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Abstract. Interactive hashing, introduced by Naor, Ostrovsky, Venkatesan, and Yung
(J. Cryptol. 11(2):87–108, 1998), plays an important role in many cryptographic proto-
cols. In particular, interactive hashing is a major component in all known constructions
of statistically hiding commitment schemes and of statistical zero-knowledge argu-
ments based on general one-way permutations/functions. Interactive hashing with re-
spect to a one-way function f is a two-party protocol that enables a sender who knows
y = f (x) to transfer a random hash z = h(y) to a receiver such that the sender is com-
mitted to y: the sender cannot come up with x and x′ such that f (x) �= f (x′), but
h(f (x)) = h(f (x′)) = z. Specifically, if f is a permutation and h is a two-to-one hash
function, then the receiver does not learn which of the two preimages {y, y′} = h−1(z)

is the one the sender can invert with respect to f . This paper reexamines the notion
of interactive hashing, and proves the security of a variant of the Naor et al. proto-
col, which yields a more versatile interactive hashing theorem. When applying our
new proof to (an equivalent variant of) the Naor et al. protocol, we get an alternative
proof for this protocol that seems simpler and more intuitive than the original one, and
achieves better parameters (in terms of how security preserving the reduction is).
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1. Introduction

In an interactive hashing protocol introduced by Naor et al. [16], the sender S transfers
to the receiver R the “hash value” h(y) of y, where the “hash function” h is chosen
(at random) by the receiver from a predetermined function family. The protocol is re-
quired to be binding in the sense that S is bounded by the protocol to at most one value
of y. This binding requirement can hold is several ways: clearly, binding holds if after
the interaction ends there is only a single element y that is consistent with the hash
value. Protocols with this strong binding property are known as “information theoretic”
interactive hashing. In contrast, in the computational setting we are interested in the
case where a random h does induce many collisions. Thus, we only require the binding
property to hold against efficient senders. Assuming that h is taken (at random) from a
family of collision resistant hash functions,1 the binding property is immediate. In this
paper we do not rely on such families, as we do not want to assume their existence.
Following [16], we enforce the binding by asking the sender to provide additional in-
formation about y (typically, the honest sender gets this additional information as part
of its input).

We formally define the computational binding property in Sect. 3, but in the mean-
while let us consider the following important example: let f be a one-way permutation
and view the committed value y as an image of f . For the purpose of binding, we can
now require the sender to provide x such that y = f (x) is consistent with the transcript
(i.e., h(y) = z, where R’s output equals (h, z)). Thus, for breaking the binding of the
protocol a cheating sender needs not only output y1 �= y2 such that h(y1) = h(y2) = z,
but it is also required to output x1 and x2 with f (x1) = y1 and f (x2) = y2. Indeed, using
this additional requirement [16] constructs an interactive hashing protocol that allows
collisions, but is nevertheless binding (see Sect. 1.1 for more details).

Connection to Statistically Hiding Commitments Interactive hashing (in the flavor
mentioned above) is closely related and to a large extent motivated by the fundamental
notion of statistically hiding (and computationally binding) commitments. Statistically
hiding commitment schemes are used as building blocks in constructions of statistical
zero-knowledge arguments [1,16] and of certain coin-tossing protocols [14]. Naor et al.
[16] use their interactive hashing protocol, hereafter the NOVY protocol, in order to
construct statistically hiding commitments based on any one-way permutation. Hait-
ner et al. [8] generalized their result by showing that the NOVY protocol can be used to
construct statistically hiding commitments based on regular one-way functions (and also
on the so called approximable-preimage-size one-way functions). Finally, Haitner et al.
[9] constructed statistically hiding commitments based on any one-way function.2 Not
surprisingly, interactive hashing is heavily used in the underlying commitment scheme
of [9].

A possible drawback of [9] is that their construction is rather inefficient and complex.
Indeed, a major motivation for looking into interactive hashing is to simplify [9]. Such

1 H is a family of collision resistant hash functions if given a random h ∈ H, it is infeasible to find x1 �= x2
with h(x1) = h(x2).

2 [9] is the full version that corresponds to Nguyen et al. [17] and Haitner and Reingold [5]. Reference
[17] is independent of this work and [5] is subsequent to both [17] and this work.
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a simplification was recently given by Haitner et al. [10], critically using the results we
present here.

Before discussing our results and their applications, let us have a closer look into the
notion of interactive hashing.

1.1. Interactive Hashing in the Setting of One-Way Permutations

Let f : {0,1}n �→ {0,1}n be a one-way permutation and consider the following two-
party protocol between a sender S, getting as input x ∈ {0,1}n, and a receiver R.
The receiver selects a random (almost) pairwise-independent two-to-one hash function
h : {0,1}n �→ {0,1}n−1,3 and sends its description to S. In return, S sends z = h(y)

back to R, where y = f (x). Note that if both parties follow the protocol, then the fol-
lowing binding property is guaranteed: it is not feasible for S to find x′ ∈ {0,1}n such
that f (x′) �= f (x) but h(f (x′)) = h(f (x)) = z, although (exactly one) such element x′
does exist. This is since the task of finding such x′ can be shown (as firstly done in [15])
to be equivalent in hardness to inverting f on a random image (whereas the latter task
is assumed to be hard by the one-wayness of f ).

What happens, however, if S selects x only after seeing h? In such a case, it is quite
plausible that S would be able to “cheat” by producing x, x′ ∈ {0,1}n such that f (x) �=
f (x′) but h(f (x′)) = h(f (x)) = z.4 The NOVY interactive hashing protocol prevents
such cheating. For that, it employs a specific family of hash functions such that each
one of its functions h can be decomposed into (n − 1) Boolean functions h1, . . . , hn−1,
where h(x) = h1(x), . . . , hn−1(x). In the NOVY protocol, instead of sending h at once
as described above, the protocol proceeds in rounds such that R sends a single Boolean
function hi in each round, and in return S sends a bit zi , which is supposed to equal
hi(f (x)). Intuitively, a cheating sender has a significantly smaller leeway for cheating
as it can no longer wait in selecting x till it receives the entire description of h. Still, it
is highly non-trivial to argue that restricting the sender by adding interaction as above,
is sufficient in order to prevent the sender from cheating. Nevertheless, Naor et al. [16]
have shown that their protocol is binding even against a cheating sender (namely, even a
cheating sender cannot produce x, x′ ∈ {0,1}n such that f (x) �= f (x′), but h(f (x′)) =
h(f (x)) = z).

1.1.1. Application to Perfectly Hiding Commitments

Naor et al. [16] used their protocol to construct perfectly hiding commitment scheme
from one-way permutations, by employing the protocol with a uniformly chosen x as
the sender’s input. Let y0 < y1 be the two preimages of the hash value determined by
the protocol (i.e., y0, y1 ∈ h−1(z)) and let i ∈ {0,1} be such that f (x) = yi . The sender
commits to a bit b ∈ {0,1} by masking it with i (i.e., by sending c = i ⊕ b to the

3 I.e., for every x �= x′ ∈ {0,1}n , the distribution (h(x),h(x′)) induced by uniformly selecting h from the

family, is close to being uniform over {0,1}n−1 × {0,1}n−1.
4 Assume for example that the one-way permutation equals the identity function on the set T of all strings

that start with n/4 zeros (where n is the input length). Now given a hash function h, all that the cheating
sender has to do is to find a collision y1 �= y2 ∈ T with h(y1) = h(y2). Such a collision is likely to exist by
the birthday paradox, and for many families of hash functions (e.g., linear mappings) finding such a collision
is easy.
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receiver). In order to decommit, the sender sends x to the receiver, who sets b = c ⊕ i,
where i is as above (e.g., the index of f (x) in {y0, y1}). The above scheme is perfectly
hiding since the hash functions used are two-to-one, where the binding property of the
scheme easily follows by the binding of the NOVY protocol.

1.2. Interactive Hashing in the “Sparse Case”

How about constructing statistically hiding commitments from, say, regular one-way
functions (i.e., every possible output has the same number of preimages)? In such a
case, we would like to interactively hash a value y that is taken from Im(f ), the image
of f over {0,1}n, and not from {0,1}n as in the case of one-way permutations.

Notice that the NOVY theorem guarantees that when hashing y with h : {0,1}n �→
{0,1}n−1, the sender is committed to a single value y (even though h−1(h(y)) ∩ Im(f )

might not be a singleton). In the case the Im(f ) is sparse (i.e., | Im(f )|/2n = neg(n)),
however, when h outputs so many bits then it is most likely that h(y) completely de-
termines y. Hence, we cannot hope to use such protocol to get a statistically hiding
commitment scheme.

Facing the aforementioned difficulty, Haitner et al. [8] made the following observa-
tion: the binding of the NOVY protocol holds for every function f that it is hard to invert
over the uniform distribution on Im(f ). Furthermore, some weak hiding is guaranteed
for every f such that Im(f ) is “dense” in {0,1}n (i.e., of order 2n/poly(n)). Equipped
with this observation, [8] employ the NOVY protocol with length-preserving poly-to-
one one-way function (i.e., each output has at most polynomial number of preimages in
the image set of f ) to get some weak form of statistically hiding commitments. which
can later be amplified into a full-fledge statistically hiding commitments. To handle any
regular one-way function, [8] applies additional layer of (non interactive) hashing to re-
duce to the dense case. This implies a construction of statistically hiding commitments
from any regular one-way function with known image size. Interactive hashing in the
sparse case arises in other works as well, most notably in the construction of statistical
zero-knowledge arguments from any one-way function [10,17].

1.3. Our Results

We consider a variant of the NOVY protocol in which the special family of two-to-
one hash functions used by [16] is replaced by any “product” of Boolean families of
pairwise independent hash functions (i.e., h(x) = (h1(x), . . . hk(x)), where h1 . . . hk are
taken from such families). Our proof relies in part on the original proof due to [16],
but still seems significantly simpler. The new theorem directly applies to the following
“sparse case”: let f : {0,1}n �→ {0,1}n be an efficiently computable function and let
L ⊆ {0,1}n be sparse. Our theorem applies when hashing to roughly s = �log(|L|)� bits.
In particular, when h is taken from a family of hash functions Hs : {0,1}n �→ {0,1}s that
is a product of s families of pairwise-independent Boolean hash functions, the above
protocol possesses the following binding property: if f is hard to invert on the uniform
distribution over L, then no efficient sender S∗ can find two elements x, x′ ∈ f −1(L)

such that f (x) �= f (x′) but h(f (x)) = h(f (x′)) = z (where z is the value determined
by the protocol as h(y)). As an easy corollary, we use the new theorem to derive a direct
construction of statistically hiding commitment based on regular one-way functions of
known regularity (and thus reprove [8]).
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Our new proof can be easily used to derive a new proof for a close variant of the
NOVY protocol introduced by [9], which like the original NOVY protocol uses two-to-
one hash functions.

We also note that a product family of pairwise-independent hash functions is not
regular (i.e., a function is regular, over a given domain, if all its images have the same
number of preimages). As a result, protocols using such families seem only to be useful
for obtaining statistically hiding commitments.

The parameters achieved by our proof are an improvement compared with the original
ones: given an algorithm A that breaks the binding property with probability εA(n), we
get an algorithm that inverts the one-way permutation in comparable time and with
inverting probability ε2

A(n)/poly(n) (where n is the hash function input length). This
is an improvement over the ε10

A (n)/poly(n) and the Ω(εA(n)3/poly(n)) reductions of
[16] and [17], respectively, and is close to natural limitations of the proof technique (see
discussion in Sect. 5).

Finally, we consider interactive hashing protocols that use hash functions of arbitrary
output length, and not necessarily Boolean. Given a one-way function that is hard to in-
vert over the uniform distribution by algorithms of running-time 2�, our approach yields
an interactive hashing protocol of n/� rounds. When applied to one-way permutations,
the resulting protocol matches the recent black-box lower bounds of Wee [21] and Hait-
ner et al. [7], and generalizes the one-way permutation-based O(n/ logn)-round proto-
col of [13].

1.4. Related Work

Independently of our work, Nguyen et al. [17] gave a new proof for the NOVY protocol.
Their proof follows the proof of [16] more closely than ours, but still introduces various
simplifications and parameter improvements. The main goal of their new proof was to
generalize the protocol such that it allows hashing with a hash function that is poly-to-
one (rather than two-to-one as in [16]). The result of [17] (and of [16]), however, do
not extend to the sparse case settings we considered above, where this limitation seems
inherent to their proof technique.

More recently, Haitner et al. [9] consider a variant of the NOVY protocol that uses
a different type of two-to-one hash functions. Specifically, the functions induced by
the families of full-rank matrices mapping {0,1}n to {0,1}n−1, where the operation
h(x) is interpreted as h × x. While such families provide the same hiding guarantee
for the resulting protocol as the special two-to-one functions considered by [16,17], the
advantage is that the binding property of the protocol can be easily reduced to that of a
protocol using families of pairwise-independent hash functions. In particular, [9] show
how to derive the security of this variant from our main result.

In this work we focus on security with respect to bounded senders and unbounded
receivers. The setting where both the receiver and the sender are unbounded, called
information theoretic interactive hashing (also known as, interactive hashing for static
sets), and its applications (cf., [4,18–20]) are not treated by this work. See [9, Sect. 3.2]
for more details regarding information theoretic interactive hashing and its connection
to the computational setting.
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1.5. Proof Idea

We outline our binding proof in the most basic setting where f : {0,1}n �→ {0,1}n is a
one-way permutation and L = {0,1}n. Let x ∈ {0,1}n be S’s input and let y = f (x).
Our protocol consists of (n − 1) rounds, in each round R selects a random Boolean
pairwise-independent hash function hi and S replies with zi = hi(y).

Assume there exists an algorithm S∗ that plays the sender’s role in the protocol and
cheats with non-negligible probability. Namely, with such probability S∗ outputs at the
end of the protocol two elements x0, x1 ∈ {0,1}n such that y0 = f (x0) is different from
y1 = f (x1), and both y0 and y1 are consistent with the transcript. Consider the following
naive way one may try to invert f using S∗: given an input y, choose the hash functions
h1, . . . , hn−1 to be used by R at random, and return one of the two elements that S∗
outputs in the end of the interaction with R. In the case that y is consistent with S∗’s
answer, then we are in good shape: there should be only few elements that are consistent
with S∗’s answers, and therefore with good probability either y0 or y1 output by S∗’s is
equal to y. Unfortunately, the probability of y to be consistent with S∗’s answers is very
small; at each round, the probability that y is consistent with S∗ is typically bounded
by 1

2 .
The above motivates the following reduction: in the ith round feed S∗ keep sampling

a random hash function hi , until its answer is consistent with y. If S∗ behaves randomly,
or acts according to the honest strategy with respect to some fixed input y′, then no
more than few such attempts are required for each round. For arbitrary adversaries,
however, the above analysis seems to fail; as the process of choosing the hi ’s proceeds,
the distribution of y (chosen at random from the image of f ) gets further away from
being uniform among the elements that are consistent with S∗’s answers.

The actual reduction (following [16]) interpolates the two: we use the second re-
duction for the first t rounds, and the first reduction for the last n − t rounds, where
t = n − O(logn) is carefully chosen to circumvent both the above obstacles.5 The nov-
elty in our new proof, highlighted below, is in the way we analyze the success probabil-
ity of this combined reduction.

Analyzing the Reduction Success Probability Given a vector of Boolean hash
functions h = (h1, . . . , ht ), let Consist(h) := {y′ ∈ {0,1}n : ∀i ∈ [t] hi(y

′) =
S∗(h1, . . . , hi)}. (I.e., Consist(h) is the subset of elements inside {0,1}n that are con-
sistent with S∗’s responses on h.) Let DReal be the distribution induced by the first part
of the above reduction on the tuple (h, y). That is, y is uniformly chosen in {0,1}n, and
then h is chosen using rewinding so that y ∈ Consist(h). Given this formulation, the re-
duction success probability is simply the success probability of the following algorithm
(hereafter, the Inverter) over DReal: given a tuple (h, y), choose h

′ = (ht+1, . . . , hn−1)

at random, and return f −1(y) if it is one of the two outputs of S∗ on (h,h
′
).

To analyze the above success probability we introduce the distribution DIdeal: first h =
(h1, . . . , ht ) is chosen at random, and only then a random element y is uniformly drawn
from Consist(h). Since the distribution of h under DIdeal is as induced by a random

5 Actually, the fact that the combined reduction works, yields the result that the second reduction also
works (see Remark 4.6). Still, following [16], we use this distinction to simplify the presentation.
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interaction of S∗ with R (i.e., uniform at random), it is easy to see that Inverter does
well on DIdeal (roughly ε/|Consist(h)|, for a uniformly chosen h). We would then have
concluded the proof if we could have proved that the statistical difference between DIdeal
and DReal is small enough. It turns out, however, that such a strong bound is unlikely to
hold as it would imply that one-way functions do not exist!6

We do mange to prove, however, that DIdeal is almost “dominated” by DReal: the mass
that DIdeal assigns to most tuples is not too much larger (multiplicatively) than their mass
under DReal. This observation turns out to be sufficient, since when taking into account
the full power of S∗ (i.e., that it finds two consistent outputs) we prove that Inverter
does “well” on most tuples in the support of DIdeal. Combining the above observations,
it follows that Inverter does well also on DReal.

1.6. Paper Organization

General notation and definitions used throughout the paper are given in Sect. 2. In
Sect. 3, we formally define interactive hashing, present the NOVY paradigm for such
protocols, and state our main theorem regarding the binding of such protocols. The
proof of this theorem is given in Sect. 4, where discussion and further issues appear in
Sect. 5. Finally, in Appendix A we show how to use our new theorem to derive a di-
rect construction of statistically hiding commitment scheme based on regular one-way
functions.

2. Preliminaries

2.1. Notation

We use calligraphic letters to denote sets, uppercase for random variables, and lowercase
for values. For n ∈ N, let [n] = {1, . . . , n}. Given a binary relation W ⊆ D1 × D2 and
y ∈ D2, let Wy = {x ∈ D1 : (x, y) ∈ W }. Let PPTM denote a probabilistic algorithm
(i.e., Turing machines) that runs in strict polynomial time and let poly denote the fam-
ily of polynomials (we sometimes abuse notation and view poly as an arbitrary poly-
nomial). Throughout we identify functions with their description, and assume without
loss of generality that such a description is a binary string.

Given a random variable X, let x ← X denote that x is selected according to X.
Similarly given a finite set S , let s ← S denote that s is selected according to the
uniform distribution on S . We adopt the convention that when the same random vari-
able occurs several times in an expression, all occurrences refer to a single sample.
For example, Pr[f (X) = X] is defined to be the probability that when x ← X, we
have f (x) = x. Given a distribution D over a set S , the support of D is defined as
Supp(D) := {s ∈ S : D(s) > 0} and its min entropy, denoted H∞(D), is defined as
minx∈X log 1

D(x)
. Finally, the statistical distance of two distributions P and Q over a

final set U , denoted SD(P,Q), is defined as 1
2

∑
u∈U |P(u) − Q(u)|.

6 Up to this point we did not use the fact that S∗ finds two different outputs of f that are consistent with
the protocol rather than a single output (and for that purpose, S∗ is not more useful than the honest sender). If
the statistical difference between DIdeal and DReal would have been small enough, we could deduce that the
above (efficient) procedure when applied to the honest sender, inverts f with noticeable probability.
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An interactive protocol (A,B) consists of two interactive algorithms (touring ma-
chines) that compute the next-message functions of the (honest) parties in the protocol.
Let (A(a),B(b))(x) denote the random process obtained by having A and B interact on
common input x, with (private) auxiliary inputs a and b to A and B, respectively, and
with independent random coin tosses for A and B. The protocol (A,B) runs in poly-
nomial time, if there is a polynomial p such that A halts in (A(·), ·)(x), and similarly
B halts in (·,B(·))(x), after at most p(|x|) rounds for all possible input x ∈ {0,1}∗
(regardless of its private input and the other party strategy). Let viewA(A(a),B(b))(x)

denotes A’s view of the interaction, i.e., its values are transcripts (γ1, γ2, . . . , γt ; r),
where the γi ’s are all the messages exchanged and r is A’s coin tosses. Similarly,
viewB(A(a),B(b)) denotes B’s view.

2.2. Efficient Function Families

To be useful in applications, ensembles of function families are typically required to be
“efficient”. For our needs, efficiency means the following.

Definition 2.1 (Efficient ensembles of function families). Let H = {Hn}n∈N be an
ensemble of function families mapping strings of length n to strings of length �(n). The
ensemble H is efficient, if the following hold:

Samplable. There exists a PPTM that, given 1n, returns a uniform element in Hn.
Efficient. There exists a polynomial-time algorithm that given x ∈ {0,1}n and a de-

scription of h ∈ Hn, outputs h(x).
Verifiable. There exists a polynomial-time algorithm that given h ∈ {0,1}∗ and 1n,

outputs ‘1’ iff h ∈ Hn.

Throughout we use the shorthand “efficient function families” for “efficient ensem-
bles of function families”.

2.3. Pairwise Independent Function Families

Definition 2.2 (Pairwise-independent families). Let H be a function family mapping
strings of length n to strings of length �. The family H is pairwise independent, if

Pr
h←H

[
h(x1) = y1 ∧ h(x2) = y2

]= 2−2�

for every distinct x1, x2 ∈ {0,1}n and every y1, y2 ∈ {0,1}�.

It is well known Carter and Wegman [2] that for every polynomial-time computable
�(n) ≤ poly(n), there exists an efficient family of pairwise-independent hash functions
with description size O(max{n, �(n)}).

The following standard lemma states that a random pairwise-independent hash func-
tion partitions a given set into (almost) equal size subsets.

Lemma 2.3. Let H be a pairwise-independent function family mapping strings of
length n to strings of length �, let L ⊆ {0,1}n, let μ = |L|/2� and let δ > 0. Then

Pr
h←H

[∃y ∈ {0,1}� : ∣∣∣∣{x ∈ L : h(x) = y
}∣
∣− μ

∣
∣> δμ

]
<

2�

δ2μ
.
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Proof. Fix y ∈ {0,1}� and let H be uniformly chosen in H. For x ∈ L, define the
indicatory random variable Ix to be one iff H(x) = y, and let X = ∑

x∈L Ix . Since
E[Ix] = 2−� for every x ∈ L, it follows that E[X] = μ.

Note that Var[Ix] = E[I 2
x ] − E[Ix]2 = E[Ix](1 − E[Ix]) ≤ E[Ix] for every x ∈ L,

where the pairwise independence of the Ix ’s7 yields Var[X] = Var[∑x∈L Ix] =∑
x∈L Var[Ix] ≤∑

x∈L E[Ix] = E[X]. Applying the Chebyshev inequality

Pr
[∣
∣X − E[X]∣∣> δ · E[X]]<

1

(δ · E[X])2
· Var[X] ≤ E[X]

(δ · E[X])2
= 1

δ2μ
,

and a union bound completes the proof. �

2.4. Linear Transformations
Other function families of interest are those of a linear transformation.

Definition 2.4 (Linear transformations). Given n, � ∈ N, M ∈ {0,1}�×n and x ∈
{0,1}n, let M(x) := M × x mod 2, and let Lin�,n be the function family defined by
all matrices in {0,1}�×n with respect to the above operation. We let Full�,n ⊆ Lin�,n be
the function family defined by all full-rank matrices in {0,1}�×n.

Note that both Lin�,n and Full�,n, are efficient families for any polynomial-time com-
putable � = �(n) < poly(n). We use the following fact.

Fact 2.5. There exists a constant c > 0 such that |Full�,n |
|Lin�,n| > c for any integers � ≤ n.

Proof. The probability that a random vector in {0,1}n is in the span of some k < n

vectors in {0,1}n (over F2), is bounded by 2k−n. It follows that

Pr
M←Lin�,n

[M ∈ Full�,n] ≥
�∏

k=1

(
1 − 2k−n−1)

> c := lim
t→∞

t∏

k=1

(
1 − 2−k

)

> 1 − lim
t→∞

t∑

k=1

2−k = 0.
�

2.5. Piece-Wise Functions

In the interactive hashing protocols considered below, the receiver sends the function
description in pieces, where each such piece suffices for evaluating the output it con-
tributes.

Definition 2.6. Given a sequence of functions h = (h1, . . . , hs) defined over {0,1}n,
let h(x) = h1(x) ◦ · · · ◦ hs(x), where ◦ denotes string concatenation. A family of length
s function sequences, is called s-piece function family.

7 A set of random variables {Si } over U is pairwise independent, if Pr[Si = ui ∧ Sj = uj ] = Pr[Si =
ui ] · Pr[Sj = uj ] for any i �= j and ui , uj ∈ U .
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An ensemble H = {Hn} of s = s(n)-piece function families is called prefix verifiable,
if there exists a polynomial-time algorithm that given (1n,h1, . . . , hi) returns ‘1’ iff
there exists hi+1, . . . , hs such that (h1, . . . , hs) ∈ Hn.

In this paper we consider two kinds of prefix verifiable piece-wise family. The first
type is a product family ensemble Hs , where H is an efficient function family and s

is polynomial-time computable integer-valued function. It is easy to verify that Hs is
indeed an efficient prefix verifiable s-piece family.

The second type is a variant of linear maps; given a subset H of Lin�,n and an index
set i = (i1, . . . , is) with 1 ≤ i1 < · · · < is = �, let Hi be the s-piece function family

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

h1
...

hi1

⎞

⎟
⎠ , . . . ,

⎛

⎜
⎝

his−1+1
...

his

⎞

⎟
⎠ : h =

⎛

⎜
⎝

h1
...

h�

⎞

⎟
⎠ ∈ H

⎫
⎪⎬

⎪⎭
,

letting
⎛

⎜
⎝

hij−1+1
...

hij

⎞

⎟
⎠ (x) =

⎛

⎜
⎝

hij−1+1
...

hij

⎞

⎟
⎠× x.

For polynomial-time computable index-set function i = i(n) = (i1(n), . . . , is(n)(n)) and
integer-valued function � = �(n) < poly(n), it is easy to verify that the s-piece function
family ensemble (Lin�(n),n)i(n) and (Full�(n),n)i(n) are both efficient and prefix verifi-
able.

3. Interactive Hashing

Following [17], we state our result in the language of binary relations, where these
relations are not assumed to have efficient deciders. Since every function f defines
the binary relation {(x, f (x)) : x ∈ {0,1}∗}, our result yields an analogous result for
functions.

Definition 3.1 (Interactive hashing protocols [16,17]). Let H be an ensemble of func-
tion families mapping strings of length n to strings of length � = �(n). An H-interactive
hashing protocol is a polynomial-time protocol (S,R) such that the following holds: the
parties receive the security parameter 1n as a common input, and S gets y ∈ {0,1}n as a
private input. At the end, R outputs (h, z) ∈ H × {0,1}�.

We make the following correctness requirement: for all n ∈ N, y ∈ {0,1}n and a pair
(h, z) that may be output by (S(1n, y),R(1n)), it is the case that h(y) = z.

An interactive hashing protocol is said to be (T , δ)-binding if the following holds.

Definition 3.2. Let T : N �→ N and δ : N×R×[0,1] �→ [0,1]. An H-interactive hash-
ing protocol (S,R) is said to be (T , δ)-binding, if there exists an oracle-aided algorithm
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PPTM A such that the following hold for any n ∈ N and any adversary S∗. First, the run-
ning time of AS∗

(y) is bounded by T (|y|) (counting oracle calls as a single operation).
Second, let (h, z) and ((x0, y0), (x1, y1)) denote the common output and S∗’s private
output in (S∗,R)(1n), respectively, then for any set L ⊆ {0,1}n and any binary relation
W ⊆ {0,1}∗ × L, if

Pr
[
h(y0) = h(y1) = z ∧ y0 �= y1 ∧ (x0, y0), (x1, y1) ∈ W

]≥ ε, (1)

then

Pr
y←L

[
AS∗

(y) ∈ Wy

]≥ δ

(

n,
|L|
2�

, ε

)

. (2)

Note that the above definition is black-box (i.e., the security reduction is a uni-
form algorithm that accesses the adversary as an oracle). By considering such
a definition, however, we only strengthen our positive results. Also note that a
(poly(n),poly(ε)/poly(n,

|L|
2� ))-binding protocol is “polynomially secure” for the set

ensemble L = L(n) with |L|
2� ∈ poly(n)—on security parameter 1n, no PPTM breaks the

binding with more than negligible probability.
The above correctness and binding definitions are oblivious to the actual implemen-

tation of the protocol. Since Definition 3.1 does not specify the amount of information
that might leak to the (possibly cheating) receiver, stating a similar hiding property is
more challenging. Thus, rather than giving a generic (and hard to digest) hiding def-
inition, we separately analyze the hiding guarantee achieved by each of the different
constructions considered below.

3.1. The NOVY Paradigm

All the interactive hashing protocols considered in this paper follows the NOVY
paradigm, which is a natural generalizations of the NOVY protocol. The NOVY
paradigm instantiated with an s-piece family H over strings of length n, denoted
NOVY〈H〉, is defined as follows:

Protocol 3.3 NOVY〈H〉.
Common input: 1n.
S’s input: y ∈ {0,1}n.

1. R chooses uniformly at random h = (h1, . . . , hs) ∈ H.
2. Do for i = 1 to s:

(a) R sends hi to S.
(b) S aborts if (h1, . . . , hi) is not a prefix of some element in H.

Otherwise, S sends zi = hi(y) back to R.
3. R outputs (h, z = (z1, . . . , zs)).

Typically, we instantiated the NOVY paradigm with efficient, prefix-verifiable, s-
piece families. It is straightforward that for such families, the resulting protocol is an
H-interactive hashing.
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3.1.1. Hiding of the NOVY Paradigm

The above definition stipulates that the only information a cheating receiver gets from
an execution is (h,h(y)) for some h ∈ H. While this h might be chosen adaptively by
the cheating receiver, we still have the following guarantee.

Claim 3.4. Let H be an s-piece function family mapping strings of length n to strings
of length � and let (S,R) = NOVY〈H〉. Let L ⊆ {0,1}n and let q = �log |L|� − �. Then
for any cheating adversary R∗ and δ ∈ (0,1], we have

Pr
v←VR∗

[
H∞(Y | VR∗ = v) < q + log δ

]
< δ,

where Y is uniformly distributed over L and VR∗ is R∗’s view in (S(Y ),R∗).

Proof. Since S refuses to send more than � bits of information about its input, the
proof follows using a straightforward counting argument. �

When limiting our attention to product of pairwise-independent function families and
semi-honest receivers (ones that follow the prescribed protocol), we have the following
guarantee:

Claim 3.5. Let H be an s-piece pairwise-independent function family mapping strings
of length n to strings of length �, and let (S,R) = NOVY〈H〉. Let L ⊆ {0,1}n and let
q = �log |L|� − �. Then

Pr
v←VR

[
H∞(Y | VR = v) < q − 1

]≤ 2�

2q−3
,

where Y is uniformly distributed over L and VR is R’s view in (S(Y ),R).

Proof. Immediately follows by Lemma 2.3 (taking δ = 1
2 ). �

Finally, for the family Full�,n and the set L = {0,1}n, we have the following “perfect”
hiding guarantee (formally stated and proved below): (1) the input y of S is perfectly
hidden among (at least) 2n−� other values in {0,1}n, and (2) the “index” of y among
these values is efficiently computable from y. In the interesting case of n− � = 1, it fol-
lows that the index of y is a uniform bit from the receiver point of view. Such an hiding
guarantee is equivalent to that achieved by the NOVY protocol, and in particular can be
use to construct perfectly hiding commitment schemes from one-way permutations.

Claim 3.6. There exists a deterministic polynomial-time computable mapping M
such that the following holds: let (Full�,n)i be an s-piece function family, and let
(S,R) = NOVY〈(Full�,n)i〉. Then for any cheating adversary R∗, the distributions
(VR∗(y),M(�, T (y), y))y←{0,1}n and (VR∗(y), z)y←{0,1}n,z←{0,1}n−� are identical, where
(the jointly distributed) T (y) and VR∗(y), are the transcript and R∗’s view, respectively,
in (S(y),R∗).
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Proof. We assume for ease of notation that R∗ never causes the sender to abort. Given
a transcript t = (h, z) ∈ (Full�,n)i × {0,1}� of (S,R∗) and an input y ∈ {0,1}n, algo-

rithm M finds h
′ ∈ Linn−�,n such that the matrix

(
h

h
′
)

is of full rank n,8 and outputs

h
′
(y). Conditioned on R∗’s view, the sender’s input (i.e., y) is uniformly distributed in

the (n − �)-dimensional affine subspace {y′ : h(y) = z}. Hence, M(�, t, y) is uniformly
distributed in {0,1}n−�. �

3.1.2. Binding of the NOVY Paradigm

The following theorem, whose proof is given in Sect. 4, is the main contribution of this
paper.

Theorem 3.7. Let H be an efficient pairwise-independent function family mapping
strings of length n to strings of length � = �(n), and let s = s(n) be a polynomial-time
computable function. Then NOVY〈Hs〉 is (T , δ)-binding, where T (n) = p(n) · 2� for
some p ∈ poly and δ(n, r, ε) ∈ Ω(ε2 · min{1,1/r} · 1

210�·n8 ).

Theorem 3.7 also holds for function families of weaker independence guarantee.

Definition 3.8 (XOR-universal function families). Let H be a function family map-
ping strings of length n to strings of length �. We say that H is XOR-universal if

Pr
h←H

[
h(x1) ⊕ h(x2) = y

]= 2−�

for any distinct x1, x2 ∈ {0,1}n and any y ∈ {0,1}�.

We note that while not pairwise independent (maps 0n to 0�), the family Lin�,n is
XOR-universal for every choice of � and n.

Corollary 3.9. Let T , δ, s and � be as in Theorem 3.7. Then the following protocols
are (T , δ)-binding:

1. NOVY〈Hs〉, where H is an efficient XOR-universal function mapping strings of
length n to strings of length � = �(n).

2. NOVY〈(Fulls·�,n)�,2�,...,s·�〉, where s · � ≤ n.

Proof. The proof of the first part readily follows from the proof of Theorem 3.7.
Yet for the sake of completeness we prove it below by reducing it to (the statement
of) Theorem 3.7. Let S∗ be an algorithm that breaks the binding of NOVY〈Hs〉 with
probability ε (according to Eq. (1)) and let H′ be the pairwise independent family
{(h, b) : h ∈ H, b ∈ {0,1}�}, where (h, b)(x) := h(x) ⊕ b. Consider the following al-
gorithm that uses S∗ to break the binding of NOVY〈(H′)s〉: upon receiving the function
(h, b) ∈ H′ from R, it sends h to S∗, XORs the answer of S∗ with b and sends the result
back to R. It is immediate that the above algorithm breaks the binding of NOVY〈H′s〉
with probability ε, and thus the proof of this part follows from Theorem 3.7.

8 Note that h
′

can be found in deterministic polynomial time using Gaussian elimination.
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Fact 2.5 yields the following any algorithm that breaks the binding of
NOVY〈(Fulls·�,n)�,2�,...,s·�〉 with probability ε, breaks that of NOVY〈(Lin�,n)�,2�,...,s·�〉
with probability Ω(ε) (i.e., conditioned on an event of constant probability over
the execution of NOVY〈(Lins·�,n)�,2�,...,s·�〉, the receiver’s messages in
NOVY〈(Lins·�,n)�,2�,...,s·�〉 are distributed exactly as the receiver’s messages in
NOVY〈(Full�,n)�,2�,...,s·�〉). Since (Lins·�, n)�,2�,...,s·� is XOR-universal, the first part
of Corollary 3.9 shows that NOVY〈(Lin�,n)�,2�,...,s·�〉 is (T , δ)-binding, and therefore
so is NOVY〈(Fulls·�, n)�,2�,...,s·�〉. �

Remark 3.10 (Further extensions and the original NOVY protocol). Consider an
s-piece function family H over {0,1}n, where each piece outputs � bits. For z ∈
{0,1}k� and a k-element vector h that is a prefix of some element in H, de-
fine Consisth,z := {x ∈ {0,1}n : h(x) = z}. Assume that for any possible such pair,

the family Hh = {h : (h,h) is a prefix of some element in H} is an efficient XOR-
universal over Consisth,z,9 then the proof of Theorem 3.7 readily extends to the fam-

ily H.
The above extension is of interest since it applies to the function family used by

the original NOVY protocol. Since protocol NOVY〈(Fulls·�, n)�,2�,...,s·�〉 achieves the
same hiding guarantee as the NOVY protocol does, we do not formally prove the above
observation.

4. Binding Proof

Let H = {Hn}n∈N be an efficient function family mapping strings of length n to
strings of length �(n), where �(n) is an arbitrary integer-valued function, and let
(S,R) = NOVY〈Hs(n)〉, where s is a polynomial-time computable integer-valued func-
tion. For integer-valued function t (n) ≤ s(n) to be determined by the analysis, we define
the following oracle-aided algorithm.

Algorithm 4.1 (A).

Input: y ∈ {0,1}n.
Oracle: S∗.

1. Let h ← SearcherS
∗
(y).

2. Return InverterS∗
(h).

The oracle-aided algorithms Searcher and Inverter are defined as follows:

Algorithm 4.2 (Searcher).

Input: y ∈ {0,1}n.
Oracle: S∗.

9 That is, Prh←H[h(x1) ⊕ h(x2) = y] = 2−� for any distinct x1, x2 ∈ Consist
h,z

and any y ∈ {0,1}� .
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1. For k = 1 to t (n) do:
Do the following for �2�(n) · ln t (n)� times:

(a) Let hk ← Hn.
(b) Break the inner loop if S∗(1n,h1, . . . , hk) = hk(y), where S∗(1n,h1, . . . , hk)

stands for S∗ answer on input 1n and receiver’s messages h1, . . . , hk .
If the end of the inner loop has reached, output “Fail” and abort the execution.

2. Return (h1, . . . , ht ).

Algorithm 4.3 (Inverter).

Input: h ∈ Ht (n)
n .

Oracle: S∗.

1. Let h
′ ← Hs(n)−t (n)

n .
2. Let ((x0, y0), (x1, y1)) be the final output of S∗(1n, (h,h

′
)).

3. Return x0 with probability 1
2 , and x1 otherwise.

It is straightforward that AS∗
runs in time poly(n) · 2�(n) (counting an oracle call

as a single operation). In the following we fix n ∈ N, a set L ⊆ {0,1}n and a binary
relation W ⊆ {0,1}∗ × L. We also fix a cheating sender S∗ that breaks the binding of
NOVY〈Hs〉 with probability ε with respect to W and L (according to Definition 3.2).
Namely,

Pr
(((x0,y0),(x1,y1)),(h,z))←(S∗,R)(1n)

[
h(y0) = h(y1) = z

∧ y0 �= y1 ∧ (x0, y0), (x1, y1) ∈ W
]= ε. (3)

We assume without loss of generality that S∗ is deterministic (the generalization to
randomized adversaries is standard) and prove the theorem showing that

Pr
y←L

[
AS∗

(y) ∈ Wy

]≥ c · ε2

210� · n8
· max

{
1,2s�/|L|} (4)

for a universal constant c > 0.
Throughout the proof we omit n from the notations, and let A, Searcher and Inverter,

stand for AS∗
, SearcherS

∗
and InverterS

∗
, respectively. We assume without loss of gen-

erality that S∗ always replies with valid messages (i.e., elements inside {0,1}�). First
time readers are encouraged to focus on the case where � = 1, s = n and L = {0,1}n.

Following the intuition given in the introduction, we consider the success probability
of S∗ with respect to the following distributions:

• DReal := (h, y)y←L,h←Searcher(y), and

• DIdeal := (h, y)h←Ht ,y←Consist(h),

where Consist(h) := {y ∈ L : h(y) = S∗(h)} (i.e., Consist(h) is the set of elements that
are consistent with S∗’s answers on h).

Since DReal is the distribution a random execution of A (over a random y) induces
on the values of y and h, the success probability of A, in satisfying W , equals the
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success probability of Inverter over DReal (i.e., to Pr(h,y)←DReal
[Inverter(h) ∈ Wy]). We

lowerbound the latter probability by relating it to the success probability of Inverter over
DIdeal. Specifically, we first show (Lemma 4.4) that DReal and DIdeal assign similar mass
to most elements in the support of DIdeal, and then prove (Lemma 4.5) that Inverter’s
success probability over DIdeal (in the task of satisfying W ) is not only high but also
“well spread”. Namely, even if we ignore the contribution to the success probability of
some sufficiently small number of values in the support of DIdeal, this success probability
remains high. Therefore, we are guaranteed that the success probability of Inverter is
high with respect to any distribution that assigns about the same mass to most elements
in the support of DIdeal, and in particular with respect to DReal.

For k ∈ {0, . . . , s} let μk := |L|/2k�.

Lemma 4.4. Assuming t ≥ 4 then

Pr
h←Ht

[∣
∣
{
y ∈ Consist(h) : (h, y) /∈ Dominated

}∣
∣> 8t4 · 23�

]
<

10t3 · 22�

μt−1
,

where Dominated = {(h, y) ∈ Supp(DIdeal) : DReal(h, y) ≥ 1
28 · DIdeal(h, y)}.

Namely, with high probability over the choice of h ← Ht , the number of elements
that are consistent with h and whose weight according to DIdeal is much larger than their
weight according to DReal, is limited.

Lemma 4.5. Assume t ≥ 4 and μt−1 ≥ 12t3·22�

ε
, and let Secluded be an arbitrary sub-

set of Supp(DIdeal) with

Pr
h←Ht

[∣
∣
(
h,Consist(h)

)∩ Secluded
∣
∣>

√
ε · 2(s−t)�−3

]≤ ε/2.

Then

Pr
(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) /∈ Secluded

]≥ ε

64 · μt

.

Namely, if |(h,Consist(h)) ∩ Secluded| is not too large on the average, then Inverter
does well on DIdeal even when ignoring the contribution of Secluded.

The proof of Lemmas 4.4 and 4.5 is given below, but first let us use them for proving
Theorem 3.7.

Proof of Theorem 3.7. Let q := � 1
�
(min{log |L|, s�} + log ε − 8 logn − 6� − 9)�. We

first prove the theorem for the case q < 4, and then complete the proof by handling the
case q ≥ 4.
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Assume q < 4 and consider the success of A when setting t = 0. To lowerbound A’s
success probability in this case, we compute

Pr
y←L

[
A(y) ∈ Wy

]= Pr
y←L

[
Inverter() ∈ Wy

]

≥ ε

2 · |L| = ε

2 · min{|L|,2s�} · min

{

1,
2s�

|L|
}

. (5)

Since by assumption q < 4, we have min{|L|,2s�} ≤ 24�−log ε+8 logn+6�+9 = 29·210�·n8

ε
.

It follows that Pry←L[A(y) ∈ Wy] ≥ ε2

210·210�·n8 · min{1, 2s�

|L| }, concluding the proof for
the case q < 4.

Assume q ≥ 4 and let t = q . We start by showing that μt−1 is large enough, so we
can later invoke Lemma 4.5 with parameter t . Indeed,

μt−1 = |L|
2(t−1)�

>
|L|

2−� · |L| · ε · n−8 · 2−6� · 2−9
= 512 · n8 · 27�

ε
>

12t3 · 22�

ε
, (6)

where the last inequality holds since t ≤ n.
Let Dominated be the set defined in Lemma 4.4. We have

Pr
h←Ht

[∣
∣
{
y ∈ Consist(h) : (h, y) /∈ Dominated

}∣
∣>

√
ε · 2(s−t)�−3

]

≤ Pr
h←Ht

[∣
∣
{
y ∈ Consist(h) : (h, y) /∈ Dominated

}∣
∣> 8t4 · 23�

]

<
10t3 · 22�

μt−1

= 10t3 · 22� · 2(t−1)�

|L|

≤ 10t3 · 22�

|L| · |L| · ε
n8 · 27� · 29

≤ 10n3 · 22� · ε

n8 · 27� · 29

≤ ε/4. (7)

The first inequality holds since 2(s−t)�−3 ≥ 2s�−(s�+log ε−8 logn−6�−9)−3 ≥ 1
ε

· n8 · 26� ·
26 ≥ 1

ε
· (8t4 · 23�)2 (note that t ≤ n), the second one by Lemma 4.4 and the third one

by the definition of t . Applying Lemma 4.5 for Secluded := Supp(DIdeal) \ Dominated,
yields

Pr
(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) ∈ Dominated

]≥ ε

64 · μt

. (8)
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It follows that

Pr
y←L

[
A(y) ∈ Wy

]= Pr
(h,y)←DReal

[
Inverter(h) ∈ Wy

]

≥ Pr
(h,y)←DReal

[
Inverter(h) ∈ Wy ∧ (h, y) ∈ Dominated

]

≥ 1

28
· Pr
(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) ∈ Dominated

]

≥ 1

28
· ε

64 · μt

≥ 1

28 · 64 · 29
· ε2

n8 · 26�
,

concluding the proof for the case q ≥ 4. �

Remark 4.6 (Knowing t). The value of t in the above proof depends on ε and |L|.
This seems to contradict our binding formalism (see Definition 3.2) where A does not
know ε and L. However, selecting t at random only decrease A’s success probability by
a factor s. More interestingly, setting t = s guarantees that A success probability is as
claimed in the theorem; the effect of setting t to s is analogous to setting t arbitrarily
and changing Inverter to select h

′
using the rewinding method of Searcher rather than

uniformly at random. For every value h
′
that satisfies y ∈ Consist(h,h

′
), the probability

of selecting it with the rewinding technique is only larger than the probability of uni-
formly selecting it. Where a value of h

′
such that y �∈ Consist(h,h

′
), does not contribute

in our analysis to the success probability of A. It follows that the distinction between
Searcher and Inverter is not necessary for the proof (but is only used for presentation
reasons).

4.1. Bounding the Size of Consist(h)

The following simple observation plays an important role in the proofs of Lemmas 4.5
and 4.4.

Claim 4.7. Prh←Hk [ 1
4 · μk ≤ |Consist(h)| ≤ 4 · μk] ≥ 1 − 3k3·22�

μk−1
, for every k ∈

{2, . . . , s}.

Proof. Fix k ∈ {2, . . . , s}. We call h ∈ Hj balanced if (1 − 1
k
)j · μj ≤ |Consist(h)| ≤

(1 + 1
k
)j · μj and prove the claim showing that

Pr
h←Hj

[h is balanced] ≥ 1 − 3jk2 · 22�

μj−1
(9)

for every j ∈ {0, . . . , k}, letting μ−1 = μ0. Equation (9) holds trivially for j = 0. In the
following we assume for j ≥ 0, and prove for j + 1.



A New Interactive Hashing Theorem 127

We say that h ∈ H well partitions the set Consist(h), where h ∈ Hj , if (1 − 1
k
) ·

|Consist(h)| ≤ 2� · |Consist(h,h)| ≤ (1 + 1
k
) · |Consist(h)|. Lemma 2.3 yields

Pr
h←H

[
h well partitions Consist(h)

]≥ 1 − k2 · 22�

|Consist(h)| (10)

for every h ∈ Hj , and it follows that

Pr
h←Hj+1

[h is balanced]

≥ Pr
h←Hj

[h is balanced] · Pr
(h,h)←Hj+1

[
(h,h) is balanced | h is balanced

]

≥ Pr
h←Hj

[h is balanced] · Pr
h←Hj+1

[
h well partitions Consist(h) | h is balanced

]

≥
(

1 − 3jk2 · 22�

μj−1

)

·
(

1 − k2 · 22�

(1 − 1
k
)jμj

)

≥ 1 − 3jk2 · 22�

μj−1
− 3k2 · 22�

μj

≥ 1 − 3(j + 1)k2 · 22�

μj

. �

4.2. Proving Lemma 4.4

In this section we prove Lemma 4.4.

Lemma 4.8 (Lemma 4.4, restated). Assuming t ≥ 4 then

Pr
h←Ht

[∣
∣
{
y ∈ Consist(h) : (h, y) /∈ Dominated

}∣
∣> 8t4 · 23�

]
<

10t3 · 22�

μt−1
,

where Dominated = {(h, y) ∈ Supp(DIdeal) : DReal(h, y) ≥ 1
28 · DIdeal(h, y)}.

We bridge between DIdeal and DReal via the following hybrid distributions: for k ∈
{0, . . . , t − 1} and h ∈ Hk , define

• Dh
Real := (h, y)

y←Consist(h),h←(Searcherh(y))k+1
and

• Dh
Ideal := (h, y)h←H,y←Consist(h,h),

where Searcherh(y) is the hybrid algorithm that first fixes its first k hash functions to
h, and then continues as (the non-hybrid) original Searcher would with respect to this
fixing.
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For (h1, . . . , hi, y) ∈ Ht ×{0,1}n, let γ h1,...,hi−1(hi, y) := D
h1,...,hi−1
Ideal (hi ,y)

D
h1,...,hi−1
Real (hi ,y)

. Hence, for

(h = (h1, . . . , ht ), y) ∈ Supp(DIdeal) we can write

DIdeal(h, y) = 1

|H|t−1
· D

h1,...,ht−1
Ideal (ht , y)

= 1

|H|t−1
· γ h1,...,ht−1(ht , y) · D

h1,...,ht−1
Real (ht , y)

= 1

|H|t−1
· γ h1,...,ht−1(ht , y) · 1

|Consist(h1, . . . , ht−1)|
· Pr

[(
Searcherh1,...,ht−1(y)

)
t
= ht

]

= 1

|H|t−1
· γ h1,...,ht−1(ht , y) · |H| · D

h1,...,ht−2
Ideal (ht−1, y)

· Pr
[(

Searcherh1,...,ht−1(y)
)
t
= ht

]

= 1

|H|t−2
· γ h1,...,ht−1(ht , y) · γ h1,...,ht−2(ht−1, y)

· D
h1,...,ht−2
Real (ht−1, y) · Pr

[(
Searcherh1,...,ht−1(y)

)
t
= ht

]

...

=
(∏

i∈[t]
γ h1,...,hi−1(hi, y)

)

· Dλ
Real(h1, y)

·
( ∏

i∈{2,...,t}
Pr
[(

Searcherh1,...,hi−1(y)
)
i
= hi

]
)

=
(∏

i∈[t]
γ h1,...,hi−1(hi, y)

)

· 1

|L| · Pr
[
Searcher(y) = h

]

=
(∏

i∈[t]
γ h1,...,hi−1(hi, y)

)

· DReal(h, y), (11)

where in above λ stands for the zero length vector.
Equation (11) yields the following characterization of the set Dominated.

Claim 4.9. Dominated ⊇ {((h1, . . . , ht ), y) ∈ Supp(DIdeal) : ∀i ∈ [t] (1 − 3
t
) ·

D
h1,...,hi−1
Ideal (hi, y) ≤ D

h1,...,hi−1
Real (hi, y)}.

Proof. Fix (h = (h1, . . . , ht ), y) ∈ Supp(DIdeal) with (1 − 3
t
) · D

h1,...,hi−1
Ideal (hi, y) ≤

D
h1,...,hi−1
Real (hi, y) for every i ∈ [t]. Equation (11) yields DIdeal(h, y) ≤ ( 1

1− 3
t

)t ·
DReal(h, y). Since ( 1

1− 3
t

)t ≤ 28 for t ≥ 4, it follows that (h, y) ∈ Dominated. �
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Recall that in order to prove Lemma 4.4, we need to show that Dominated is large.
By Claim 4.9, it suffices to lowerbound the number of pairs (h = (h1, . . . , ht ), y) ∈
Supp(DIdeal) for which (1 − 3

t
) · D

h1,...,hi−1
Ideal (hi, y) ≤ D

h1,...,hi−1
Real (hi, y) for every i ∈ [t],

a task that we do using the next lemma.

Lemma 4.10. For h ∈ Hk , where k ∈ {0, . . . , t − 1}, there exists a set NonTypY(h) ⊆
Consist(h) of size less than 8t3 · 23� such that the following holds: let BadH(h) :=
{h ∈ H : ∃y ∈ Consist(h) \ NonTypY(h) : (1 − 3

t
) · Dh

Ideal(h, y) > Dh
Real(h, y)}, then

Prh←H[h ∈ BadH(h)] < t2·22�

|Consist(h)| .

Namely, Lemma 4.10 bounds the number of y’s inside Consist(h) for which the event
(1 − 3

t
) · Dh

Ideal(H,y) > Dh
Real(H,y) is likely to happen. Before proving Lemma 4.10,

we first use it to prove Lemma 4.4.

Proof of Lemma 4.4. For h ∈ Hk , let NonTypY(h) be the set guaranteed by
Lemma 4.10 (assuming for ease of notation that there exists a single such set;
in case there are several of them, we arbitrarily choose one). Let BadH := {h =
(h1, . . . , ht ) ∈ Ht : ∃i ∈ [t] : hi ∈ BadH(h1, . . . , hi−1)}, and for h = (h1, . . . , ht ) ∈ Ht

let AllNonTypY(h) :=⋃
i∈[t] NonTypY(h1, . . . , hi−1).

Claim 4.9 yields {(h, y) ∈ Supp(DIdeal) : y ∈ (Consist(h) \ AllNonTypY(h)) ∧ h /∈
BadH} ⊆ Dominated, and therefore

Pr
h←Ht

[∣
∣
{
y ∈ Consist(h) : (h, y) /∈ Dominated

}∣
∣≥ 8t4 · 23�

]

≤ Pr
h←Ht

[∃y ∈ (
Consist(h) \ AllNonTypY(h)

)∧ (h, y) /∈ Dominated
]

≤ Pr
h←Ht

[h ∈ BadH], (12)

where for the first inequality observe that if the number of y ∈ Consist(h) with
(h, y) �∈ Dominated is at least 8t4 · 23�, then there exists at least one y ∈ Consist(h) \
AllNonTypY(h) with (h, y) /∈ Dominated (note that |AllNonTypY(h)| < 8t4 · 23�).

We conclude the proof showing that Prh←Ht [h ∈ BadH] is small. For q > 0 compute

Pr
h←Ht

[h ∈ BadH] ≤
∑

i∈[t]
Pr

(h1,...,hi )←Hi

[
h ∈ BadH(h1, . . . , hi−1)

]

≤
∑

i∈[t]

(

Pr
(h1,...,hi−1)←Hi−1

[∣
∣Consist(h1, . . . , hi−1)

∣
∣< q

]+ t2 · 23�

q

)

= t3 · 22�

q
+
∑

i∈[t]
Pr

(h1,...,hi−1)←Hi−1

[∣
∣Consist(h1, . . . , hi−1)

∣
∣< q

]
,

(13)
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where the second inequality is by Lemma 4.10. Taking q = μt−1
4 , Claim 4.7 yields

∑

i∈[t]
Pr

(h1,...,hi−1)←Hi−1

[∣
∣Consist(h1, . . . , hi−1)

∣
∣< q

]

≤
∑

i∈[t]
Pr

(h1,...,hi−1)←Hi−1

[
∣
∣Consist(h1, . . . , hi−1)

∣
∣<

μi−1

4

]

≤
∑

i∈[t]

3t3 · 22�

μi−2

<
6t3 · 22�

μt−2
, (14)

yielding that

Pr
h←Ht

[h ∈ BadH] <
4t3 · 22�

μt−1
+ 6t3 · 22�

μt−1
= 10t3 · 22�

μt−1
. (15)

Combining Eqs. (12), (15), yields Prh←Ht [|{y ∈ Consist(h) : (h, y) /∈ Dominated}| >

8t4 · 23�] ≤ Prh←Ht [h ∈ BadH] < 10t3·22�

μt−1
. �

4.2.1. Proving Lemma 4.10

As a warmup we start by focusing on the Boolean case (i.e., � = 1). Consider the
Boolean matrix M ∈ {0,1}|Consist(h)|×|H| with M(y,h) = 1 iff y ∈ Consist(h,h), where
we identify the indices into M with the set Consist(h) × H. The distribution Dh

Ideal can
be described in relation to M as: choose a random column of M and draw the index
of a random 1-entry from this column (where a “1-entry” is an entry of the matrix that
is assigned the value 1). The distribution Dh

Real can also be described in relation to M :
choose a random row of M and keep drawing random entries from this row until a 1-
entry is picked. Then return its index and stop drawing (where in case of �2 log t� failed
attempts, return ⊥).

Compare the matrix M with the matrix M̂ ∈ {0,1}|Consist(h)|×|H|, where M̂(y,h) =
h(y). Note that M can be derived from M̂ by flipping all values in some of its columns
(specifically, the column corresponding to h is flipped in case y /∈ Consist(h,h)). The
pairwise independence of H shows that most columns of M̂ are balanced (i.e., have
about the same number of 1-entries), and thus the same holds for M . Hence, the mass
that Dh

Ideal assigns to most of the 1-entries of M is close to 2
|H| · 1

|Consist(h)| . The pairwise

independence of H also shows that most rows of M are also balanced. Since DReal =⊥
only with small probability, the mass that Dh

Real assigns to most 1-entries in M is also
close to 2

|H| · 1
|Consist(h)| . We conclude that the 1-entries in a random row of M (a random

h ∈ H) get about the same mass in Dh
Real and in Dh

Ideal, and the proof of the lemma
follows. Formal proof is given below.
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Proof of Lemma 4.10. We take NonTypY(h) as the set {y ∈ Consist(h) : αh(y) >
1
2� · (1 + 1

t
)}, for αh(y) := Prh←H[y ∈ Consist(h,h)]. The proof that NonTypY(h) has

the two properties stated in Lemma 4.10 (i.e., bounded size, and dominance of DReal

over DIdeal) is carried via the next two claims.

Claim 4.11. |NonTypY(h)| < 8t3 · 23�.

Proof. In the following let H be uniformly distributed over H, and for h ∈ H let
Xh := |NonTypY(h) \ Consist(h,h)|. The definition of NonTypY(h) shows that

E[XH ] = E
[∣
∣NonTypY(h) \ Consist(h,H)

∣
∣
]

= ∣
∣NonTypY(h)

∣
∣−

∑

y∈NonTypY(h)

Pr
[
y ∈ Consist(h,H)

]

<
∣
∣NonTypY(h)

∣
∣−

(

1 + 1

t

)

ν, (16)

for ν = |NonTypY(h)|
2� . On the other hand,

Pr

[

XH <
∣
∣NonTypY(h)

∣
∣−

(

1 + 1

2t

)

ν

]

= Pr

[
∣
∣NonTypY(h) ∩ Consist(h,H)

∣
∣>

(

1 + 1

2t

)

ν

]

≤ Pr

[

∃z ∈ {0,1}� : ∣∣{y ∈ NonTypY(h) : H(y) = z}∣∣>
(

1 + 1

2t

)

ν

]

<
4t2 · 2�

ν
, (17)

where the last inequality is by Lemma 2.3. We conclude that

E[XH ] ≥ Pr

[

XH ≥ ∣
∣NonTypY(h)

∣
∣−

(

1 + 1

2t

)

ν

]

·
(
∣
∣NonTypY(h)

∣
∣−

(

1 + 1

2t

)

ν

)

≥
(

1 − 4t2 · 2�

ν

)

·
(
∣
∣NonTypY(h)

∣
∣−

(

1 + 1

2t

)

ν

)

≥ ∣
∣NonTypY(h)

∣
∣−

(

1 + 1

2t
+ 4t2 · 22�

ν

)

ν. (18)

Assume towards a contradiction that |NonTypY(h)| ≥ 8t3 · 23� (and hence, ν ≥ 8t3 ·
22�), Eq. (18) yields E[XH ] ≥ |NonTypY(h)| − (1 + 1

2t
+ 4t2·22�

8t3·22� )ν = |NonTypY(h)| −
(1 + 1

t
)ν, in contradiction to Eq. (16). Hence, we have proved that |NonTypY(h)| <

8t3 · 23�. �
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The next claim completes the proof of Lemma 4.10, showing that NonTypY(h) in-
deed contains all the “non typical” y’s.

Claim 4.12. Prh←H[∃y ∈ Consist(h) \ NonTypY(h) : (1 − 3
t
) · Dh

Ideal(h, y) >

Dh
Real(h, y)] < t2·22�

|Consist(h)| .

Proof. By definition, Dh
Ideal(h, y) = 1

|H| · 1
|Consist(h,h)| for every h ∈ H and y ∈

Consist(h,h). In addition, the mass that Dh
Real assigns to every such pair (h, y), is the

probability that y is chosen (i.e., 1
|Consist(h)| ) times the probability that h is chosen in

one of the �2� · ln t� sampling attempts done by Searcher(y) (i.e.,
∑�2�·ln t�

i=1 PrH[h] ·
Pr[first (i − 1) attempts failed] =∑�2�·ln t�

i=1
1

|H| · (1 − αh(y))i−1). All in all,

Dh
Real(h, y) = 1

|Consist(h)| · 1

|H| ·
�2�·ln t�∑

i=1

(
1 − αh(y)

)i−1
. (19)

Assuming that y ∈ Consist(h,h) \ NonTypY(h), Eq. (19) yields

Dh
Real(h, y) ≥ 1

|Consist(h)| · 1

|H| · 1 − (1 − 1
2� · (1 + 1

t
))�2�·ln t�

1
2� · (1 + 1

t
)

≥ 1

|Consist(h)| · 1

|H| · 1 − (1 − 1
2� )

�2�·ln t�
1
2� · (1 + 1

t
)

≥ 1

|Consist(h)| · 1

|H| · 1 − 1
t

1
2� · (1 + 1

t
)
, (20)

where for the last inequality we use the fact that (1 − 1
x
)x ≤ e−1 for x ≥ 1.

Let NonTypH(h) := {h ∈ H : |Consist(h,h)| < (1 − 1
t
) · |Consist(h)|

2� }. Observe that

Pr
h←H

[
h ∈ NonTypH(h)

]

≤ Pr
h←H

[

∃z ∈ {0,1}� : ∣∣{y ∈ Consist(h) : h(y) = z
}∣
∣<

(

1 − 1

t

)

· |Consist(h)|
2�

]

<
t2 · 22�

|Consist(h)| , (21)

where the second inequality is by Lemma 2.3. We conclude the claim’s proof, showing
that (1 − 3

t
) · Dh

Ideal(h, y) ≤ Dh
Real(h, y) for every pair (h, y) with h ∈ H \ NonTypH(h)

and y ∈ Consist(h,h) \ NonTypY(h). Indeed (by Eq. (20)) Dh
Real(h, y) ≥ 1− 1

t

1+ 1
t

·
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2�

|Consist(h)| · 1
|H| and (by the definition of NonTypH(h)) Dh

Ideal(y,h) ≤ 1
(1− 1

t
)

· 1
|H| ·

2�

|Consist(h)| for every such pair, yielding that
Dh

Real(h,y)

Dh
Ideal(h,y)

≥ (1− 1
t
)2

1+ 1
t

> 1 − 3
t
. �

4.3. Proving Lemma 4.5

In this section we prove Lemma 4.5.

Lemma 4.13 (Lemma 4.5, restated). Assume t ≥ 4 and μt−1 ≥ 12t3·22�

ε
, and let

Secluded be an arbitrary subset of Supp(DIdeal) with

Pr
h←Ht

[∣
∣Secludedh := {

y ∈ Consist(h) : (h, y) ∈ Secluded
}∣
∣>

√
ε · 2(s−t)�−3

]≤ ε/2.

Then

Pr
(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) /∈ Secluded

]≥ ε

64 · μt

.

Proof. For h ∈ Ht , let εh be the probability that S∗ breaks the binding of NOVY〈Hs〉
with respect to W and L (according to Definition 3.2), conditioned on h being the first
t functions sent by the R. Note that Eh←Ht [εh] = ε.

Let Typical := {h ∈ Ht : |Secludedh| ≤ qh ∧ |Consist(h)| ≤ 4μt }, where qh =
�
√

2(s−t)�−1 · εh�. Note that

Eh←Ht [h /∈ Typical] ≤ Pr
h←Ht

[|Secludedh| > qh

]+ Pr
h←Ht

[∣
∣Consist(h)

∣
∣> 4μt

]

≤ ε/2 + 3t3 · 22�

μt−1
≤ 3ε/4, (22)

where the second inequality is by Claim 4.7 and the guarantee about Secluded (as given
in the lemma statement). Let χTypical be the characteristic function of Typical. Equa-
tion (22) yields

Eh←Ht

[
εh · χTypical(h)

]≥ Eh←Ht [εh] − Pr
h←Ht

[h /∈ Typical] ≥ ε − 3ε/4 = ε/4. (23)

We define the “weight” of y ∈ Consist(h) with respect to h ∈ Ht , as wh(y) :=
Pr[Inverter(h) ∈ Wy]. It is easy to verify that

∑

y∈Consist(h)

wh(y) ≥ εh. (24)

The following claim shows that for h ∈ Typical, the above sum remains high even when
ignoring the contribution of Secludedh.

Claim 4.14. Let h ∈ Ht and let V ⊆ Consist(h) be of size at most qh, then∑
y∈Consist(h)\V wh(y) ≥ εh/4.
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Proof. The pairwise independence of H yields

Pr
h

′←Hs−t

[∃y0 �= y1 ∈ V : h
′
(y0) = h

′
(y1)

]≤ |V |2
2(s−t)�

≤ q2
h

2(s−t)�
≤ 2(s−t)�−1 · εh

2(s−t)�
≤ εh/2.

(25)

Let y0 and y1 be the pair of elements returned by S∗ on a successful cheat. Equation (25)
yields that the probability that both y0 and y1 are inside V is at most εh/2. It follows
that the probability that S∗ cheats successfully while at least one of y0 and y1 is outside
V is at least εh/2. Note that each event where S∗ cheats successfully and outputs an
element yi = y, contributes half its probability to the total weight of y. Thus, the sum
of weights of the elements in Consist(h)\V is at least εh/4. �

We conclude that

Pr
(h,y)←DIdeal

[
Inverter(h) ∈ Wy ∧ (h, y) /∈ Secluded

]

= Eh←Ht

[
1

|Consist(h)| ·
∑

y∈Consist(h)\Secludedh

wh(y)

]

≥ 1

4μt

· Eh←Ht

[

χTypical(h) ·
∑

y∈Consist(h)\Secluded

wh(y)

]

≥ 1

4μt

· Eh←Ht

[
χTypical(h) · εh/4

]

≥ 1

64μt

· ε,

where the penultimate inequality is by Claim 4.14, and the last one by Eq. (23). �

5. Conclusions

An interesting open question regards the optimality of the binding guarantee given in
Theorem 3.7. Particularly, is there a linear-preserving reduction from the security of
an interactive hashing protocol to satisfying the underlying relation?10 There are three
possible directions for improvement: (1) use a different interactive hashing protocol
than the one considered in Theorem 3.7, (2) use a different implementation for AS∗

to
satisfy the relation, or (3) improve the analysis of AS∗

success probability.
We mention that our improvement in parameters over the NOVY proof is mainly

in the third item (i.e., the analysis of the reduction). In the following we show that
our analysis cannot be pushed to show a linear reduction. Namely, we present a (non-
efficient) adversary S∗ that breaks the binding of NOVY〈Hn〉 with probability ε (in

10 In a linear-preserving reduction, the time-success ratio of an adversary violating the hardness of the
relation, is larger than the time-success ratio of an adversary breaking the binding of the interactive hashing
protocol, by at most a multiplicative polynomial factor.
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the meaning of Eq. (1)), where H is a family of Boolean pairwise-independent hash
functions, but AS∗

only breaks the underlying relation (in this case a relation imposed
by a permutation) with probability O(ε1.4).

For a fixed ε > 0 consider the following cheating sender S∗ for NOVY〈Hn〉: the
cheating sender S∗ answers the first (n − log 1

ε
) questions with arbitrary Boolean an-

swers, then it randomly selects two distinct elements y1, y2 ∈ {0,1}n that are consistent
with the protocol so far and answers the remaining hash functions as follows: on h ∈ H,
it checks whether h(y1) = h(y2), if positive it sends h(y1) back to the receiver; other-
wise, it raises a flag and answers at random. At the end of the protocol, if the flag was
not raised S∗ inverts f on both y1 and y2 (in a brute force manner) and outputs the
result.

The pairwise independence of H yields that S∗ breaks the binding of NOVY〈Hn〉
with provability ε. Where in order for AS∗

(y) to find x ∈ Wy , it first has to be the
case that y ∈ {y1, y2}; since the number of elements consistent with the protocol after
(n − log 1

ε
) steps is concentrated around 1/ε (see Claim 4.7), the latter happens with

probability O(ε). Assuming that y is one of {y1, y2} (say that y = y1), for succeed-
ing AS∗

has to choose in each step a hash function h with S∗(h) = h(y) = h(y2). The
pairwise independence of H yields that Prh←H[S∗(h) �= h(y2) | S∗(h) = h(y)] = 1

4 .
Therefore, the probability that S∗(h) = h(y) = h(y2) in each of the last log 1

ε
steps, is

at most ( 3
4 )log 1

ε < ε0.4 (note that A has no clue what y2 is). We conclude that the AS∗
’s

overall success probability is O(ε · ε0.4) = O(ε1.4).
Yet, the existence of more security preserving reductions for NOVY〈Hn〉 (or more

generally, to any protocol that follows the NOVY paradigm), not to mention the exis-
tence of different protocols with better security preserving reductions, remains an inter-
esting open question.
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Appendix A. Statistically Hiding Commitment from Regular One-Way Functions

In this section we use the interactive hashing theorem from Sect. 3 to give construct
statistically hiding commitment from regular one-way functions, reproving [8, Theo-
rem 4.4].

Theorem A.1. Assume there exist regular one-way functions, then there exist statis-
tically hiding and computationally binding commitment schemes.11

11 [8, Theorem 4.4] also holds with respect to somewhat more general choice of one-way functions. Specif-
ically, [8] consider the case where the number of preimages is not fixed for all outputs, but rather can be
efficiently approximated. As in [8], the proof of Theorem A.1 can be easily extended to such functions.
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A commitment scheme is a two-stage protocol between a sender and a receiver. In the
first stage, called the commit stage, the sender commits to a private string σ . In the sec-
ond stage, called the reveal stage, the sender reveals σ and proves that it was the value
to which she committed in the first stage. We require two properties of commitment
schemes. The hiding property says that the receiver learns nothing about σ in the com-
mit stage. The binding property says that after the commit stage, the sender is bound to
a particular value of σ ; that is, she cannot successfully open the commitment into two
different values in the reveal stage. In a statistically hiding and computationally bind-
ing commitment scheme, the hiding holds information theoretically (i.e., even an all
powerful learns nothing about σ ), where the binding property only guaranteed to hold
against polynomial-time senders. A (known) regular one-way function is an efficiently
computable function that is hard to invert, and all its images have the same, efficiently
computable, number of preimages. For the formal definitions of these primitives, see
for example [8].

Proof of Theorem A.1. We use our new interactive hashing theorem to get a weakly
hiding bit commitment scheme (see Definition A.4), and the existence of a full-fledge
commitment scheme follows via standard amplification techniques (cf., [8]). The heart
of the construction is applying the new interactive hashing protocol to a random output
of the regular one-way function. This simplifies over the construction of [8], which uses
an additional hashing layer before applying the interactive hashing protocol.

Let f : {0,1}n �→ {0,1}n be a regular one-way function,12 let Imf (n) = {f (x) : x ∈
{0,1}n} and let s = s(n) = �log | Imf (n)|� − 5 (note that the regularity of f yields
that s is polynomial-time computable). Let H and G be efficient Boolean pairwise-
independent function families over strings of length n and let (SIH,RIH) = NOVY〈Hs〉.
We define the bit commitment protocol Com = (S,R) as follows:

Protocol A.2 Com = (S = (Sc,Sr ),R = (Rc,Rr )).

Commit stage:

Common input: 1n.
Sc’s input: b ∈ {0,1}.

1. Sc chooses uniformly at random x ∈ {0,1}n and sets y = f (x).
2. Sc and Rc interacts in a random execution of (SIH(y),RIH)(1n), with Sc and Rc

acting SIH and RIH, respectively.
Let (h, z) be the output of RIH in this execution.

3. Sc chooses uniformly at random g ∈ G and sends g, c = b ⊕ g(y) to R.
4. Sc locally outputs x and Rc outputs (h, z, g, c).

Reveal stage:

Common input: 1n, b ∈ {0,1} and (h, z, g, c).
Sr ’s input: x ∈ {0,1}n.

1. Sr sends x to Rr .
2. Rr accepts if h(f (x)) = z and g(f (x)) ⊕ b = c.

12 The assumption that f is length-preserving is without lost of generality, see [3,11].
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Lemma A.3 states that Protocol A.2 is computationally binding, where Lemma A.5
states is weakly hiding. Thus, the proof of Theorem A.1 follows by standard amplifica-
tion techniques (e.g., [8, Theorem 5.2]). �

Lemma A.3. Protocol A.2 is computationally binding.

Proof. Let W = {(x, f (x)) : x ∈ {0,1}n}. The regularity of f yields that it is hard to
satisfy W over a random element of Imf (n). Hence, the proof follows by the binding
of (SIH,RIH) as stated in Theorem 3.7, taking L = Imf (n). �

Definition A.4 (Weakly hiding commitment). A commitment scheme Com = (S =
(Sc,Sr ),R = (Rc,Rr )) is δ = δ(n)-hiding, if

SD
({

viewR∗
(
Sc(0),R∗)(1n

)}
n∈N

,
{
viewR∗

(
Sc(1),R∗)(1n

)}
n∈N

)≤ δ(n),

for any algorithm R∗, where viewR∗(Sc(b),R∗) denotes the view of R∗ in the commit
stage interacting with Sc(b).

Lemma A.5. Protocol A.2 is 3
4 -hiding.

Proof. Let R∗ be an adversary playing the role of Rc in Com and assume for the
ease of notation that R∗ never causes the sender to abort. For b ∈ {0,1}, let VR∗(b) =
(VIH,G,G(Y ) ⊕ b) denote R∗’s view in (Sc(b),R∗), where VIH is R∗’s view in the em-
bedded execution of (SIH,RIH), and G and Y are the values of g and y chosen by Sc in
the interaction. Note that VIH is independent of b. Let Bad = {v ∈ Supp(VIH) : H∞(Y |
v) < 3}. Claim 3.6 yields that

Pr[VIH ∈ Bad] ≤ 1

4
. (A.1)

The Leftover Hash Lemma [12, Lemma 4.8] yields the following for every v /∈ Bad and
b ∈ {0,1}:

�
(
VR∗(b), ṼR∗ | VIH = v

)= �
((

v,G,G(Y ) ⊕ b
)
, (v,G,U) | VIH = v

)≤ 1

4
(A.2)

where ṼR∗ is obtained from VR∗(b) be replacing the value of (G(y) ⊕ b) sent by the
sender with U—a uniformly chosen bit. We conclude that

�
(
VR∗(0),VR∗(1)

)

≤ �
(
VR∗(0),VR∗(1) | VIH /∈ Bad

)+ Pr[VIH ∈ Bad]
≤ �

(
VR∗(0), ṼR∗ | VIH /∈ Bad

)+ �
(
VR∗(1), ṼR∗ | VIH /∈ Bad

)+ Pr[VIH ∈ Bad]

≤ 1

4
+ 1

4
+ 1

4
= 3

4
. �
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