(i)−Xσ(i−1). Thus,
∑

αi1lR(i) is a decomposition of X. This means that

a particular decomposition of X is used for the calculation of the Choquet integral. In

contrast, the new integral allows all possible decompositions, and as in the definition

of the Lebesgue integral (see next section), the one that achieves the maximum of the

respective summation is chosen.

This implies, in particular, that always
∫ C

Xdv ≤
∫ cav

Xdv. Lovasz (1983) (see

also Azrieli and Lehrer (2007b)) imply that
∫ C

Xdv =
∫ cav

Xdv for every X if and

only if v is convex (i.e., v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for every S, T ⊆ N).
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The next example demonstrates a case where the new integral results in a more

reasonable outcome than the Choquet integral.

Example 3: Let N = {1, 2, 3, 4}. The capacity v is defined as the minimum of

probability distributions as follows. Denote p1 = (1
8
, 1

8
, 1

4
, 1

2
), p2 = (1

2
, 1

8
, 1

8
, 1

4
), p3 =

(1
8
, 1

2
, 1

4
, 1

8
), p4 = (1

8
, 1

4
, 1

2
, 1

8
) and p5 = (1

8
, 1

2
, 1

8
, 1

4
). For every S ⊆ N define v(S) =

min1≤i≤5 pi(S). Thus, v(j) = 1
8

for every j = 1, 2, 3, 4, v(12) = v(13) = v(23) =

v(14) = 1
4
, v(34) = v(24) = 3

8
, v(S) = 1

2
if |S| = 3 and v(N) = 1.

Consider X = (0, 1, 2, 3) and Y = (1, 0, 2, 3). X and Y differ in the values of the first

two coordinates: While X assigns the value 0 to the first state and 1 to the second, Y

assigns the value 1 to the first state and 0 to the second. The Choquet integral of X

coincides with that of Y :
∫ C

Xdv =
∫ C

Y dv = 1
2
+ 3

8
+ 1

8
= 1. On the other hand, the

valuations of X and Y by the new integral differ. Since X = (0, 1, 0, 1) + 2(0, 0, 1, 1),∫ cav
Xdv = 3

8
+2· 3

8
= 9

8
. Moreover,

∫ cav
Y dv = 1. In particular,

∫ cav
Xdv >

∫ cav
Y dv.

Recall that X and Y differ only on the first two coordinates. State 2 is more

likely than state 1 in the sense that for every S that does not contain these states,

v(S ∪ {1}) ≤ (S ∪ {2}), with a strict inequality when S = {4}. It therefore seems

reasonable to evaluate X more than Y , as implied by the new integral and not by the

Choquet integral. Technically speaking, the reason why
∫ cav

Xdv >
∫ cav

Y dv is that

{2, 4} and {1, 4} take part in the optimal decompositions of X and Y , respectively,

and v(2, 4) > v(1, 4).

Since both integrals are homogeneous,
∫ cav 10

9
Y dv =

∫ C 10
9
Y dv = 10

9
. A decision

maker whose preferences are determined by the Choquet integral, would prefer 10
9
Y

to X, while a decision maker whose preferences are determined by the new integral,

would prefer X to 10
9
Y .

The following proposition generalizes this example a provides a new characteriza-

tion of convex capacities.

Proposition 1. Let v be a capacity. Then, v is convex if and only if for every

non-negative X and Y ,

∫ cav

Xdv ≥
∫ cav

Y dv whenever

∫ C

Xdv ≥
∫ C

Y dv.

The proof is postponed to the appendix.

4.2. The new integral as an extension of Lebesgue integral. The Lebesgue

integral of functions over general probability spaces is defined in a fashion similar to

that of (2). For the sake of explanation consider functions over the interval [0, 1]. A
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function f is simple if it can be written as f =
k∑

i=1

αi1lRi
, where Ri is a measurable set

in [0, 1] and αi ∈ R. For a simple function, the integral of f with respect to a measure

µ is defined as
k∑

i=1

αi

∫
1lRi

dµ =
k∑

i=1

αiµ(Ri). And for a non-negative function f it

is defined as ∫
f dµ := sup

{∫
h dµ; h is simple and h ≤ f

}
.

Lemma 1 (i) implies that the definition of
∫ cav

Xdv is similar to this definition.

5. Characterization

In this section we characterize the new integral. In what follows

∫
Xdv should be

thought of as a function from pairs (X, v) to the real numbers. The goal is to find

a set of plausible properties of such a function that characterizes it uniquely as the

new integral.

The first property is a weak version of an axiom, called ‘Accordance for Additive

Measures’, that appears in Groes et al. (1998). They required that if v is additive,

then

∫
Xdv is a regular integral. Here, the axiom is restricted to the case where N

is a singleton.

Singleton Accordance for Additive Measures – (SAAM): If |N | = 1, then∫
1lNdv = v(N).

The following property states that the integral is co-variant with a positive linear

re-scaling.

Homogeneity – (HO): For any v, X and β ≥ 0,

∫
βXdv = β

∫
Xdv.

The next axiom is the paramount property of the new integral. In order to explain

it consider a situation where a bet of one dollar on horse i yields two dollars if

horse i wins the race. A vector $1
2
X(i), i = 1, ..., n, of bettings (i.e., X(i) on horse

i) will be referred to as a bet. The bet 1
2
X corresponds to the variable X, which

represents the prizes corresponding to all possible horse winnings. Suppose that

the gambler’s assessments about the likelihood of all possible winnings is given by

a capacity (non-additive probability) v. The integral of X attempts to capture the

notion of “expected” return from the bet 1
2
X when the probability considered is v.

Suppose now that X and Y are two bets and β ∈ (0, 1). Then, β 1
2
X, (1 − β)1

2
Y

and β 1
2
X + (1 − β)1

2
Y are also bets. The decision maker tries to evaluate the bet
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β 1
2
X +(1−β)1

2
Y . By splitting it into the bets, β 1

2
X and (1−β)1

2
Y he can ensure an

“expected” return of
∫

βXdv+
∫

(1−β)Y dv. By splitting β 1
2
X+(1−β)1

2
Y differently

the gambler might guarantee even a higher “expected” return. The particular split

into β 1
2
X and (1−β)1

2
Y ensures that the “expected” return from the bet β 1

2
X +(1−

β)1
2
Y (i.e.,

∫
βX + (1− β)Y dv) is at least

∫
βXdv +

∫
(1− β)Y dv.

The following concavity axiom captures this idea.

Concavity – (CAV): For any v, X , Y and β ∈ (0, 1),

∫
βX + (1 − β)Y dv ≥∫

βXdv +

∫
(1− β)Y dv.

The next axiom refers to two capacities, one of which is additive. It states that P

is additive and P ≥ v, if and only if the integral w.r.t. to P is greater than or equal

to that w.r.t. v. It implies that the integral is monotonic with respect to the capacity

in the restrictive sense that if P is additive and it is greater than v, then the integral

of any non-negative X w.r.t. P is at least as high as the integral of the same X taken

w.r.t. v. Furthermore, the axiom requires that if P is not greater than v (meaning

that there is S such that v(S) > P (S)), then there is a non-negative function whose

integral w.r.t. v is greater than that w.r.t. P .

Monotonicity w.r.t. capacity – (M): For every additive P , P ≥ v if and only if∫
XdP ≥

∫
Xdv for every non-negative X.

Let S be a subset of N . The sub-capacity vS is a capacity defined over S: vS(T ) =

v(T ) for every T ⊆ S. The next axiom requires that the integral of the indicator

of the subset S with respect to v is equal to the integral with respect to vS, the

sub-capacity restricted to S. It suggests that the integral of a function depends on

the values that v takes on the subset of N over which the function is not vanishing.

The following axiom equates two integrals: one w.r.t. v over the domain N , and

another w.r.t. vS over a restricted domain, S.

Independence of irrelevant events – (IIE): For every S,

∫
1lSdv =

∫
1lSdvS.

Theorem 1. (First Characterization) The integral

∫
Xdv satisfies (SAAM), (CAV),

(HO), (M), and (IIE) if and only if

∫
Xdv =

∫ cav

Xdv for every non-negative X.

The following axiom requires only one of the two implications contained in (M).
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Weak monotonicity w.r.t. capacity – (WM): For every additive P , if P ≥ v,

then

∫
XdP ≥

∫
Xdv for every non-negative X.

Schmeidler (1986) and Groes et al. (1998) employ the indicator property which is

a strong version of the following axiom. They required that

∫
1lSdv = v(S).

Weak Indicator property – (WIP): For every S,

∫
1lSdv ≥ v(S).

Theorem 2. (Second Characterization) The integral

∫
Xdv satisfies (SAAM),

(CAV), (HO), (WM), and (WIP) if and only if

∫
Xdv =

∫ cav

Xdv for every non-

negative X.

Remark 2. Properties (SAAM), (HO), (M), (IIE) and (WIP) are also shared by the

Choquet integral.

6. The proof of the Theorems

Proof of Theorem 1. The fact that
∫

Xdv satisfies (SAAM), (CAV), (HO), (M),

and (IIE) is easy to check. As for the inverse direction, (M) implies5 that for every

additive capacity P that satisfies P ≥ v,
∫

XdP ≥
∫

Xdv. Thus, minP≥v

∫
XdP ≥∫

Xdv. Lemma 1 (ii) implies that
∫ cav

Xdv ≥
∫

Xdv. (CAV) and (HO) imply that∫
Xdv is concave and homogeneous. As a function of X,

∫ cav
Xdv is the smallest

concave function that is greater than or equal to v. Thus, it remains to show that∫
1lSdv ≥ v(S) for every S ⊆ N .

We proceed by induction on the size of S. For S such that |S| = 1, (IIE) and

(SAAM) imply
∫

1lSdvS =
∫

1lSdv = v(S). Assume that
∫

1lSdv ≥ v(S) for every

S ⊆ N with |S| < ` and we prove it for S of size `.

Fix S ⊆ N with |S| = `, let ∆ be the set of all non-negative variables X : N → R
such that X(i) = 0 for every i 6∈ S and

∑
i∈S X(i) = 1 and define φ(X) =

∫ cav
XdvS.

Due to (CAV) the function φ defined over ∆ is concave.

Assume to the contrary that φ(1lS/|S|) =
∫

1lS/|S|dvS =
∫

1lS/|S|dv < v(S)/|S|
(the second equality is due to (IIE)). Then, there is a linear function g(X) defined on ∆

that supports the graph of φ at 1lS/|S|. This function has the form, g(X) = 〈a, X〉+b,

with 〈·, ·〉 being the inner product, a = (a(i))i∈S ∈ R|S| and b ∈ R. The fact that g

is a supporting function at 1lS/|S| means that g(X) ≥ φ(X) for every X ∈ ∆ and

g(1lS/|S|) = φ(1lS/|S|).
5In fact, at this point the ‘only if’ direction of (M) suffices.
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Define P (i) = a(i) + b. Note that since
∑

i∈S X(i) = 1 for every X ∈ ∆, g(X) =

〈P, X〉. By the induction hypothesis, for every i ∈ S, φ(1l{i}) ≥ v({i}) ≥ 0. Since,

P (i) = g(1l{i}) ≥ φ(1l{i}) we obtain P (i) ≥ 0 for every i ∈ S. Thus, one may

refer to P as an additive capacity defined over S. This capacity satisfies g(X) =∫
XdP ≥ φ(X) for every non-negative X. By (IIE) and the induction hypothesis,

P (T )/|T | = g(1lT /|T |) ≥ φ(1lT /|T |) =
∫

1lT /|T |dvS =
∫

1lT /|T |dvT =
∫

1lT /|T |dv ≥
v(T )/|T | for every non-empty strict subset T of S. As for S itself, P (S)/|S| =

g(1lS/|S|) = φ(1lS/|S|), which is by assumption strictly smaller than v(S)/|S| =

vS(S)/|S|. Therefore, P is greater than or equal to vS on every strict subset T of S,

while P (S) < vS(S). In particular, P 6≥ vS.

The axiom6 (M) ensures that there is X defined over S such that
∫

XdvS >
∫

XdP .

By (HO) X 6= 0 and it can be assumed without loss of generality that X ∈ ∆. This

contradicts
∫

XdP = g(X) ≥ φ(X) =
∫

XdvS for every X ∈ ∆.

Proof of Theorem 2. The first part of the proof of Theorem 1 uses (SAAM),

(CAV), (HO), and only (WM). The second part is devoted to showing what (WIP)

explicitly assumes. One therefore obtains Theorem 2.

7. Minimum over the core

The capacity v has a large core (Sharkey, 1982) if and only if for every S ⊆ N and

for every additive capacity Q that satisfies v ≤ Q, there is P in the core of v such that

P ≤ Q. The capacity v is exact (Schmeidler, 1972) if and only if for every S ⊆ N ,

there is P in the core7 of v such that P (S) = v(S). If v is convex, then v has a large

core (see Sharkey, 1982) and if v has a large core and each of its sub-capacities has

a non-empty core, then it is exact (see, Azrieli and Lehrer, 2007b). No two of these

three notions are equivalent.

The connection between the largeness of the core and the integral is provided in

the following statement.

Proposition 2. (Azrieli and Lehrer, 2007b) v has a large core if and only if

(4)

∫ cav

Xdv = min
P in the core of v

∫
XdP

for every non-negative X.

Proposition 2 implies that a decision maker that uses a capacity with a large core

and
∫ cav

Xdv to evaluate a random variable X abides to the model of Gilboa and

6At this point the ‘if’ part of (M) is being used.
7The core of v consists of all additive capacities P such that P ≥ v and P (N) = v(N).



A NEW INTEGRAL FOR CAPACITIES 11

Schmeidler (1989). In this model, preference orders over random variables are rep-

resented by a minimum over a compact and convex set of probability distributions.

When v has a large core the compact and convex set of probability distributions is

the core of v.

Azrieli and Lehrer (2007b) show that

Corollary 1.∫ cav

X + cdv =

∫ cav

Xdv +

∫ cav

cdv =

∫ cav

Xdv + c · v(N)

for every non-negative X and a constant c if and only if v has a large core.

Remark 3. It is important to note that when the capacity v has a large core Corollary

1 enables one to extend the domain of the integral from the non-negative variables to

all variables. Let v be a capacity with a large core and let X be any random variable.

Then, there is a constant c such that X + c is non-negative. One may then define∫
Xdv =

∫
X + cdv − cv(N).

Capacities with a large core are important to decisions under uncertainty primarily

when the decision maker is partially informed of the true distribution (see Lehrer

(2006)). In Example 2 the decision maker is informed only of two events: the proba-

bility of Red is 1
3
, and the probability of Green or Blue is 2

3
. Thus, the decision maker

ought to take a decision having only a partial information about the underlying dis-

tribution.

In a more general setting, for instance when the distribution of the balls in Ellsberg’s

urn is dynamic, the decision maker might be informed only of the expectation of some

random variables. Suppose, for instance, that the green balls multiply once a day, and

the decision maker should take a decision at the second day. The probability of Red

is no longer 1
3
. In fact, at the second day the decision maker knows the probability

of no non-trivial event.

A simple calculation shows that the decision maker can deduce that at the second

day the expectation of the random variable (1, 1
6
, 0) (i.e., the one that takes the values

1, 1
6
, 0 on Red, Green and Blue, respectively) is 1

3
.

In general, the decision maker might be informed of the expectation of every random

variable in a set Y . That is, the decision maker is informed of IE(Y ) for every Y ∈ Y ,

where IE(·) is the expectation with respect to the real distribution, IP. It should be

emphasized that the real distribution IP is not fully revealed to the decision maker;

the latter is informed only of the expectations of some, but not all, random variables.
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Note that a random variable Y ∈ Y might be an indicator variable, in which case the

decision maker is informed of the probability of the corresponding event.

A conservative decision maker would like to use the partial information he obtained

in order to get an estimation of the probability of all events. The lower bound of the

probability of an event S is then,

v(S) = max{
∑
Y

αY IE(Y );
∑
Y

αY Y ≤ 1lS, αY ∈ R and Y ∈ Y}.

The capacity v has a large core and is typically not convex.

The analogous statement of Proposition 2 for the Choquet integral is due to Schmei-

dler (1986). He showed that v is convex if and only if∫ C

Xdv = min
P in the core of v

∫
XdP

for every non-negative X.

8. First order stochastic dominance and concavity

Let (v, N) be a capacity, and X, X ′ be two non-negative functions over N . We

say that X ′ (first order) stochastically dominates X w.r.t. v, denoted X ′ �v X, if for

every number t, v(X ′ ≥ t) ≥ v(X ≥ t).

The Choquet integral is monotonic w.r.t. stochastic dominance. That is, if X ′ �v

X, then
∫ C

X ′dv ≥
∫ C

Xdv.

Example 4: Let N = {1, 2, 3}, v(N) = 1, v(12) = v(13) = 3
4
, v(23) = 1 and v(i) = 0

for every i ∈ N . Consider X = (1, 1, 1) and X ′ = (0, 6
5
, 6

5
).

∫ cav
Xdv = 5

4
, while∫ cav

X ′dv = 6
5
. In this example X ′ �v X and nevertheless,

∫ cav
X ′dv <

∫ cav
Xdv.

Example 4 shows that
∫ cav

is not monotonic w.r.t. stochastic dominance. The

question arises whether there is a reasonable integral which is monotonic w.r.t. sto-

chastic dominance and concave (i.e., satisfies (CAV)) at the same time. The following

example shows that there is no homogeneous (non-trivial) integral which possesses

these two properties.

Example 5: Let N = {1, 2, 3}, v(S) = 1 if |S| ≥ 2 and otherwise, v(S) = 0.

If |S| = 2, then 1lS �v 1lN , and if the integral
∫
·dv is monotonic w.r.t. stochastic

dominance, then
∫

1lSdv ≥
∫

1lNdv. However, 1lN =
∑

S; |S|=2
1
2
1lS, and if

∫
·dv is

concave and homogeneous, then
∫

1lNdv ≥
∑

S; |S|=2
1
2

∫
1lSdv ≥ 3

2

∫
1lNdv. Therefore,

an homogeneous integral cannot be both, monotonic w.r.t. stochastic dominance and

concave, unless
∫

1lNdv ≤ 0.
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The set N can be thought of as a state space and the function 2
3
1lN can be thought

of as a portfolio that ensures a payoff of 2
3

at any state. However, 2
3
1lN can be

decomposed as an average of three portfolios: 2
3
1lN =

∑
S; |S|=2

1
3
1lS. Thus, if each of

the portfolios 1lS, |S| = 2 (i.e., a payoff of 1 is guaranteed if a state in S is realized) is

selected with probability 1
3
, then, on average, a payoff of 2

3
is guaranteed at any state.

The idea behind concavity is that the value of 2
3
1lN should be at least the average of

the values of the portfolios forming it. That is,

∫ cav 2

3
1lNdv ≥

∑
S; |S|=2

1

3

∫ cav

1lSdv.

9. An integral w.r.t. a fuzzy capacity

9.1. Fuzzy capacity. Let I = [0, 1]n be the unit square. For every a ∈ I let |a|
be the sum of its coordinates. Any subset of N can be identified with its indicator,

which is an extreme point of I. For every (x1, ..., xn) and (y1, ..., yn) in I we say that

(x1, ..., xn) ≥ (y1, ..., yn) if xi ≥ yi, i = 1, ..., n. A function f over a subset of I is said

to be monotonic if for every X, Y in the range of f , X ≥ Y implies f(X) ≥ f(Y ).

Thus, a capacity is a monotonic function v defined over the extreme points of I and

v(0, ..., 0) = 0. The notion of capacity is extended here as follows:

Definition 2. (1) The pair (v, A) is a fuzzy capacity if (1, ..., 1) ∈ A ⊆ I, v : A → R+

is monotonic, continuous, and there is a positive K such that v(a) ≤ K|a| for every

a ∈ A.

(2) (P, A) is an additive fuzzy capacity if there are non-negative constants, p1, ..., pn,

such that for every a = (a1, ..., an) ∈ A, P (a) =
∑n

i=1 aipi.

While a capacity v assigns values (subjective probabilities) to events, a fuzzy ca-

pacity assigns values (subjective expected value) to random variables. The data-base

of an agent might enable her to evaluate the expected values of some random vari-

ables (e.g., portfolios, bets) and not of others. Furthermore, it might enable her to

assess the probability of some but not of all events. The set of variables about which

the agent has firm assessments is represented by A. Note that A might contain only

points of the form 1lS, where S ⊆ N . In this case v is a partially-specified non-

additive probability: it evaluates only the probability of events, and not necessarily

all of them.

The integral aggregates all available information, including individual assessments

of the likelihood of events and expected values of variables, into a comprehensive

picture. Upon observing the comprehensive picture the agent might re-evaluate the

likelihood of events or the expected values she assigns to random variables and change

her mind.
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Similar to the definition in Section 2 we define the integral of a non-negative X w.r.t.

a fuzzy capacity (v, A). Let L be the set of all concave, monotonic and homogeneous

functions f : Rn
+ → R such that f(a) ≥ v(a) for every a ∈ A. The integral w.r.t.

(v, A) is defined as8

∫ cav

Xdv = min
f∈L

f(X),

for every non-negative X. The minimum of all concave, monotonic and homogeneous

functions is well defined and possesses the same properties. Similarly to Lemma 1

one obtains,

∫ cav

Xdv = max
{ k∑

i=1

αiv(ai)
}

,(5)

where the maximum is taken over all ai ∈ A, αi ≥ 0, i = 1, ..., k that satisfy∑k
i=1 αiai ≤ X. Denote by coneA the convex cone generated by A. That is,

coneA = {
∑

αiai; ai ∈ A and αi ≥ 0}. Note that in eq. (5)
∑k

i=1 αiai is allowed to

be less than or equal to and not necessarily equal to X as in Lemma 1. Inequality

is allowed since coneA might be a strict subset of Rn
+. Note also that if (P, A) is

additive, then
∫ cav

XdP =
∫

XdP (the regular integral of X) for every X ∈ coneA.

Example 6: Let N = {1, 2}. Thus, I = [0, 1]×[0, 1]. Define the fuzzy capacity (v, A)

as follows: A = {(1, 1), (1
2
, 1

4
)}, v(1, 1) = 1 and v(1

2
, 1

4
) = 1

3
. Consider X = (1, 3

4
).

X = 1
2
(1, 1) + (1

2
, 1

4
) and this is an optimal decomposition of X. Thus,

∫ cav
Xdv =

1
2
· 1 + 1

3
= 5

6
. Now let Y = (2, 3). Y = (2, 3) ≥ 2(1, 1) while 2(1, 1) attains the

maximum of the right-hand side of eq. (5). Therefore,
∫ cav

Y dv = 2.

Example 2 revisited: Ellsberg’s paradox was analyzed in Example 2. In order to

phrase this analysis in terms of fuzzy capacities, let N = {R,G,B}. Thus, I = [0, 1]3,

the three dimensional unit cube. Set A = {(1, 1, 1), (1, 0, 0), (0, 1, 1)} and v(1, 1, 1) =

1, v(1, 0, 0) = 1
3

and v(0, 1, 1) = 2
3
. Let X be (100, 0, 0). Since 100(1, 0, 0) is an

optimal decomposition of X,
∫ cav

Xdv = 100 · 1
3
. Also define, Y = (0, 100, 0) the

right-hand side of eq. (5) is attained by 0(1, 1, 1), and therefore,
∫ cav

Y dv = 0.

The core of (v, A) (see also9 Aubin (1979) and Azrieli and Lehrer (2007a)) consists

of all the additive fuzzy capacities P such that P (1, ..., 1) = v(1, ..., 1) and for every

a ∈ A, P (a) ≥ v(a). The fuzzy capacity (v, A) is exact if for every a ∈ A there is P

in the core of v such that P (a) = v(a).

8The set A is dropped from the notation.
9Both referred to the special case where A = I.
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9.2. Minimum over additive capacities and the integral. Let P be a compact

set of additive capacities defined over the extreme points of I. Denote the fuzzy

capacity (vP , I) as follows:

(6) vP(a) = min
P∈P

∫
adP for every a ∈ I.

Remark 4. For any compact set of additive capacities, P, denote by convP the

convex hull of P. For any a ∈ A, the value vconvP(a) is attained at an extreme point

of convP, which is in P. Therefore, vP = vconvP .

The following example illustrates the main idea demonstrated in this section.

Example 7: Let N = {1, 2, 3} and consider the set P which consists of the probability

distributions P1 = (1
2
, 1

4
, 1

4
), P2 = (1

4
, 1

2
, 1

4
) and P3 = (1

4
, 1

4
, 1

2
). Denote by w the

capacity vP restricted to A = {1lS; S ⊆ N }. Thus,10 w(N) = 1 and w(S) = |S|1
4

for

|S| ≤ 2. In this case for every non-negative X, minP∈P IEP (X) =
∫ cav

Xdw.

Now consider P4 = ( 2
16

, 7
16

, 7
16

) and P ′ = {P1, P2, P3, P4}. Denote by u the capacity

vP ′ restricted to A. Thus, u(N) = 1, u(S) = 1
2

if |S| = 2, u(1) = 1
8
, and u(2) =

u(3) = 1
4
. In order to show that minP∈P ′ IEP (X) 6=

∫ cav
Xdu for some non-negative

X, consider X = (3
5
, 2

5
, 0). On one hand, minP∈P ′ IEP (X) = 1

4
, and on the other,∫ cav

Xdu = 1
5
u(1, 0, 0) + 2

5
u(1, 1, 0) = 1

5
1
8

+ 2
5

1
2

= 9
40

< 1
4
. In other words, in order to

get equality between
∫ cav

XdvP ′ and minP∈P IEP (X), one cannot restrict oneself to

A.

We enlarge A: let A′ = A ∪ {(3
5
, 2

5
, 0), (3

5
, 0, 2

5
)}. Define the fuzzy capacity (w′, A′)

as follows: it coincides with u on A, and w′(3
5
, 2

5
, 0) = w′(3

5
, 0, 2

5
) = 1

4
. For every non-

negative X we obtain, minP∈P ′ IEP (X) =
∫ cav

Xdw′. For instance, let X = (3
5
, 1

5
, 1

5
).

minP∈P ′ IEP (X) = IEP4(X) = 2
16

3
5

+ 7
16

1
5

+ 7
16

1
5

= 1
4

and
∫ cav

Xdw′ = 1
2
w′(3

5
, 2

5
, 0) +

1
2
w′(3

5
, 0, 2

5
) = 1

4
.

The information embedded in P ′ cannot be compressed into a capacity defined only

over the extreme points of I (i.e., to subsets on N). The values of w′ over the points

(3
5
, 2

5
, 0) and (3

5
, 0, 2

5
) are necessary. On the other hand, the values of w′ on A′ are

sufficient to provide all the information needed to obtain minP∈P IEP (X) through the

integral.

The following lemma (stated without a proof) connects between the minimum over

a set of capacities and exactness.

Lemma 2. If for any P, P ′ ∈ P, P (1, ..., 1) = P ′(1, ..., 1), then vP is exact.

10In this example we identify a subset of N with its indicator.
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Recall that in Gilboa and Schmeidler (1989) the minimum is taken over a compact

and convex set of probability distributions. It turns out that in the current context

the representation as a minimum over additive capacities (not necessarily probabil-

ity distributions) and the representation as an integral w.r.t. a fuzzy capacity are

equivalent. Formally,

Proposition 3.

(1) Let P be a compact set of additive capacities. Then,∫ cav

XdvP = min
P∈P

∫
XdP

for every non-negative X. Furthermore, if P is either finite or a polygon, then

there is a fuzzy capacity (v, A) with A being finite such that minP∈P
∫

XdP =∫ cav
Xdv.

(2) For every fuzzy capacity (v, A), if (v, A) is Lipchitz (i.e., there is a constant

L > 0 such that for every a, a′ ∈ A, |v(a) − v(a′)| ≤ L‖a − a′‖2), then there

is a compact and convex set of additive capacities (not necessarily probability

distributions), P, such that∫ cav

Xdv = min
P∈P

∫
XdP.

Moreover, if (v, A) is exact, then P (1, ..., 1) = P ′(1, ..., 1) for every P, P ′ ∈ P.

The proof11 is rather standard and is therefore omitted.

The following example shows that in Proposition 3 (2) the Lipchitz condition is

necessary.

Example 8: Let I = [0, 1]2 and v(x, y) =
√

xy. The fuzzy capacity (v, I) is

concave. However, at the boundary point (0, 1) there is no supporting hyper-plane

to the graph of v. Therefore, there is no (non-trivial) additive capacity P such that

P (0, 1) = v(0, 1) = 0 and at the same time P (x, y) ≥ v(x, y) =
√

xy for every

(x, y) ∈ I. However, for every (a, b) ∈ I with a, b > 0 let P(a,b) = 1
2
(
√

b
a
,
√

a
b
). On one

hand, P(a,b)(a, b) =
√

ab = v(a, b) and on the other, P(a,b)(x, y) = 1
2

√
b
a
x + 1

2

√
a
b
y ≥

√
xy = v(x, y) for every (x, y) ∈ I. In other words, P(a,b) corresponds to a supporting

hyper-plane of the graph of v at the point (a, b). Finally notice that

11It is based on the fact that any concave function over a compact and convex set D, that can be
extended as a concave function to an open set that contains D, is the minimum of all its supporting
linear functions.
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∫ cav

(0, 1)dv = v(0, 1) = 0

= inf
a,b>0 and
(a,b)→(0,1)

√
a

b
= inf

a,b>0 and
(a,b)→(0,1)

P(a,b)(0, 1).

In this case the infimum cannot be replaced by a minimum. The reason is that v

does not satisfy the Lipchitz condition stated in Proposition 3 (2).

10. Final comments

10.1. Tail-separability. The Choquet expected utility model does not satisfy the

sure-thing principle but it retains a reminiscence of it, called tail-separability (see

Machina, 2007). The latter means that the preference order between two acts that

coincide on the lowest (or highest) reward remains unchanged if the size of this reward

changes while staying the lowest (or highest). In other words, if two acts coincide on

a tail event (where the reward is either the lowest or the highest) and they change

over this tail event (while staying such), then the preference order between them does

not change.

Machina (2007) introduces a variation of Ellsberg’s urn which poses considerable

difficulty for Choquet expected utility model. This difficulty arises due to tail-

separability. Expected utility model based on the concave integral presented here does

not satisfy tail-separability and may resolve the difficulty demonstrated by Machina’s

example (see Lehrer, 2007).

10.2. Relations with risk measurement. The quest for concave or convex and

homogenous functionals has been a theme of extensive research in the last years.

A functional ρ is a coherent risk measure if it is sub-additive, homogenous of de-

gree 1 (e.g., satisfies (HO)), monotonic (as in 11.1.3 below) and satisfies translation

invariance, that is

(7) ρ(X + c) = ρ(X)− c

for every constant c. Coherent risk measures defined over bounded random variables

have been introduced by Artzner et al. (1998) and axiomatized by Delbaen (2002).

They can be typically represented by the maximum of minus the expectations with

respect to priors in a set P . That is,

(8) ρ(X) = max
P∈P

IEP (−X),

where P is a set of priors.
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Let P be an additive probability distribution. A coherent risk measure is P -law

invariant if two random variables that have the same cumulative distribution functions

w.r.t. P share the same risk measure. Kusuoka (2001) characterized the risk measures

that are P -law invariant when P is non-atomic. It turns out that these measures are

also monotonic with second order stochastic dominance. Leitner (2005) showed that

Kusuoka’s representation actually characterizes all coherent risk measures that are

monotonic with second-order stochastic dominance.

There are a few similarities and differences between the existing analysis of risk

measures and the current discussion on the concave integral. Risk measures analysis

requires the functional to be convex and translation invariant (eq. (7)) means that

the risk measure of an asset translated by a constant is the risk measure of the asset

minus the constant. Here, the integral is concave and translation invariance means

that the integral of an asset translated by a constant is the integral of the asset plus

that constant (as in Corollary 1). These differences can be easily reconciled.

Instead of considering the integral itself, one should consider minus the integral,

which becomes a convex function. Corollary 1 implies that v, with v(N) = 1, has a

large core if and only if −
∫ cav

Xdv is a coherent risk measure.

As for fuzzy capacities, eqs. (6) and (8), combined with Lemma 2 and Gilboa

and Schmeidler (1989) imply that ρ(X) is a coherent risk measure if and only if

ρ(X) = −
∫ cav

Xdv with v being an exact fuzzy capacity and v(1, ..., 1) = 1. It

implies that when v with v(1, ..., 1) = 1 is not exact −
∫ cav

Xdv is not a coherent risk

measure. This is so because it does not satisfy translation invariance.

The studies of Kusuoka (2001) and Leitner (2005) assume an underlying additive

probability distribution, while the underlying capacity here is typically non-additive.

Finally, Section 8 deals with first order stochastic dominance while Kusuoka’s repre-

sentation respects second order stochastic dominance.

10.3. Extension to general spaces. In this paper N is assumed to be finite. How-

ever, the integral can be generalized, using precisely the same eq. (1), to any space.

This is done in Lehrer and Teper (2007).
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11. Appendix

11.1. Properties. Properties of the new integral that are not mentioned explicitly

in the axioms are listed in this section. Proofs will be provided only to the non-

obvious properties. In what follows X and X ′ are non-negative functions over N , or

equivalently, points in Rn
+.

11.1.1. Continuity.
∫ cav

Xdv is continuous in both, X and v.

11.1.2. Monotonicity w.r.t. capacities. If v ≥ v′, then
∫ cav

Xdv ≥
∫ cav

Xdv′ for every

non-negative X. Note that this property is not implied by axiom (M) that refers only

the case where the greater capacity is additive.

11.1.3. Monotonicity w.r.t. functions. If X ≥ X ′, then
∫ cav

Xdv ≥
∫ cav

X ′dv.

11.1.4. Characteristic functions. By definition, for every S ⊆ N ,
∫ cav

1lSdv ≥ v(S). If∫ cav
1lSdv > v(S), then there are scalars αi > 0 and Ri which are proper subsets of N ,

i = 1, ..., k , such that
∫ cav

1lSdv =
∑k

i=1 αiv(Ri) and
∫ cav

1lRi
dv = v(Ri), i = 1, ..., k.

11.1.5. Totally balanced capacity. Bondareva-Shapley theorem (see Bondareva, 1962

and Shapley, 1967) implies that for any R ⊆ N , the core of the sub-capacity vR is not

empty if and only if
∫ cav

1lRdv = v(R). Thus,
∫ cav

1lRdv = v(R) for every R ⊆ N if

and only if the capacity is totally balanced (i.e., the core of each of its sub-capacities

is not empty).

11.1.6. The integral and the totally balanced cover. Let S ⊆ N . Define the capacity

vS as follows: vS(R) = v(R) if R 6= S and vS(S) =
∫ cav

1lSdv. Then,
∫ cav

Xdv =∫ cav
XdvS. Thus, increasing the value of the capacity from v(S) to

∫ cav
1lSdv would

not change the integral.

Let v be a capacity. Define the capacity Bv as follows: Bv(S) =
∫ cav

1lSdv for

every S ⊆ N . The capacity Bv is the totally balanced cover of v. Then,
∫ cav

Xdv =∫ cav
XdBv for every non-negative X.



A NEW INTEGRAL FOR CAPACITIES 21

11.1.7. The integral and the maximum of a function. It might be that
∫ cav

Xdv >

max(X). However, X can be expressed as a positive linear combination of (char-

acteristic) functions whose integral is between their minimum and their maximum.

Furthermore,

Lemma 3. (i)
∫ cav

Xdv ≤ max(X) for every non-negative X if and only if Bv(N) ≤
1.

(ii) If v(N) = 1, then
∫ cav

Xdv ≤ max(X) for every non-negative X if and only if

the core of v is non-empty.

The proof is deferred to the second part of the appendix.

11.1.8. The integral and the minimum of a function. As stated in Section 4, the new

integral is always greater than or equal to the Choquet integral. When v(N) = 1,∫ C
Xdv ≥ min(X), and therefore

∫ cav
Xdv ≥ min(X).

11.1.9. Piecewise linearity.
∫ cav

Xdv is piecewise linear in X. That is, the set Rn
+

can be divided into finitely many closed cones F1, ..., F` such that
∫ cav

Xdv is linear

in each one: for every X, X ′ ∈ Fi,
∫ cav

X + X ′dv =
∫ cav

Xdv +
∫ cav

X ′dv.

11.1.10. Local additivity. The previous property implies that
∫ cav

Xdv is locally ad-

ditive. That is, every X is included in an open cone, say UX , such that for every

X ′ ∈ UX ,
∫ cav

X + X ′dv =
∫ cav

Xdv +
∫ cav

X ′dv. (It is not true that for every

X ′, X ′′ ∈ UX ,
∫ cav

X ′ + X ′′dv =
∫ cav

X ′dv +
∫ cav

X ′′dv.)

11.1.11. Minimum over a set of capacities. Let C be a set of capacities. Denote

m(C)(S) = infv∈C v(S) for every S ⊆ N . It turns out that for every C,
∫ cav

Xdm(C) ≤
minv∈C

∫ cav
Xdv. However, if C is the set of all additive capacities that are greater

than or equal to v, then
∫ cav

Xdm(C) = minv∈C
∫ cav

Xdv.

11.2. Proofs.

Proposition 1. Let v be a capacity. Then, v is convex if and only if for every

non-negative X and Y ,
∫ cav

Xdv ≥
∫ cav

Y dv whenever
∫ C

Xdv ≥
∫ C

Y dv.

Proof. If v is convex, then
∫ cav

Xdv =
∫ C

Xdv for every non-negative X. Conversely,

if v is not convex, then in particular v is not identically 0. Moreover, by Lovasz (1983,

Proposition 4.1, p. 249) there is a non-negative X such that
∫ cav

Xdv 6=
∫ C

Xdv.

Since
∫ cav

Xdv ≥
∫ C

Xdv,
∫ cav

Xdv >
∫ C

Xdv. By the definition of the new integral,

there is S ⊆ N such that
∫ cav

1lSdv = v(S) > 0. There is a constant c > 0 such

that
∫ cav

Xdv >
∫ cav

c1lSdv >
∫ C

Xdv. Since
∫ cav

c1lSdv =
∫ C

c1lSdv, we obtain,∫ cav
Xdv >

∫ cav
c1lSdv and

∫ C
c1lSdv >

∫ C
Xdv, as desired.
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Lemma 3. (i)
∫ cav

Xdv ≤ max(X) for every non-negative X if and only if Bv(N) ≤
1.

(ii) If v(N) = 1, then
∫ cav

Xdv ≤ max(X) for every non-negative X if and only if

the core of v is non-empty.

Proof. (i) Suppose first that Bv(N) ≤ 1 and suppose to the contrary that there is a

non-negative X such that
∫ cav

Xdv > max(X). Since the integral is homogeneous, it

can be assumed without loss of generality that max(X) = 1. In particular, 1lN ≥ X.

By monotonicity w.r.t. functions,
∫ cav

1lNdv ≥
∫ cav

Xdv and therefore,
∫ cav

1lNdv > 1.

However,
∫ cav

1lNdv =
∫ cav

1lNdBv = Bv(N). Thus, Bv(N) > 1, which contradicts the

assumption.

Conversely, suppose that
∫ cav

Xdv ≤ max(X) for every non-negative X. It implies

in particular that
∫ cav

1lNdv ≤ 1. However,
∫ cav

1lNdv = Bv(N), which implies that

Bv(N) ≤ 1.

(ii) When v(N) = 1, Bv(N) ≤ 1 means that Bv(N) = v(N), which by Bondareva-

Shapley theorem (see Bondareva, 1962 and Shapley, 1967) is equivalent to the non-

emptiness of the core.
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