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In this paper, an new integral transform 0[ ( )] 1/ ( )e dJ µτφ τ µ φ τ τ∞ −= ∫ is proposed 
for the first time. The integral transform is used to solve the differential equation 
arising in heat-transfer problem.  
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Introduction 

Integral transforms have played important roles in the practical problems involving 
computational heat and fluid [1]. In mathematics, any transform is expressed by [2]: 
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where Ξ(τ, θ) is the kernel function, the input of the transform (4) is a function Ξ(τ, θ) and the 
output of the transform (4) is another function Φ(θ).  

The inverse transform associated inverse kernel, denoted as Ξ–1(τ, θ), is suggested as 
[2]: 
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In engineering practice, the Laplace transform was used to solve the heat transfer 
problems in [3, 4]. The Laplace-Carson transform, as a generalized Laplace transform, was 
considered to handle the heat-exchange problems [5]. We now recall the Laplace and Lap-
lace-Carson transforms.  

The Laplace transform of the function φ(τ) is defined as [6]: 
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provided the integral exists for some s, where L is the Laplace transform operator.   
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The inverse operator of eq. (3) is written:  
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where ω is a real-valued constant. 
The Laplace-Carson transform of the function φ(τ) is defined as [7]: 
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provided the integral exists for some p, where Π is the Laplace-Carson transform operator.  
The inverse operator of eq. (5) is written:  
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where ω is a real-valued constant.  

A new integral transform  

By taking the kernel function Ξ(τ, θ) = e–sτ in eq. (3) into Ξ(τ, θ) = e–µτ/µ, a new 
integral transform of the function φ(τ) is defined:  
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provided the integral exists for some µ, where J is the new integral transform operator.  
The inverse operator of eq. (7) is defined:  
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where ω is a real-valued constant.  
The properties of the integral transform are: 
(M1) Suppose that 1 1( )= [ ( )]Jµ φ τΦ  and 2 2( ) [ ( )],Jµ φ τΦ =  then, we have: 

 1 2 1 2[ ( ) ( )] ( ) ( )J a b a bφ τ φ τ µ µ+ = Φ + Φ  (9) 

where a and b are two constants. 
(M2) Suppose that ( ) [ ( )],J cµ φ τΦ =  then, we have: 

 1[ ( )]= ,J c
c c

µφ τ ⎛ ⎞Φ ⎜ ⎟
⎝ ⎠

 (10) 

where c is a constant. 
(M3) Suppose that ( ) [ ( )]Jϖ φ τΦ =  and the derivative of φ(τ) is (1) ( ).φ τ  Then, we 

have: 
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(M4) Suppose that ( ) [ ( )]Jϖ φ τΦ =  and let the integral of φ(τ) is 0 ( )d .τ φ τ τ∫  Then, 
we have: 
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Proof  

(M1): By using the definition of the integral transform (7), we directly reduce to 
(M1).  

(M2): 
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Thus, we finish the proof.  
The integral transforms of the functions are given:  
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Proof  
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Thus, the proof is finished.  

Solving the heat-transfer problem  

Let us consider the differential equation in heat-transfer problem [8, 9]: 

 (1)( ) ( )ph x Vc xΜ ρ− Θ = Θ  (18) 

subject to the initial condition: 

 (0) βΘ =  (19) 

where Θ(x) is the temperature.  
Taking the integral transform of eq. (18) gives: 
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From eq. (20), we have: 
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Thus, by taking the inverse transform of eq. (21), the solution of eq. (13) takes the 
form: 
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which is in agreement with the result in [9].  
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Conclusion 

A new integral transform based on the kernel function Ξ(τ, θ) = e–µτ/µ was presented 
for the first time. The analytical solution of the differential equation involving the heat-trans-
fer was obtained. The technology is proposed, as a powerful approach, to solve the differential 
equations.  

Nomenclature 
cp – specific heat of the material, [Jkg–1K–1] 
h – convection heat transfer coefficient, [Wm–2K–1] 
M – surface area of the body, [m2]  
V – volume, [m3] 
x – space co-ordinate, [m] 

Greek symbols 

Θ(x) – temperature, [Km–3] 
ρ – density, [kgm–3] 
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