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Abstract - This paper presents a new Integral Second-Order Terminal Sliding Mode Control incorporating Time Delay Estimation 

applied to passive rehabilitation protocols of an exoskeleton robot with dynamics uncertainties and unknown bounded disturbances. 

The use of second-order sliding mode is due to its attractive characteristics of accuracy, attenuation of chattering and fast convergence. 

However, its problem is that the unknown dynamics of the exoskeleton robot and external disturbances caused by its different wearers 

can be amplified by the second derivative of the sliding surface, which leads to instability of the exoskeleton system. Using Time Delay 

Estimation will estimate the uncertain dynamics while overcoming the main limitation of second-order sliding mode. The stability 

analysis is formulated and proved based on Lyapunov function. Experimental results with a healthy subject confirm the effectiveness of 

the proposed control. 
 

Keywords: Rehabilitation Robots, Second Order Sliding Mode; Time Delay Estimation, Passive Assistive Motion. 

 

 

1. Introduction 
Recently, the use of physiotherapy rehabilitation robots has shown great potential for improving the patient's disability 

and independence of function [1]. Control of these kind of robots presents additional complexity over the control of 

conventional robotic manipulators due to their complex mechanical structure designed for human use, the types of desired 

tasks, and the sensibility of the interaction with a large diversity of human wearers [1]. As a result, these conditions, make 

the robot system vulnerable to dynamics uncertainties and external disturbances. 

Sliding mode control (SMC) is one of the most popular control strategies that is widely applied on robotics systems 

thanks to its attractive characteristics of robustness to the dynamics nonlinear-uncertainties and external disturbances [2]. 

However, conventional SMC suffers from two major shortcomings. The first one is that SMC ensures an asymptotic 

convergence to the equilibrium without finite-time convergence. Many control techniques have been developed to 

overcome this problem such terminal sliding mode control (TSMC) [3]. This later utilizes a nonlinear switching surface to 

guarantee the finite time convergence by including a fractional order, which allows to the states trajectories to converge to 

equilibrium faster. In literature, the accuracy performance of TSMC is improved by proposing a new approach for instance, 

fast TSMC [4] and non-singular TSMC [5]. A second major problem is that SMC is fundamentally based on a larger high-

gain switching controller which pushes the system state to converge to the equilibrium. Nevertheless, the high-activity 

switchinggaincausesanundesirable“chattering”dilemmawhichcandamagetheactuatorsoftherobotsystem [6]. 

Recently, many conventional approaches were developed to avoid the undesirable chattering problem; e.g. by 

exchanging the discontinuous function by a continuous function (as a saturation function). Second Order Sliding Mode 

Controller (SOSMC) [7] is considered as one of the efficient approaches dedicated to eliminate chattering problem and 

provide a high performance’s precision. Additionally, various approaches have been developed to improve the 
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performance of SOSMC such Twisting control and Super-Twisting control [8]. The main idea of SOSMC is to allow a 

sliding surface and its consecutive derivative to go to zero and to maintain the discontinuous control under an integral 

function, which can eliminate the undesirable chattering. Nevertheless, the second-time derivative of the sliding surface 

might produce instability of the system, a risk that the nonlinear uncertainties and external disturbances amplify. Recently, 

Second Order Terminal Sliding mode Control (SOTSMC) was introduced to provide a great control performance to deal 

with a chattering phenomenon and provide a finite time convergence [9, 10]. So, to the best of our knowledge, no 

SOTSMC with integral action has been proposed before to solve the mentioned problems. 

Motivated to deal with the mentioned problem, and based on our previous work [11, 12], we proposed a new integral 

Second Order Terminal Sliding mode controller (ISOTSMC) combined with Time Delay Estimation (TDE) [12] to provide 

a good approximation of the uncertainties and the bounded external disturbances of an exoskeleton robot. TDE uses time-

delayed knowledge about the previous system state and its control input to provide an accurate estimation of unknown 

dynamics. The incorporation of integral control relies on its attractive characteristics, where it has delivered good 

performance with conventional SMC [13]. The control scheme aims to keep the high precision of the SOSMC, eliminate 

the chattering problem, and provide a finite-time convergence to equilibrium. 

The remainder of the paper is organized as follows. The dynamics of the robot is presented in the next section. The 

control scheme is described in section 3. Experimental results and some comparisons are given in section 4. Finally, the 

conclusion is presented in section 5. 

 

2. Characterization of System Rehabilitation  
2.1. Exoskeleton Robot Development  

The developed exoskeleton robot ETS-MARSE (École de technologie supérieure - Motion Assistive Robotic-

exoskeleton for Superior Extremity) is a redundant robot consisted of 7-degrees of freedom (DOFs), as shown in Fig. 1. It 

was created to provide assistive physiotherapy motion to the injured upper limb. The idea of the designed exoskeleton is 

basically extracted from the anatomy of the upper limb of the human, to be ergonomic for their wearer along the 

physiotherapy session. The shoulder part consists of three joints, the elbow part comprises by one joint and the wrist part 

consists of three joints. Each part responsible for performing a variety of upper limb motions. All special characteristics of 

the ETS-MARSE, the modified Denavit-Hartenberg (DH) parameters, and comparison with similar existing exoskeleton 

robots are summarized in [14]. 

 

 
Fig. 1: Reference frames of ETS-MARSE. 

 

2.2. Dynamics of ETS-MARSE Robot 
The dynamics of ETS-MARSE is expressed as follows: 

 

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃) + 𝑓𝑑𝑖𝑠 = 𝜏 (1) 

 

where 𝜃, �̇�, and �̈� ∈ ℝ7are respectively the joints position, velocity, and acceleration vectors, 𝑀(𝜃) ∈ ℝ7×7 , 𝐶(𝜃, �̇�)�̇� ∈

ℝ7, and 𝐺(𝜃) ∈ ℝ7 are respectively the symmetric positive-definite inertia matrix, the Coriolis and centrifugal vector, and 



 

 

 

 

 

113-3 

thegravitationalvector including theuser’sarmand theexoskeletonarm. 𝜏 ∈ ℝ7 is the torque vector, 𝑓𝑑𝑖𝑠 ∈ ℝ7 is the 

external disturbances vector. Without loss of generality, the dynamic model (1) can be rewritten as follows:  

 

{

𝑀(𝜃) = 𝑀0(𝜃) + ∆𝑀(𝜃)    

𝐶(𝜃, �̇�) = 𝐶0(𝜃, �̇�) + ∆𝐶(𝜃, �̇�)

𝐺(𝜃) = 𝐺0(𝜃) + ∆𝐺(𝜃)   

 (2) 

 

where 𝑀0(𝜃), 𝐶0(𝜃, �̇�), and 𝐺0(𝜃) are respectively the known inertia matrix, the Coriolis/centrifugal matrix, and the 

gravity vector. ∆𝑀(𝜃), ∆𝐶(𝜃, �̇�), and ∆𝐺(𝜃) are the uncertain parts. Let us introduce a new variable such that: 𝑧1 = 𝜃 and 

𝑧2 = �̇�; hence, the dynamic model expressed in Eq. 1 can be rewritten as follows: 

 

{
�̇�1 = 𝑧2                               

�̇�2 = 𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡)   
 (3) 

 

where, 𝑈(𝑡) = 𝑈(𝑧1); 𝐻(𝑡) = 𝐻(𝑧1, 𝑧2, �̇�2) and 𝑓(𝑡) = 𝑓(𝑧1, 𝑧2). This notation is used to facilitate the handling of the 

control methodology with: 𝑈(t) = 𝑀0
−1(𝜃)𝜏(𝑡); 𝐻(t) = 𝑀0

−1(𝜃)(−𝑓𝑑𝑖𝑠 − ∆𝑀(𝜃)�̈� − ∆𝐶(𝜃, �̇�)�̇� − ∆𝐺(𝜃)), and 𝑓(t) =

𝑀0
−1(𝜃)(−𝐶0(𝜃, �̇�)�̇� − 𝐺0(𝜃)). 

 
 
2.3. Problem Statement  

The developed approach aims to set up a new integral Second-Order Terminal Sliding mode control (ISOTSMC) to 

improve the performance of conventional second-order SMC and to ensure the finite-time convergence of the sliding 

surface. Since the dynamic parameters of the robot are unknown, the integration of TDE to estimate them ensures a 

desirable performance. The control strategy is developed to be able to complete the passive rehabilitation movement by 

obtaining a control input that forces the measured trajectory to track the desired trajectory even if the robot operates with 

uncertain dynamics and unforeseen external disturbances. 

Property 1: The known part of inertia matrix 𝑀0(𝜃)  is symmetric and positive definite for all 𝜃 ∈ ℝ𝑛 [2].  

Assumption 1: The function 𝐻(𝑡) is globally Lipschitz function. 

Assumption 2: The desired trajectory is bounded. 

Assumption 3: The external disturbance 𝑓𝑑𝑖𝑠 is supposed to be continuous, has finite energy, and satisfies ‖𝑓𝑑𝑖𝑠‖ ≤ 𝜀, 

with an unknown positive disturbance boundary 𝜀. 

 

3. Control Design  
The first step in the control development is to define the surface S in terms of position error. Then, select the integral 

terminal type of the sliding surface, where this later must be stable and guarantee the finite-time convergence. Let us chose 

the integral terminal surface as follows: 

𝑆 = 𝜆1𝑒 + 𝜆2 ∫ |𝑒|𝛽𝑠𝑖𝑔𝑛(𝑒)
𝑡

0

𝑑𝑦 (4) 

 

where 𝑒 = 𝑧1 − 𝑧𝑑 is the position error and 𝑧1, 𝑧
𝑑 ∈ ℝ7 is the measured and desired trajectory respectively, where 

𝜆1 = 𝑑𝑖𝑎𝑔(𝜆1𝑖𝑖) > 0 , 𝜆2 = 𝑑𝑖𝑎𝑔(𝜆2𝑖𝑖) > 0 where 𝑖 = 1,… , 7; and  
1

2
< 𝛽 < 1. Taking the first-time derivative of 𝑆, we 

find: 

 

�̇� = 𝜆1�̇� + 𝜆2|𝑒|
𝛽𝑠𝑖𝑔𝑛(𝑒) (5)  

 

Theorem 1: Considering the exoskeleton robot system (Eq. 3) that satisfies the mentioned properties and assumptions, the 

selected surface (Eq. 4) is stable and finite-time independently of the initial state.  
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Proof: Let us consider the following Lyapunov function: 

 

𝑉𝑒 =
1

2
∑ 𝑒𝑖

27
𝑖=1   (6) 

 

where 𝑉𝑒(𝑒0) is the initial value of the selected Lyapunov function. The time derivative of Eq. 6 can be obtained by: 

 

�̇�𝑒 = ∑ 𝑒𝑖�̇�𝑖
7
𝑖=1   (7) 

 

Let us assume that �̇� = 0 is provided, from Eq. 5 we can obtain the following expression using scalar form as follows: 

 

�̇�𝑖 = −
𝜆2𝑖

𝜆1𝑖
|𝑒𝑖|

𝛽𝑠𝑖𝑔𝑛(𝑒𝑖); where 𝑖 = 1,… , 7 (8) 

 

Substituting Eq. 8 into Eq.7 we have: 

 

�̇�𝑒 = −∑
𝜆2𝑖

𝜆1𝑖
|𝑒𝑖|

𝛽𝑒𝑖𝑠𝑖𝑔𝑛(𝑒𝑖)
7
𝑖=1   

≤ −∑
𝜆2𝑖

𝜆1𝑖
(𝑒𝑖

2)
𝛽+1

2        7
𝑖=1   

        = −∑
2

𝛽+1
2 𝜆2𝑖

𝜆1𝑖
(𝑉𝑒)

𝛽+1

2           7
𝑖=1   

(9) 

 

where |𝑒𝑖| = 𝑒𝑖𝑠𝑖𝑔𝑛(𝑒𝑖). Therefore, �̇�𝑒 ≤ 0 is verified. We can rewrite Eq. 9 as follows: 

 

�̇�𝑒 + ∑ 𝜗𝑉𝑒
𝜇7

𝑖=1 ≤ 0   (10) 

where 𝜗 =
2

𝛽+1
2 𝜆2𝑖𝑖

𝜆1𝑖𝑖
 and 𝜇 =

𝛽+1

2
, taking into consideration that 

1

2
< 𝛽 < 1 and 

3

4
< 𝜇 < 1. So, according to [15], the 

convergence of the finite time 𝑡𝑠 can be given by: 

 

𝑡𝑠 =
𝑉𝑒

1−𝜇
(𝑒0)

𝜗(1−𝜇)
  (11) 

 

where 𝑉𝑒(𝑒0) istheLyapunovfunction’sinitialvalue. The proof is complete. 

Remark 1: It is obvious from Eq. 11 that the initial value of the Lyapunov function 𝑉𝑒(𝑒0) and the ratio 𝜆2𝑖 𝜆1𝑖⁄  manage the 

finite time convergence 𝑡𝑠 of the selected sliding surface. A large value of 𝜆2𝑖 𝜆1𝑖⁄  can ensure a short convergence time. 

Likewise, too large gain ratio may produce an overshoot influence. Therefore, the trade-off between fast convergence and 

control performance is required to choose 𝜆1𝑖 and 𝜆2𝑖. 

While the selected surface is chosen, the combination of ISOTSMC with TDE can be easily making up now. Let us 

take the second-time derivative of Eq. 5 as: 

 

�̈� = 𝜆1�̈� + ∑ 𝛽𝜆2𝑖|𝑒|
𝛽−1�̇�𝑖

7
𝑖=1   (12) 

 

Substituting Eq. 8 into Eq. 12, we obtain: 

 

�̈� = 𝜆1(𝑈(𝑡) + 𝑓(𝑡) + 𝐻(𝑡) − �̈�𝑑) − ∑
𝛽𝜆2𝑖

2

𝜆1𝑖
|𝑒|2𝛽−1𝑠𝑖𝑔𝑛(𝑒𝑖) 

7
𝑖=1   (13) 

 

To solve Eq. 13, the integral terminal super-twisting controller is given as follows: 



 

 

 

 

 

113-5 

𝑈(𝑡) = −𝑘1𝜆1|�̇�|
1

2𝑠𝑖𝑔𝑛(𝑆) + �̈�𝑑 − 𝑓(𝑡) − 𝐻(𝑡) + ∑
𝛽𝜆2𝑖

2

𝜆1𝑖
2 |𝑒|2𝛽−1𝑠𝑖𝑔𝑛(𝑒𝑖) 

7
𝑖=1 − ∫ 𝑘2𝜆1𝑠𝑖𝑔𝑛(𝑆)

𝑡

0
  (14) 

 

with = 𝑀0𝑈(𝑡), 𝑘1 = 𝑑𝑖𝑎𝑔(𝑘1𝑖𝑖) > 0, and 𝑘2 = 𝑑𝑖𝑎𝑔(𝑘2𝑖𝑖) > 0, where 𝑖 = 1,… , 7. 

Practically, as established, all dynamic parameters of the exoskeleton robot are not easily obtained due to the 

uncertaintiesandtheirvariationduringtherobot’stasks. Since 𝐻(𝑡) is uncertain it might influence the control proposition. 

From now on, we will consider 𝐻(𝑡) uncertain. If Assumption 1 is verified, we can used TDE [11] to estimate 𝐻(𝑡) as 

follows: 

 

�̂�(𝑡) ≈ 𝐻(𝑡 − 𝑡𝑑) = 𝑈(𝑡 − 𝑡𝑑) −   𝑓(𝑡 − 𝑡𝑑) − �̇�2(𝑡 − 𝑡𝑑) (15) 

 

where, 𝑡𝑑 is a very-small time delay constant. Practically, the smallest constant that can be achieved in real time is the 

sampling period. According to the Lipschitz condition (Assumption 1), the time delay error can be calculated as follows: 

 

𝛥𝐻 = 𝐻(𝑡) − �̂�(𝑡) =  𝐻(𝑡) − 𝐻(𝑡 − 𝑡𝑑)  ≤ 𝜚𝑡𝑑 (16) 

 

where 𝜚 > 0 is the Lipschitz constant. 

Remark 2: It can be seen from Eq.16 that if Assumption 2 is verified, the estimation error of the uncertainties and 

disturbances is always bounded by the Lipschitz constant. 

Theorem 2: Considering the exoskeleton robot system (Eq. 3) which satisfies the mentioned properties and assumptions, 

the control law of Integral Second-Order Terminal Sliding Mode Control incorporating TDE ensures the convergence of 

the sliding surface and its first and second derivative to zero in finite-time given by: 

 

𝑈(𝑡) = −𝐾1|�̇�|
1

2𝑠𝑖𝑔𝑛(𝑆) + �̈�𝑑 − 𝑓(𝑡) − �̂�(𝑡) + ∑
𝛽𝜆2𝑖

2

𝜆1𝑖
2 |𝑒|2𝛽−1𝑠𝑖𝑔𝑛(𝑒𝑖) 

7
𝑖=1 − ∫ 𝐾2𝑠𝑖𝑔𝑛(𝑆)

𝑡

0
  (17) 

 

where 𝐾1 = 𝑘1𝜆1 = 𝑑𝑖𝑎𝑔(𝐾1𝑖𝑖) > 0 and 𝐾2 = 𝑘2𝜆1 = 𝑑𝑖𝑎𝑔(𝐾1𝑖𝑖) > 0, where 𝑖 = 1,… , 7.  Whenever the following 

conditions are verified: 

 

𝐾1𝑖 > 2𝜚𝑡𝑑 , 𝐾2𝑖 >
𝜚𝑡𝑑(𝐾1𝑖)

2−𝐾1𝑖
3

2(3𝐾1𝑖−2𝜚𝑡𝑑𝐾1𝑖)
  (18) 

 

Proof: Before selecting the Lyapunov function candidate, let us substitute the control law (Eq. 17) into Eq.13, we find: 

 

{ �̈� = −𝐾1|�̇�|
1

2𝑠𝑖𝑔𝑛(𝑆) + 𝜆1𝛥𝐻 + 𝑤

�̇� = −𝐾2𝑠𝑖𝑔𝑛(𝑆)                                 
  (19) 

 

It can be seen that Eq. 19 has the same structure as the Super-Twisting control [8]. Let us now introduce new variables 

such that: 𝜂1 = 𝑆 and 𝜂2 = �̇�. The system (Eq. 19) becomes as follows:  

 

{

�̇�1 = 𝜂2                                                   

�̇�2 = −𝐾1|𝜂2|
1
2𝑠𝑖𝑔𝑛(𝜂1) + 𝜆1𝛥𝐻 + 𝑤 

�̇� = −𝐾2𝑠𝑖𝑔𝑛(𝜂1)                                 

 (20) 

 

To ensure the convergence of the robot system (Eq. 3), we will assume the following Lyapunov function candidate: 

 

𝑉 = 𝛾𝑇𝑅𝛾 (21) 
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where 𝛾 = [𝛾1𝑖, 𝛾2𝑖]
𝑇, 𝛾1𝑖 = (|𝜂2𝑖|)

1

2𝑠𝑖𝑔𝑛(𝜂1), 𝛾2𝑖 = 𝑤𝑖. The Lyapunov function (Eq. 21) is chosen to be continuous and 

non-differentiable at 𝑆𝑖 = 0  [16]. It is positive-definite and radially-bounded by choosing an appropriate matrix 𝑅 ∈ ℝ2×2 

such that, 

 

𝑅 =
1

2
[
𝐾1𝑖

2 + 4𝐾2𝑖 −𝐾1𝑖

−𝐾1𝑖 2
] 

 

with,  

 

𝛼𝑚𝑖𝑛{𝑅}‖𝛾‖2 ≤ 𝑉 ≤ 𝛼𝑚𝑎𝑥{𝑅}‖𝛾‖2 (22) 

 

where 𝛼𝑚𝑖𝑛{𝑅}and𝛼𝑚𝑎𝑥{𝑅} are the minimum and maximum eigenvalues of {𝑅} and ‖𝛾‖ is the Euclidian norm of 𝛾. 

Taking the derivative of Lyapunov function (Eq. 21): 

 

�̇� = �̇�𝑇𝑅𝛾 + 𝛾𝑇𝑅�̇� (23) 

 

The time derivative of 𝛾 can be defined as follows: 

 

{
�̇�1𝑖 =

1

2|𝜂2𝑖|
1
2

�̇�2𝑖                

�̇�2𝑖 = �̇�𝑖  ; 𝑖 = 1,… ,7         
    (24) 

 

Using Eq.20 and Eq. 24, we can rewrite 𝛾 ̇ in matrix form, where |𝛾1𝑖| ≤ |𝜂2𝑖|
1

2 : 

 

�̇� =
1

|𝛾1𝑖|
[

−𝐾1𝑖

2

1

2

−𝐾2𝑖 0
] [

𝛾1𝑖

𝛾2𝑖
] +

1

|𝛾1𝑖|
[
𝜆1

2

0
]∆𝐻𝑖  (25) 

 

The above equation can be written in the form: 

 

�̇� =
1

|𝛾1𝑖|
(𝐴𝑠𝛾 + 𝐵𝑠∆𝐻𝑖)  (26) 

where, 𝐴𝑠 = [
−𝐾1𝑖

2

1

2

−𝐾2𝑖 0
] ; 𝐵𝑠 = [

𝜆1

2

0
]. Substituting Eq. 26 into Eq. 23, we find: 

 

�̇� =
1

|𝛾1𝑖|
𝛾𝑇(𝐴𝑠

𝑇𝑅 + 𝑅𝐴𝑠)𝛾 +
2

|𝛾1𝑖|
∆𝐻𝑖𝐵𝑠

𝑇𝑅𝛾  (27) 

 

Since 𝜚𝑡𝑑 is positive from Eq. 16. The following inequality can be established: 2∆𝐻𝑖𝐵𝑠
𝑇𝑅𝛾 ≤ 𝜚𝑡𝑑𝛾𝑇𝑀𝛾, where: 

 

𝑀 =
1

2
[
𝐾1𝑖

2 + 4𝐾2𝑖

−1

2
𝐾1𝑖

−1

2
𝐾1𝑖 0

] 

 

Therefore Eq.27 becomes as: 

 

�̇� ≤
1

|𝛾1𝑖|
𝛾𝑇(𝐴𝑠

𝑇𝑅 + 𝑅𝐴𝑠 + 𝜚𝑡𝑑𝑀)𝛾     (28) 
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The above Eq. 28 can be rewrite as follows: 

 

�̇� ≤
1

|𝛾1𝑖|
𝛾𝑇𝐷𝛾  (29) 

 

where 𝐷 is written such that 𝐷 = −(𝐴𝑠
𝑇𝑅 + 𝑅𝐴𝑠 + 𝜚𝑡𝑑𝑀), and 𝐷 is calculated such that: 

 

 

𝐷 =
−𝐾1𝑖

2
[
 
 
 𝐾1𝑖

2 + 6𝐾2𝑖 − 𝜚𝑡𝑑(𝐾1𝑖 + 4
𝐾2𝑖

𝐾1𝑖

)
1

2
𝜚𝑡𝑑 − 𝐾1𝑖

1

2
𝜚𝑡𝑑 − 𝐾1𝑖 1 ]

 
 
 
 (30) 

 

The function V̇ is negative definite if  𝐾1𝑖 > 2𝜚𝑡𝑑 , 𝐾2𝑖 >
𝜚𝑡𝑑(𝐾1𝑖)

2−𝐾1𝑖
3

2(3𝐾1𝑖−2𝜚𝑡𝑑𝐾1𝑖)
 . This selection will ensure that the   det (𝐷) > 0. 

While 𝐷 is positive and symmetric. In such case, we can rewrite Eq. 29 as: 

 

�̇� ≤
−1

|𝛾1𝑖|
αmin{D}‖𝛾‖2   (31) 

 

where 𝛼𝑚𝑖𝑛{𝐷} is the minimum eigenvalue of 𝐷. Eq. 31 proves that Lyapunov function is semi-negative definite. Now, let 

us prove the finite time convergence of the system. From Eq. 22, we have: 

 

𝑉
1
2

𝛼𝑚𝑎𝑥

1
2 {𝑅}

≤ ‖𝛾‖2 ≤
𝑉

1
2

𝛼
𝑚𝑖𝑛

1
2 {𝑅}

   (32) 

 

It is clear that: |𝛾1𝑖| ≤ ‖𝛾‖ and from Eq. 31 and Eq. 32, we have: 

 

�̇� ≤
−1

|𝛾1𝑖|
αmin{D}‖𝛾‖2 ≤

αmin{D}

𝛼𝑚𝑎𝑥

1
2 {𝑅}

  (33) 

 

According to this equation, the finite time convergence of the sliding surface can be obtained such that: 

 

𝑇𝑠 =
2𝛼𝑚𝑎𝑥

1
2 {𝑅}

αmin{D}
𝑉

1

2(𝛾(0))   (34) 

 

4. Experiment and Comparative Study  
The robot system consists of three processing units, the first is a PC where the top-level commands are sent to the 

robot using a LabVIEW interface, i.e. the control scheme selection. This PC also receives the data after the robot task is 

executed to analyze its performance. The other two processing units are part of a National Instruments PXI platform. 

Firstly, a NI-PXI 8081 controller card with an Intel Core Duo processor; in this card, the main operating system of the 

robot and the top-level control scheme are executed. In our case, the ISOTSMC based controller as well as the estimation 

based on time delay approach, at a sampling time of 500µs. Finally, at input/output level, a NI PXI-7813R remote 

input/output card with a FPGA (field programmable gate array) executes the low-level control; i.e. a PI current control loop 

(sampling time of 50 µs) to maintain the current of the motors required by the main controller. Also, in this FPGA, the 

position feedback via Hall-sensors (joint position) and basic input/output tasks are executed. Each joint of the ETS-

MARSE is powered by a brushless DC motor (Maxon EC-45, EC-90 ) combined with harmonic drives (gear ratio 120:1 for 

motor-1, motor-2, and motor-4 and gear ratio 100:1 for motor-3 and motors 5–7). 
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Fig. 2: Performance of the ETS-MARSE robot with subject-A in joint space. 

  

An experiment session was created to validate the proposed control approach. It consists on an exercise performed 

with a healthy subject with an age of 30 years, height of 177 cm, and weight of 75 Kg. In this case, the trajectory is 

repeated three times for each movement with the speed varying between (28 deg/sec for joint-3 and 48 deg/sec for the 

remaining joints). The results of the task are illustrated in Fig. 4. The initial position of the robot is given with the elbow 

joint position at 90 degrees. The control gains are chosen manually as follows: 𝜆1𝑖 = 2.5, 𝜆2𝑖 = 12.5; 𝑘1 = 18, 𝑘2 = 10, 

𝛽 = 0.6. 

We can appreciate in this figure that for the movement of all joints, the desired trajectory (represented by the red line), 

practically overlaps the measured trajectory (represented by the solid blue line). It is clear from the plots in this figure that 

the proposed controller provides an excellent performance. Where, the controller has the potential to maintain stability of the 

system along the designed therapeutic movement with a position error (second column of Fig. 2) less than three degrees for 

all joints. The last column of Fig. 2 shows the control input which is clearly smooth and without the chattering effect. We 

can conclude that the controller is robust; it offers a very good performance despite the high speed and unknown parameters 

of the robot. 

The proposed ISOTSMC controller is compared with conventional second-order sliding mode controller SOSMC to 

show the feasibility and advantage of the proposed controller. The comparison is made in terms of tracking position error, 

and torque input by computing the Root-Mean Square (RMS) 

 
Table 1: Controllers evolution. 

 

Controller RMS 

(error) 

RMS (Torque) 

ISOTSMC 0.0150 2.0728 

SOSMC 0.0988 3.2147 
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It is clear from Table I that the proposed controller achieves an excellent performance with small value of overall RMS 

error, even when the dynamic model of the exoskeleton is not completely known, and in presence of external forces. 

 

5. Conclusion 
In this paper, we investigated the control applied to passive rehabilitation protocol of an exoskeleton robot by 

presenting a new integral second-order terminal sliding mode incorporating time delay estimation. Using second-order 

sliding mode is due to its attractive characteristics of fast convergence, accuracy, and attenuation of chattering. However, 

its problem is that the unknown dynamic of the exoskeleton robot and external disturbances can be amplified by the second 

derivative of the sliding surface, which leads to instability of the robot system. Applying TDE to estimate the unknown 

dynamics and external disturbances permits chattering reduction. The controller is dedicated to improve the robustness of 

the second-order sliding mode control while overcoming its main limitation. The stability analysis is formulated and 

demonstrated based on Lyapunov function. An experimental physiotherapy session with a healthy subject was created to 

test the effectiveness and feasibility of the proposed control, which are proved. 
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