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Abstract

For a given n-vector q and a real square matrix M ∈ IRn×n, the
linear complementarity problem, denoted LCP (M, q), is that of finding
nonnegative vector z ∈ IRn such that zT (Mz + q) = 0 and Mz + q � 0.

In this paper we suppose that the matrix M must be a symmetric and
positive definite and the set

S = {z ∈ IRn / z > 0 and Mz + q > 0};

named interior points set of the LCP (M, q) must be nonempty.
The aim of this paper is to show that the LCP (M, q) is completely

equivalent to a convex quadratic programming problem (CQPP ) under
linear constraints. To solve the second problem, we propose an iterative
method of interior points which converge in polynomial time to the
exact solution; this convergence requires at most o(n0,5L) iterations,
where n is the number of the variables and L is the length of a binary
coding of the input; furthermore, the algorithm does not exceed o(n3,5L)
arithmetic operations until its convergence and in the end, we close our
paper with some numerical examples which illustrate our theoretical
results.

Keywords: Linear Complementarity Problem, Convex Quadratic Pro-

gramming with Equilibrium Constraints, Matrix symmetric and positive defi-

nite, Interior Point Algorithm
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1. Introduction
We consider the linear complementarity problem LCP (M, q) that is,

given a real square matrix M ∈ IRn×n and q an element of IRn, find

vectors z ∈ IRn such that

⎧⎨
⎩

< z,Mz + q >= 0

Mz + q � 0

z � 0

This problem has important applications in game theory, operational

research, and some other areas of engineering (see [3], [4], [5], [6], [7],

[9], [10], [13], [14], [15], [16] and [17]). For solving this problem, many

results exist, for instance Lemke[11] have developed an algorithm for

solving a linear complementarity problem which is based on pivot steps.

Mukherjee[12] gave an iterative method for finding a solution to a linear

and quasi-linear complementarity problem. Kojima[8] and Achache[1]

have showed that the linear complementarity problem is completely equiv-

alent to solving quadratic convex problem (QCP ); each of them gave a

different iterative method to solve the second problem.

Our notation in this paper is the usual one. In particular, IRn denotes

the space of real n−dimensional vectors,

IRn
+ := {x ∈ IRn : xi � 0, i = 1..n} is the nonnegative orthant and its

interior is IRn
++ := {x ∈ IRn : xi > 0, i = 1..n}.

With x ∈ IRn we define |x| = (|x1|, .., |xn|)T ∈ IRn.

We denote by I the identity matrix.

Let x, y ∈ IRn, xT y or < x, y > is the inner product of the x and y; ||x||
is the Euclidean norm.

For x ∈ IRn and k a nonnegative integer, x(k) refers to the vector obtained

after k iterations; for 1 � i � n, xi refers to the ith element of x, and

x
(k)
i refers to the ith element of the vector obtained after k iterations.

For A ∈ IRn×n and k a nonnegative integer, A(k) refers to the matrix

obtained after k iterations; for p a nonnegative integer, Ap,(k) refers to

the matrix at puissance p obtained after k iterations and A−p,(k) denotes

the inverse of the matrix Ap,(k).

Let x, y ∈ IRn, the expression x � y (respectively x < y) meaning that

xi � yi (respectively xi < yi) for each i = 1..n.
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Given a vector x in IRn, X = diag(x) is the n × n diagonal matrix with

Xii = xi for all i and Xij = 0 for all i �= j.

The transpose of a vector (respectively matrix) is denoted by super script

T , such as the transpose of the vector x (respectively the matrix A) is

given by xT (respectively AT ).

Remember that the spectrum σ(A) of the matrix A is the set of its

eigenvalues and its spectral radius ρ is given by ρ(A) := sup{|λ| such

that λ ∈ σ(A)}.
We recall that a matrix M is called symmetric and positive definite

matrix if and only if

xtMx > 0, ∀x �= 0.

and a matrix M is called symmetric and positive matrix if and only if

xtMx � 0, ∀x.

The paper is organized as follows. In the next section, we show that

solving linear complementarity problem associated with a matrix M and

a vector q is completely equivalent to finding the minimum of a convex

quadratic programming problem (CQPP ); for solving the second prob-

lem we propose to construct a sequence of vectors {z(k)}k=0,1,.. which

converges to a vector z∗ (the exact solution of linear complementarity

problem LCP ). In the third section, we show that the convergence of

this method requires o(
√

nL) number by iteration where L is the length

of a binary coding of the input data of the problem and in the end,

we close our paper with some numerical examples which illustrate our

theoretical results.

2. Equivalent reformulation of the problem
In this section, we show that solving a linear complementarity problem

(LCP ) is equivalent to finding the minimum of a convex quadratic pro-

gramming problem (CQPP ) under linear constraints.

Consider the linear complementarity problem as follows

Find z ∈ IRn such that: ⎧⎨
⎩

< z,Mz + q >= 0

Mz + q � 0

z � 0

(1)
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where M ∈ IRn×n and q ∈ IRn are given data.

and let’s consider

S = {z ∈ IRn / z > 0 and Mz + q > 0};

named interior points set of the LCP (M, q).

Theorem 1 : If M is symmetric positive matrix and the interior points

set of the linear complementarity problem

S := {z ∈ IRn/z > 0 and Mz + q > 0}

is nonempty then the problem LCP (M, q) has one and only one solution.

Proof. : For a proof of the above theorem we refer to [1].

Consider the minimization problem under linear constraints (CQPP ) as

follows ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min f(z) :=< z, Mz + q >

Subject to:

Mz + q � 0

z � 0

(2)

We note that if z∗ is a solution of the linear complementarity problem

LCP (M, q) then zero is the global minimum of the problem(2) (see [18]).

Inversely, if z∗ is the minimum of the problem(2) then we have two

situations:

• If f(z∗) = 0, then z∗ is a solution of the LCP (M, q).

• Otherwise (ie f(z∗) > 0), then the linear complementarity problem

LCP (M, q) admits no solution.

That is to say the problem(1) and the problem(2) are equivalent.

The Lagrange function associated with the problem(2) is given by

L(z, λ1, λ2) := f(z)− < λ1, Mz + q > − < λ2, z >

where λ1 and λ2 are the Lagrange multipliers associated with the prob-

lem(2).
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The KKT conditions applied to the problem(2) imply that if z is a sta-

tionary point, then there exists λ1 ∈ IRn and λ2 ∈ IRn such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Mz + q − Mλ1 − λ2 = 0

λt
1(Mz + q) = 0

λt
2z = 0

Mz + q � 0

z � 0

λ1 � 0

λ2 � 0.

(3)

Let’s consider

T := {(z, λ1, λ2) / 2Mz + q − Mλ1 − λ2 = 0 ; z, Mz + q, λ1, λ2 � 0}.

In this paper we propose to construct a sequence of vectors

{(z(k), λ
(k)
1 , λ

(k)
2 )}k=0... ∈ T

such that

lim
k→+∞

(< λ
(k)
1 , Mz(k) + q > + < λ

(k)
2 , z(k) >) = 0.

To achieve this objective we consider the iterative method which starts

from an arbitrary point (z(0), λ
(0)
1 , λ

(0)
2 ) ∈ T and generates successively

points

z(k+1) := z(k) + d(k)

where the vectors d(k) are the directions chosen to generate the vectors

z(k+1), they are defined by the Newton directions associated with the

following penalized problem (see [2])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min fμ(z)

Subjects to:

Mz + q > 0

z > 0

where

fμ(z) :=< z,Mz > + < q, z > −μ
n∑

i=1

log(zi) − μ
n∑

i=1

log(wi)
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and

w = Mz + q.

The Newton direction at z(k) is the optimal solution of the following

quadratic problem

min gμ,z(k)(d(k)) (4)

where

gμ(z
(k)) :=

1

2
< d(k),�2fμk

(z(k))d(k) > + < �fμk
(z(k)), d(k) > .

Now we show that

Theorem 2 : The problem(4) admits one and only one solution; this

solution is given by

d(k) = −H−1,(k) � fμk
(z(k))

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(k) := 2M + μk(MW−2,(k)M + Z−2,(k))

Z := diag(z)

W := diag(w)

w = Mz + q.

Proof. : The Hessian of the penalty function fμ at z(k) noted by H(k)

is given by

H(k) := 2M + μk(MW−2,(k)M + Z−2,(k)).

Since the matrix M is symmetric and positive definite, then the matrix

H(k) is symmetric definite positive.

Therefore, the problem(4) admits one and only one solution.

This solution is given by

H(k)d(k) + �fμk
(z(k)) = 0

this implies

d(k) = −H−1,(k) � fμk
(z(k)).
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After calculating the direction d(k), we can write

⎧⎪⎨
⎪⎩

z(k+1) := z(k) + d(k)

λ
(k+1)
1 := μkW

−1,(k)(e − W−1,(k)Md(k))

λ
(k+1)
2 := μkZ

−1,(k)(e − Z−1,(k)d(k))

Now we give the following algorithm for solving our problem

Algorithm:

(Initialization):

k = 0

μ0 > 0: Parameter penalty.

ε > 0 : Tolerance wanted.

(Calculation of the vector z(k+1), λ
(k+1)
1 , λ

(k+1)
2 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(k) = −H−1,(k) � fμk
(z(k))

z(k+1) := z(k) + d(k)

w(k+1) := Mz(k+1) + q

λ
(k+1)
1 := μkW

−1,(k)(e − W−1,(k)Md(k))

λ
(k+1)
2 := μkZ

−1,(k)(e − Z−1,(k)d(k))

μk+1 := 2μk
δ2+

√
n

δ+2
√

n

(Stopping criterion):

if < λ
(k+1)
1 , w(k+1) > + < λ

(k+1)
2 , z(k+1) >< ε then STOP.

otherwise:

k := k + 1.

GO TO the previous step.

3. Convergence

In this section, in the one hand, we show that all points generated by

this algorithm are in the set T and (< λ
(k)
1 , w(k) > + < λ

(k)
2 , z(k) >)

converges to zero when k → +∞; on the other hand, we prove that

our algorithm has o(
√

nL) iteration complexity; more precisely we will

show that the algorithm does not exeed O(n3.5L) arithmetic operations

until its convergence. To so do, we suppose that there exist z(0) > 0 and
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0 < δ < 1/2 such that: ||Z−1,(0)d(0)|| � δ and ||W−1,(0)Md(0)|| � δ and

we prove that if k is positive integer then we have

||Z−1,(k)d(k)|| � δ

and

||W−1,(k)Md(k)|| � δ

to achieve this goal, we will need the following four lemmas

Lemma 3 : Let k be a positive integer, if

||Z−1,(k)d(k)|| � δ

then we have

||Z(k+1)Z−1,(k) − I|| � δ.

where I is the identity matrix.

Proof. : For each i = 1, .., n we have

((Z(k+1)Z−1,(k) − I)e)i =
z

(k+1)
i

z
(k)
i

− 1

=
d

(k)
i

z
(k)
i

= (Z−1,(k)d(k))i.

Lemma 4 : Let k be a positive integer, if

||W−1,(k)Md(k)|| � δ

then we have

||W (k+1)W−1,(k) − I|| � δ.
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Proof. : For each i = 1, .., n we have

((W (k+1)W−1,(k) − I)e)i =
w

(k+1)
i

w
(k)
i

− 1 (5)

=

∑n
j=1 mijd

(k)
i

w
(k)
i

= (W−1,(k)Md(k))i.

Lemma 5 : Let k be a positive integer, if

||Z−1,(k)d(k)|| � δ

then we have

||Z(k+1)Z−2,(k)d(k) +
μk+1

μk
e − Z(k+1)Z−1,(k)e|| � δ

δ2 +
√

n

δ + 2
√

n
.

where

μk+1 := 2μk
δ2 +

√
n

δ + 2
√

n
(6)

Proof. To show that we use the definition

μk+1

μk

e := e − δ − δ2

δ + 2
√

n
e; ((1))

and the relation

Z(k+1) = Z(k) + D(k)

where Z(k), D(k) are respectively the diagonal matrix of the vector z(k)

and d(k).

By multiplying the last relation by the matrix Z−1,(k) we get

Z(k+1)Z−1,(k) = I + D(k)Z−1,(k)

= I + Z−1,(k)D(k)

this implies

(Z(k+1)Z−1,(k) − I)e = Z−1,(k)D(k)e ((2))

= Z−1,(k)d(k)
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if we note that

Δ1 := ||Z(k+1)Z−2,(k)d(k) +
μk+1

μk
e − Z(k+1)Z−1,(k)e||

then we have

Δ1 = ||(Z(k+1)Z−1,(k) − I)Z−1,(k)d(k) − δ − 2δ2

δ + 2
√

n
e||

� ||Z(k+1)Z−1,(k) − I||.||Z−1,(k)d(k)|| + √
n

δ − 2δ2

δ + 2
√

n

� δ. δ +
√

n
δ − 2δ2

δ + 2
√

n

= δ
δ2 +

√
n

δ + 2
√

n
.

Lemma 6 : Let k be a positive integer, if

||W−1,(k)Md(k)|| � δ

then we have

||W (k+1)W−2,(k)Md(k) +
μk+1

μk
e − W (k+1)W−1,(k)e|| � δ

δ2 +
√

n

δ + 2
√

n
.

Proof. : In the one hand, if we use (5) we can write

(I − W (k+1)W−1,(k))e = −W−1,(k)Md(k)

and in the other hand, if we note that

Δ2 := ||W (k+1)W−2,(k)Md(k) +
μk+1

μk
e − W (k+1)W−1,(k)e||
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then we get

Δ2 = ||W (k+1)W−2,(k)Md(k) + e − W (k+1)W−1,(k)e − δ − 2δ2

δ + 2
√

n
e||

= ||W (k+1)W−2,(k)Md(k) + (I − W (k+1)W−1,(k))e − δ − 2δ2

δ + 2
√

n
e||

� ||W (k+1)W−2,(k)Md(k) − W−1,(k)Md(k) − δ − 2δ2

δ + 2
√

n
e||

� ||(W (k+1)W−1,(k) − I)W−1,(k)Md(k) − δ − 2δ2

δ + 2
√

n
e||

� ||W (k+1)W−1,(k) − I||.||W−1,(k)Md(k)|| + √
n

δ − 2δ2

δ + 2
√

n
e||

� δ. δ +
√

n
δ − 2δ2

δ + 2
√

n

= δ
δ2 +

√
n

δ + 2
√

n
.

Now we show that

Theorem 7 : If we suppose that{ ||Z−1,(k)d(k)|| � δ

||W−1,(k)Md(k)|| � δ

then we have { ||Z−1,(k+1)d(k+1)|| � δ

||W−1,(k+1)Md(k+1)|| � δ

Proof. : Since

H(k)d(k) + �fμk
(z(k)) = 0

we have {
H(k)d(k) + �fμk

(z(k)) = 0

H(k+1)d(k+1) + �fμk+1
(z(k+1)) = 0

By multiplying the two equations by d(k+1) we get⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< d(k+1), (2M + μk(MW−2,(k)M + Z−2,(k)))d(k) > +

< d(k+1), 2Mz(k) + q − μk(MW−1,(k) + Z−1,(k))e >= 0

< d(k+1), (2M + μk+1(MW−2,(k+1)M + Z−2,(k+1)))d(k+1) > +

< d(k+1), 2Mz(k+1) + q − μk+1(MW−1,(k+1) + Z−1,(k+1))e >= 0



3300 Y. Elfoutayeni and M. Khaladi

if we note

Δ3 := μk+1(||W−1,(k+1)Md(k+1)||2 + ||Z−1,(k+1)d(k+1)||2)

then we have

Δ3 � μk+1 < d(k+1), (MW−1,(k+1)+Z−1,(k+1))e > − < d(k+1), 2Mz(k+1)+q >

= μk+1 < W−1,(k+1)Md(k+1), e > +μk+1 < Z−1,(k+1)d(k+1), e >

− (μk < d(k+1), (MW−1,(k) + Z−1,(k))e >

− μk < d(k+1), (MW−2,(k)M + Z−2,(k))d(k) >)

= μk < d(k+1),
μk+1

μk
MW−1,(k+1)e − MW−1,(k)e + MW−2,(k)Md(k) >

+ μk < d(k+1),
μk+1

μk

Z−1,(k+1)e − Z−1,(k)e + Z−2,(k)d(k) >

= μk < d(k+1), MW−1,(k+1)(W (k+1)W−2,(k)Md(k)+
μk+1

μk
e−W (k+1)W−1,(k)e >

+μk < d(k+1), Z−1,(k+1)(Z(k+1)Z−2,(k)d(k)+
μk+1

μk
e−Z(k+1)Z−1,(k)e >

� μkδ
δ2 +

√
n

δ2 + 2
√

n
(||W−1,(k+1)Md(k+1)||+||Z−1,(k+1)d(k+1)||)

so

μk+1(||W−1,(k+1)Md(k+1)|| + ||Z−1,(k+1)d(k+1)||) � 2μkδ
δ2 +

√
n

δ2 + 2
√

n

finally

||W−1,(k+1)Md(k+1)|| + ||Z−1,(k+1)d(k+1)|| � δ

hence the result.

Now we show that all points generated by the algorithm (z(k), λ
(k)
1 , λ

(k)
2 )

remain in the set T .

For that, let’s assume that:

(z(k), λ
(k)
1 , λ

(k)
2 ) ∈ T

then we have
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•

z(k+1) = z(k) + d(k)

= Z(k)(e + Z−1,(k)d(k))

> 0.

•

w(k+1) = Mz(k+1) + q

= w(k) + Md(k)

= W (k)(e + W−1,(k)Md(k))

> 0.

•

λ
(k+1)
1 := μkW

−1,(k)(e − W−1,(k)Md(k))

> 0.

•

λ
(k+1)
2 := μkZ

−1,(k)(e − Z−1,(k)d(k))

> 0.

•

λ
(k+1)
2 = μkZ

−1,(k)(e − Z−1,(k)d(k))

= μkZ
−1,(k)e − μkZ

−2,(k)d(k)

= μkZ
−1,(k)e − (H (k) − 2M − μkMW−2,(k)M)d(k)

= μkZ
−1,(k)e − H(k)d(k) + (2Mz(k+1) + q) − (2Mz(k) + q)

+ μkMW−2,(k)Md(k)

= μkZ
−1,(k)e + (2Mz(k) + q − μkMW−1,(k)e − μkZ

−1,(k)e)

+ (2Mz(k+1) + q) − (2Mz(k) + q) + μkMW−2,(k)Md(k)

= −μkMW−1,(k)e + (2Mz(k+1) + q) + μkMW−2,(k)Md(k)

= (2Mz(k+1) + q) − μkMW−1,(k)(e − W−1,(k)Md(k))

= (2Mz(k+1) + q) − Mλ
(k+1)
1 .

Now we give the following proposition
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Proposition 8 : For any positive integer k, we have

< w(k), λ
(k)
1 > + < z(k), λ

(k)
2 >� 2μk−1(δ +

√
n)2.

Proof. : From the above we can write

< w(k+1), λ
(k+1)
1 > + < z(k+1), λ

(k+1)
2 >

=< W (k)(e + W−1,(k)Md(k)), μkW
−1,(k)(e − W−1,(k)Md(k)) > +

< Z(k)(e + Z−1,(k)d(k)), μkZ
−1,(k)(e − Z−1,(k)d(k)) >

= μk(< e + W−1,(k)Md(k), e − W−1,(k)Md(k) > +

< e + Z−1,(k)d(k), e − Z−1,(k)d(k) >)

� 2μk(δ+
√

n)2.

Hence the quantity (< w(k), λ
(k)
1 > + < z(k), λ

(k)
2 >) converges to zero.

Now we prove that our algorithm has o(
√

nL) iteration complexity; more

precisely we will show that the algorithm does not exceed o(n3.5L) arith-

metic operations until its convergence, and in the end we will establish

the total number of iterations performed by the algorithm so that its

convergence is reached.

Proposition 9 : The total number of iterations performed by the algo-

rithm is less than or equal to

k∗ =
δ + 2

√
n

δ − δ2 +
√

n
ln

2(δ +
√

n)2μ0

ε

where ε denotes the tolerance of the problem and μ0 is the parameter of

the initial penalty.

Proof. : The algorithm ends when

2(δ +
√

n)2μk � ε

thus, it is enough to show that k∗ satisfies this inequality.
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From the definition of k∗ we can write

ln(ε) = −δ − δ2 +
√

n

δ + 2
√

n
k∗ + ln[2(δ +

√
n)2μ0]

� k∗ ln(
δ2 +

√
n

δ + 2
√

n
) + ln[2(δ +

√
n)2μ0]

= ln(
δ2 +

√
n

δ + 2
√

n
)k∗

+ ln[2(δ +
√

n)2μ0]

= ln[2(δ +
√

n)2μ0(
δ2 +

√
n

δ + 2
√

n
)k∗

]

= ln[2(δ +
√

n)2μk∗]

this implies

2(δ +
√

n)2μk∗ � ε

If we denote by L the length of a binary coding of the input data of the

problem LCP (M, q), then we have

Corollary 10 : If Log2(μ0) = o(L) and Log2(ε) = −o(L) then the algo-

rithm stops in at most o(
√

nL) iterations with o(n3.5L) arithmetic oper-

ations.

Proof. : From this assumption we have

⎧⎨
⎩

Log2(μ0) = o(L)

and

Log2(ε) = −o(L)

then

k∗ = o(
√

nL)

But to solve a linear system we need o(n3) arithmetic operations, then

the algorithm converges in at most o(n3.5L) arithmetic operations.

1. Numerical example
In this part, we consider the following example to test our method. Con-

sider the following linear complementarity problem
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Example 11 Find vector z in IRn satisfying zT (Mz+q) = 0, Mz+q �
0, z � 0,

where M =

⎡
⎢⎢⎢⎣

100 −2 −3 −4

−2 50 −6 −7

−3 −6 100 −11

−4 −7 −11 200

⎤
⎥⎥⎥⎦ and q =

⎡
⎢⎢⎢⎣

1

−2

3

−4

⎤
⎥⎥⎥⎦.

The exact solution is z∗ = (0, 4
93

, 0, 2
93

)T .

The solution of this problem with six significant digits is presented in

following Table.

Iteration x1 x2 x3 x4

k=01 1,217700 4,030283 10,748913 6,834140

k=05 1,094700 3,627983 9,659913 6,147865

k=10 0,971700 3,225683 8,570913 5,461590

k=15 0,848700 2,823383 7,481913 4,775315

k=20 0,725700 2,421083 6,392913 4,089040

k=25 0,602700 2,018783 5,303913 3,402765

k=30 0,479700 1,616483 4,214913 2,716490

k=35 0,356700 1,214183 3,125913 2,030215

k=40 0,233700 0,811883 2,036913 1,343940

k=45 0,110700 0,409583 0,947913 0,657665

k=50 0,073800 0,288893 0,621213 0,451783

k=52 0,036900 0,168203 0,294513 0,245900

k=53 0,012300 0,096750 0,012340 0,145670

k=54 0,000000 0,043010 0,000000 0,021505

Conclusion:

In this paper we have showed that, on the one hand, linear complementar-

ity problem can be written as a quadratic convex programming problem; on

the other, we have built a method to solve it; the convergence of this method

requires o(
√

nL) number of iterations where L is the length of a binary coding

of the input data of the problem LCP (M, q).
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