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A coupled-chaos system consisting of two subsystems is numerically studied slightly below the transi-
tion point separating the uniform chaos from a non-uniform state. It is shown that the system exhibits two
types of intermittency, depending on the statistical property of the uniform chaos. One is the tangential
type and the other is a new one having a highly intermittent characteristics with abrupt insertion of

temporally localized oscillations.

In previous papers”~® we have developed the

stability theory of synchronized motion in
coupled-oscillator system. In the present note we
report some further results concerning the cou-
pled-chaos system near the instability point of the
uniform chaos. _

We consider the two-dimensional map?™*

Znr1=f(xn) +E{f (yn) — F(x2)}, (1a)
Y1 =f () +E{f (xn) — Flyn) ) (1b)

with £=(1~e"%)/ 2, where « is a certain positive
constant. x» and y» are the state variables in the
first and the. second subsystems at the discrete
time #, respectively.
are independent. So « is the quantity measuring
the coupling strength. Hereafter we assume that
the uncoupled system x,+1=f(x») is chaotic and
has the Lyapunov exponent A(>0).

The system (1) has a uniform solution x,=v»
=x,° which obeys z3:1=7(x,.% and is called
Uuus. The difference |x.—ya| evolves in time
under two conflicting effects, the trajectory in-
stability and the coupling effect. The former
specified by the positive A accelerates the
difference and the latter shrinks the difference at
the rate of @. Therefore the quantity '=A1—¢ is
relevant to the stability of @uwir against
infinitesimal perturbations.”’~® If 1'<0, the cou-
pling effect overcomes the trajectory instability
and @unr is stable. For A" >0, @unr loses stability
and the system changes into a non-uniform state.
Thus as ¢ is decreased from a value large enough,
we meet the transition'? at

*) Recently a similar system was studied by
Pikovsky.?

If we put =0, x» and v,

e=A=a.. (2)

How can be the non-uniform state statistically
characterized? In order to study this problem
we tried to numerically solve (1) for @ slightly
below a..

By making use of the logistic parabolla f(x)
=ax(l—x) for two values of g, a=4, (1=In2
=0.693147--1) and 3.8, (1=0.4323---), numerical
calculations were carried out in two cases, case A
(a=4 and @=0.69), and case B (¢=3.8 and

B
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Fig. 1. Temporal evolution of v.(=(x.—v.)/2) for
case A (¢=4 and @=0.69). The initial condition
was chosen as 1o=1/+v2 and yo=x,+10"". After
initial 7X10° steps, 5000 steps are drawn.
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2=0.43). Wy is therefore unstable for both
cases because A'>0. In real calculations we
solved

Tae1=af.(1— T») — ae®*", (3a)
Zne1=2zx+1Inla(1—2%.)|—a, (3b)

instead of (1), where T.=(xn.+v.)/2 and z»
=In(lx.—yxl/2). All calculations except on
power spectra were carried out in the quadruple
precision. Power spectra were calculated in the
double precision.

Case A: The temporal evolution of v, =(%n—y»)
/ 2 after a sufficiently large number of intial steps
is drawn in Fig. 1. One easily observes that the
amplitude 7.=v.| has two typical behaviors: (i)
the exponentially growing region approximately
having the form

ey, (B>0) (4)

with a constant 8 and (ii) the sudden diminish-
ment of 7,. When 7,20, (1) can be linearized in
7n 88 Fai=f(E)le %rn, (F(x)=df(x)/dx).
Solving this yields 7.=>~e*"r, if we put II17:4
| (£;)|ce*™. This suggests that S=a.—a=A
holds. In fact the value A'=In2—0.69=0.003--
coincides with the growth rate 8 estimated from
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Fig. 2. The steady probability density P.(r) for
ra(=|va)) for case A. It was calculated with 2
X10% step data after intial 2X10° steps. The
intial condition is the same as in Fig. 1. P.(7) is
normalized in the region 0= =L, where L=200
X1077(-) and 200x107%(4+). By assuming (5),

- the least mean square method gives 7220.86 and ¢
~0.85 for L=2%10"% and 7=0.81 and ¢==0.80
for L=2x%10"°%
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Fig. 1. As 7. grows, the non-linearity with
respect to 7» comes to be crucial and makes 7»
suddenly decrease. Such behavior is similar to a
sudden reversal known in the tangent bifurca-
tion.” :

We have calculated the probability density
P.(7) for 7»(Fig. 2), where P.(7) is normalized in
the region 0= 7=<L for a given L. To get P:(7)
numerically, the 7-space (0=<r=<L) was divided
into 200 subspaces, and the probability density
was calculated by counting the number of phase
points being in each space. For a sufficiently
small L, P (») seems to obey the power law

Pr(ry=cr Y (#/L)"ocp™1*7, (5)

where 72=0.8~0.9=c.
Since, except the time regions corresponding to
sudden diminishment of 7., #» can be well de-
scribed by a single time scale 1/8(=1/1"), we can
estimate the double time correlation function Cx
=<{raro>—<7od? as Cn=Coe™*™.® This leads to
the power spectrum
sinh(A")

S(w)=C cosh(A") —cos(w) ~

(6)

As is shown in Fig. 3, the theoretical result (6) is
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Fig. 3. The comparison of the theoretical power
spectrum(6)(solid line) with the numerical results
() (case A). In (6), C, has been used as the
value numerically obtained (=~9.03X1077). The
power spectrum was calculated by averaging 200
power spectra each of which was obtained by
using FFT for the sampling length 2'* which is
much larger than the characteristic time 1/A’
=320, (dw=2x/2").
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Fig. 4. Temporal evolution of v. for case B (¢=3.8
and @=0.43). After initial 7X10° steps, 5000
steps are drawn. The initial condition is the
same as in Fig. 1. v, exhibits a highly inter-
mittent behavior.

in fairly good agreement with the numerical data.
Case B: The temporal evolution of v, after a
sufficiently large number of initial steps is plotted
in Fig. 4. vx exhibits a highly intermittent char-
acteristics and there abruptly insert temporally
localized oscillations.” We call them bursts. One
typical burst consists of two processes, the grow-
ing and the decaying of #.. The present type of
intermittency is extremely different from that in
case A, but is similar to the characteristics ob-
served by the high-pass filtered signal of velocity
fluctuations in a turbulent flow.”

The origin of such highly intermittent behavior
may be interpreted as follows. When 7, is
sufficiently small, ond has »,.=e"7,, where &,
=2 {lnlf'(£,)|—a}. In contrast to case A
where {, is approximately written as {,=A"n
+o(n) for »n of order 1/X’, irrespective of the
initial condition, {. in the present case strongly
fluctuates and cannot be written as ~A"n+ 0(#).9
If {» starts to be positive, 7. exponentially grows
and results in the ignition of a burst. In the other
situation (£, <0) 7, shrinks, leading to the extinc-
tion of the burst.
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Fig. 5. The probability density P.(#) for », in case
B. Pu(7) was calculated with 2X10° step data
after initial 2X10° steps. The initial condition is
the same as in Fig. 1. P.(#) is normalized in the
region 0=7=L, where L=200x10""(-) and 200
x107%(+). It seems that P. () obeys an in-
verse power law except an extremely small 7.

The probability density P.(») numerically
obtained is shown in Fig 5. One observes that it
has the inverse power law behavior

Pr(r)ocy™+? (520) (7)

for »/L>k (=1/200). It is hard to detect the
deviation of the exponent from unity. One easily
sees that P;(7») has a remarkable deviation from

the power law (7) for an extremely small »(#/L .
<k). This deviation may be understood as

follows. Since (7) is not integrable at =0, for
any tiny subspace unit /» (=L/N, N being the
number of subspaces) the probability density inte-
grated from 0 to /. diverges. In real calcula-
tions, however, it remains finite, but is outstand-
ingly large. o

‘As was discussed above, the temporal evolution
of 7 cannot be described by a single time scale
1/A" because ¢» strongly fluctuates in the course of
time. In Fig. 6, (6) is compared with the numer-
ical result to recognize the inapplicability of the
single time approximation for the double time
correlation function. It seems that the numerical
power spectrum is rather close to a @' form.

We have found two different intermittency
characteristics slightly below the transition point
separating the uniform chaos from the non-
uniform one. It seems that in case A the tempo-
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Fig. 6. The power spectrum for case B. The power
spectrum was calculated by averaging 200 power
spectra each of which was obtained by using FFT
" for the sampling length 2%, (dwo=2x/2'*). One
easily sees that the single time approximation (6)
(solid line) is far from the numerical data, where
Co has been used the numerical result (=~9.82
X107°). The numerical power spectrum seems
to be rather close to a ™ form.

ral evolution of #» can be well described by the
single time 1/A’, while in case B there appear
many time scales. The difference of the inter-
mittency characteristics stems from the difference
of the statistical property of the uniform chaos
13+1=axs"(1—x.°), depending on the value of &.®
Namely in contrast to the fact that the trajectory
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instability of x5+1=4x,°(1—x.°) can be described
by only one exponent A(=1n2), we need an infinite
number of exponents to characterize the. tra-
jectory instability of zp+1=3.8x2,"(1—x."). The
appearance of such an infinite number of
exponents is due to the non-uniformity of the local
divergence rate In|f (x,%|.® Furthermore as
was already shown, such difference is also seen in
the asymptotic forms of the probability density
P.(#). Further analyses and more details will be
given in the forthcoming paper.®

Finally we note that another type of inter-
mittency has been studied by Kaneko® in a cou-
pled logistic lattice with a similar coupling form
as in Eq. (1) but for different parameter values.
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