
A new Internet of Things architecture
for real‑time prediction of various diseases using
machine learning on big data environment

Abderrahmane Ed-daoudy* and Khalil Maalmi

Introduction

Over the past two decades our era can be described as big data era where digital data

is becoming increasingly important in many domains like healthcare, science, technol-

ogy and society. A large amount of data has been captured and generated from multi-

ple areas, multiple sources such as streaming machines, high throughput instruments,

Abstract

A number of technologies enabled by Internet of Thing (IoT) have been used for the

prevention of various chronic diseases, continuous and real-time tracking system is a

particularly important one. Wearable medical devices with sensor, health cloud and

mobile applications have continuously generating a huge amount of data which is

often called as streaming big data. Due to the higher speed of the data generation,

it is difficult to collect, process and analyze such massive data in real-time in order to

perform real-time actions in case of emergencies and extracting hidden value. using

traditional methods which are limited and time-consuming. Therefore, there is a signifi-

cant need to real-time big data stream processing to ensure an effective and scalable

solution. In order to overcome this issue, this work proposes a new architecture for

real-time health status prediction and analytics system using big data technologies.

The system focus on applying distributed machine learning model on streaming health

data events ingested to Spark streaming through Kafka topics. Firstly, we transform

the standard decision tree (DT) (C4.5) algorithm into a parallel, distributed, scalable

and fast DT using Spark instead of Hadoop MapReduce which becomes limited for

real-time computing. Secondly, this model is applied to streaming data coming from

distributed sources of various diseases to predict health status. Based on several input

attributes, the system predicts health status, send an alert message to care provid-

ers and store the details in a distributed database to perform health data analytics

and stream reporting. We measure the performance of Spark DT against traditional

machine learning tools including Weka. Finally, performance evaluation parameters

such as throughput and execution time are calculated to show the effectiveness of

the proposed architecture. The experimental results show that the proposed system is

able to effectively process and predict real-time and massive amount of medical data

enabled by IoT from distributed and various diseases.

Keywords: Healthcare, Stream processing, Big data, Apache Spark, Distributed

machine learning, Internet of Things

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Ed‑daoudy and Maalmi J Big Data (2019) 6:104

https://doi.org/10.1186/s40537‑019‑0271‑7

*Correspondence:

a.eddaoudy@gmail.com

LTTI Laboratory, Higher

School of Technology, Sidi

Mohamed Ben Abdellah

University, Fez, Morocco

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0271-7&domain=pdf

Page 2 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

sensor networks, mobile application and from every single field especially in healthcare,

this high data volume represents big data [1]. Storing, processing, visualizing and knowl-

edge extraction through this voluminous and varied data types has become a challenge

using inadequate state of-the-art technologies tools. One of the most important tech-

nological challenges of big data analytics is exploring ways to effectively obtain valua-

ble information for different types of users. Currently, the various forms of healthcare

data sources are being collected in both clinical and non-clinical environments, where

the digital copy of a patient’s medical history are the most important data in healthcare

analytics.

Therefore, designing a distributed data system to deal with big data faces three main

challenges: First, due to the heterogeneous and huge volume of data, it is difficult to col-

lect data from distributed locations. Second, storage is the main problem for heteroge-

neous and massive datasets. Big data system needs to store while providing performance

guarantee. Last challenge is related to big data analytics, more precisely to mining mas-

sive datasets in real-time or near real-time that include modeling, visualization, pre-

diction, and optimization [2]. These challenges require new processing paradigm as

the current data management systems are not efficient in dealing with heterogeneous

nature of data or the real-time. However, traditional relational database management

systems (RDBMS) such as MySQL are mainly employed for management of structured

data. These traditional systems do not provide any support for unstructured or semi-

structured data. From a scalability perspective, when the data size grows, there are many

standard RDBMS failures in scaling for parallel hardware management and fault toler-

ance, which is not suitable for managing growing data. To deal with the problems asso-

ciated with massive and heterogeneous data storage, many research works have been

proposed by the research community, such as NoSQL database management systems [3]

which are useful when working with a huge quantity of data when the data’s nature does

not require a relational model [4].

MapReduce [5] is a parallel processing technique to process massive data distributed

on a commodity cluster; it consists of the Map and Reduce operations. One of the major

limitation of MapReduce is its inefficiency in running iterative algorithms. MapReduce

is not designed for iterative processing. Hadoop (High-availability distributed object-ori-

ented platform) is a batch processing system used for distributed storage and processing

of big data using the MapReduce programming model. It offers a distributed storage sys-

tem via its Hadoop Distributed File System (HDFS), it also highly fault tolerant. Hadoop

supports batch processing only, it is not suitable for real-time stream processing and in-

memory computation and it is not always easy to implement the MapReduce paradigm

for all problems. Depending on the volume of the data being processed, the output can

be delayed significantly. In contrast, stream computing involves continual input and out-

come of data and it is emphasizes on the velocity of data. Big data streaming computing

(BDSC) provides high throughput, distributed messages, real-time computing and low-

latency processing. With it’s massively parallel processing architectures, BDSC is a good

choice to gain useful knowledge from big data which is the key requirement of big data

analytics in healthcare.

The rapid expansion of large data analyzes has begun to play a pivotal role in the devel-

opment of healthcare practices and research. It has provided tools for the collection,

Page 3 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

management, analysis and absorption of large amounts of disparate, structured and

unstructured data produced by existing healthcare systems [6]. Nowadays, BDSC plays

an important role in big data analytics to get the hidden value of big data in healthcare

in real-time. However due the healthcare distributed data sources (the data are com-

ing from the different sources), such as relational databases, Hadoop, search system and

other analytics system. Applying machine learning on this big data stream is challeng-

ing as the traditional machine learning systems are not suitable to handle such massive

volume or varied velocity. Other problem is related to the analytical data processing.

Performing richer analytical data processing involves efficient data integration between

systems. Most of the state of the art works involve machine learning, but in case of real-

time machine learning applied to streaming big data is not handled. On the other hand

most of the healthcare analytics solution mainly focused on Hadoop which is a batch

oriented computing. Recently, the number of elderly and citizens suffering from chronic

diseases is rising rapidly, disadvantages of conventional health services are becoming

more and more important. Moreover, the use of medical IoT is increasing for continuous

monitoring in order to perform real-time actions in case of emergencies especially for

heart disease. Therefore, the millions of sensors generate massive volume of data. Pro-

cessing these data and performing real-time actions in critical situations is a challenging

task.

Based on the challenges facing the healthcare system we have proposed and developed

a solution in healthcare with a real-time health status prediction use case. This solution

based on the Kafka data streaming, Spark streaming, Spark MLlib, NoSQL Cassandra,

and Apache Zeppelin. Multiple streams of messages that are generated from Kafka’s pro-

ducers are processed at Spark streaming with machine learning, then are stored in a dis-

tributed storage NoSQL for visualization and analytics. Efficient processing of data in

healthcare increases the quality of patient monitoring.

The rest of this paper is illustrated over a few sections: In “Background”, we present

a brief introduction to big data challengers in healthcare with related work followed

by detailed description of the proposed system in “Methods” section. Section “Experi-

ments” presents the implementation process, while section “Results and discussion”

presents results and discussion of proposed model. Finally, in section “Conclusion” we

conclude the paper and present future work.

Background

Big data challenges in healthcare

The healthcare industry today generates large amount of data that can be described with

the 5V’s big data characteristics mainly Volume, Variety, Velocity, Veracity and Value [7].

The volume refers to the healthcare data to be collected and analyzed are considerable

and constantly increasing, variety make reference to the healthcare data collected from

multiple sources. The healthcare data and domain knowledge in health field should be

up to date namely velocity. The veracity refers to the reliability of the healthcare data.

Finally, valuable information could be found by carefully analyzing the massive data in

healthcare. Healthcare data comes from distributed sources such as, electronic medical

records, clinical images, diagnosis data and health claim data, streaming system, sensors

attached to the patient’s bedside to continually track patient vitals. They produce huge

Page 4 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

chunks of data where the traditional data processing system are inadequate to deal with

them effectively [8]. The big data challenges can be summarized in Fig. 1 [9].

In this paper we focused on the first five major big data challenges such as data inte-

gration, data processing, data mining techniques, data storage and data visualization.

Related work

Nowadays, big data analytics especially healthcare analytics has become an important

issue for a large number of research areas such as data mining, machine learning with

the huge increasingly healthcare data as well as the potential information inside. The

evolution of science and technology in healthcare has made a significant breakthrough

in data collection. In healthcare sector, data are collected by three main types of dig-

ital data such as clinical records, health research records and organization operations

records [10] provides a brief overview of healthcare data sources.

The extraction of knowledge from these distributed, large and various amount of data

has become a challenging task using traditional techniques of data mining which is the

process of extracting hidden interesting patterns from massive database. Techniques of

data mining help to process the data and turn them into useful information. Many pre-

diction and recommendation systems have been studied in healthcare. In [11] an experi-

ment was performed for the prediction of heart attacks and comparison to find the best

method of prediction. A breast cancer classification is performed by using genetically

optimized neural network model [12]. Other data mining and information retrieval

techniques have been proposed in [13, 14].

Healthcare analytic has been studied in many systems such as epidemic prediction

and prevention, health recommendation system, medical decision making in order

to improve quality of care, taking, reducing costs, and increasing efficiency. In [15] a

cloud based K-means clustering running as a MapReduce job has been proposed which

use healthcare data on cloud for clustering. A web enabled distributed electronic and

Fig. 1 Big data challenges

Page 5 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

personal health record management framework is proposed using Hadoop and HBase

[16].

In [17], predicting diabetes mellitus and type of treatment to be adopted is performed

by using the predictive analysis algorithm and Hadoop MapReduce environment. A

Hadoop based intelligent care system is proposed in [18] that illustrates Internet of

Things (IoT) based big data contextual sharing across all devices in a health system.

The proposed system adopts a network architecture with enhanced processing capa-

bilities for collecting data generated by different connected devices. The collected data

are forwarded to intelligent building. Real-time analysis focused on electronic medical

records produced from many sources such as medical devices and mobile applications

is described in [19]. The proposed framework combined Hadoop, MongoDB and impro-

vised treatment technique which was meant for improving the results of the treatment

of patient records.

Most of the healthcare analytics solution mainly focused on Hadoop [20], it can

process a large volume and diverse data sources in case of batch oriented computing.

Hadoop would be limited for real-time computing, which Spark is faster than Hadoop

and has a better performance especially in problems involving iterative machine learn-

ing [21]. Hadoop and Spark are both Apache projects and most popular tools in the big

data ecosystem, with great excitement around Spark. Table 1 cover some differences

between these two platforms. On the other hand a number of scalable machine learning

algorithms are developed to overcome the various issues in big data analytics. In [22] a

predictive model related to the risk of diabetes is performed using a scalable Random

Forest classification algorithm. Usage of online logistic regression for detection of phish-

ing URL is discussed in [23] where Hadoop is used for data processing and Mahout for

machine learning. An automated method that is able to detect abnormal patterns for

the elderly living alone entering and exiting behaviors collected from simple sensors

equipped in home-based setting is described in [24], the method is based on markov

chain model. A real-time medical emergency response system that involves IoT based

medical sensors deployed on the human body is discussed in [25]. An overview of big

Table 1 Spark and Hadoop MapReduce comparison

Hadoop MapReduce Apache Spark

Definition Open source big data framework wich deals
with structured and unstructured data that
are stored in HDFS, Hadoop MapReduce
is designed in a way to process a large
amount of data on a cluster

Open source big data framework, it’s a flexible
in-memory framework that allows it to
handle batch and real-time analytic and
data processing workloads. Spark is basically
designed for fast computation

Speed Reading and writing from/to the file system
and disk slows down the processing speed

100 times faster in memory and 10 times
faster even when runing on disk than
hadoop MapReduce. Because of run com-
putation in memory

Easy of use In Hadoop MapReduce, developers need to
code each operation and require abstrac-
tions, so it is difficult to easily program
each problem

Spark is easier to use than Hadoop, because it
has whole of high-level operators with RDDs

Real-time analysis No Yes

Execution model Batch Batch, streaming

In-memory No Yes

Page 6 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

data architectures and machine learning algorithms in healthcare is provided in [26].

Machine learning is involved in different research works, but streaming data is only pro-

cessed in a few works. Various research works were done to expose useful information in

analysis of the social media data especially twitter and other sources for effective health-

care. For example a real-time flu and cancer surveillance system by mining twitter data

is described in [27]. A model for real-time analysis of medical big data is proposed in

[28]. The approach is exemplified through Spark streaming and Apache Kafka using the

processing of healthcare big data stream. In [29] a real-time health status prediction sys-

tem is proposed, this work focuses on applying machine learning especially DT on data

streams received from socket streams using Spark. In paper [30], authors propose a new

heart disease monitoring system based on a new classification approach. It consists of

the real-time distributed machine learning which uses the real-time predictive analysis

algorithm in the Spark environment to predict heart disease.

Most of these works either consider a specific healthcare data sources or only focus on

batch oriented computing. But in reality, healthcare data sources are divers and continu-

ously generating various data with high rate. Furthermore, either consider power tools

for data analytics such as machine learning and data mining or focus only on data stor-

age and visualization. Hence, real-time analysis of healthcare that include stream data

collection, real-time processing and power tools of machine learning, distributed data

storage and real-time analytics is needed to build efficient system in dealing with distrib-

uted health data stream.

Over the last few decades, heart diseases and diabetes are the most common cause of

global death. So early detection of these diseases and continuous monitoring can reduce

the mortality rate. In addition, the availability of wearable health monitor, medical IoT

technology adopted in the healthcare system and amount the growing patients diseases

triggered the idea of taking benefit of big data technologies to predict health status in

real-time. Real-time prediction can reduce physician attendance time, help doctors and

patients react in advance to a probable disease. Another important feature of the pro-

posed approach was that once the patient disease is not normal, the emergency service

is notified at once through an alert technology to perform real-time actions in case of

emergencies.

Methods

Proposed architecture for real‑time health status prediction and analytics system

The proposed system is a data processing, monitoring application combining Kafka

streaming and Spark streaming. This application will process real-time data sent by con-

nected devices and store that data for real-time analytics. Figure 2 shows the architec-

ture of proposed system. Firstly, Kafka producers continuously produce a stream of data

messages, which are captured by Kafka streaming, a stream that is coming in the Kafka

streaming is modeled by a topic which gives name to the multiple diseases. They are

sent to the Spark streaming application, where the real-time processing is performed.

The Spark streaming receives multiple health attributes from Kafka streaming and apply

machine learning model to predict health status and store data in NoSQL Cassandra.

Page 7 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Using Apache Zeppelin the data will be retrieved from database and making dashboard

that displays data in charts, lines and tables in real-time. Based on the proposed system

architecture, data from monitors (IoT) can be analyzed in real-time and send an alert to

care providers, so they know instantly about changes in a patient’s condition. The data

will be refreshed automatically by fixing times intervals. The following subsections give

detailed flow.

Data sources

The Internet of Things (IoT) is a network of physical devices and other items, embedded

with electronics, smart clothing, software and smart applications, sensors, and network

connectivity, so they can collect and exchange data with each other or with data cent-

ers systems. With the availability of wearable health monitor at many homes, the data

generated by these devices is large in volume and random in nature and needs to be

analyzed using a big data analytics system in order to understand the user behavioral

patterns or extract the critical information. By 2020, 40% of IoT-related technology will

be health-related, more than any other domain [31]. The convergence of medicine and

information technologies such as medical informatics will transform healthcare as we

know it, reducing inefficiencies, curbing costs, and saving lives. Real-time monitoring

via IoT can save lives in event of a medical emergency like heart disease, diabetes and

in many other chronic diseases. Many sources related to health are now available which

constantly monitor health indicators. Figure 3 shows the workflow for the proposed sys-

tem with different data sources.

Fig. 2 Architecture of real-time health status prediction and analytics system

Page 8 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Kafka real‑time data collection

As the data generated in healthcare field is growing at an exponential rate, managing this

data with Spark itself becomes a challenge task, while Kafka is designed specifically to

streaming data managing. Hence, it has been integrated in our system. In the proposed

system architecture, data collection block is used for collecting the individual’s health

data from distributed sources and multiple diseases using different devices integrated

with telemedicine and telehealth. This bloc collect, filter and manage the patient’s clini-

cal data in a continuous manner. It allows us to classify streaming data into correspond-

ing topic (kind of disease) in which records are published.

Apache Kafka [32] is a distributed streaming system that uses publish-subscribe mes-

saging and is developed to be a distributed, partitioned, replicated service. The real-time

data is streamed from the health monitoring devices through Kafka producer. Kafka

servers store all incoming messages from publishers for some period of time and pub-

lish them to a stream of data called topic which is a category name to which records are

published, topics are the core abstraction which Kafka provides for a stream of records.

Each of these topics is split into multiple partitions, each storing one or more of those

partitions with ability to accept multiple formats. On the consumer side, Kafka consum-

ers subscribe to one or more topics, and receive data as it’s published. A stream or topic

can have many different consumers like real-time consumer, all with their own position

in the stream maintained. Figure 4 shows the Kafka messaging system. The coordina-

tion and facilitation of distributed system is performed by using Zookeeper [33]. In our

case study, data producers are two simulator applications for connected devices and uses

Apache Kafka to generate data events.

Fig. 3 Workflow for the proposed system

Fig. 4 Kafka messaging system

Page 9 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Spark streaming data processing

Apache Spark [34] is an open-source distributed processing engine, designed for fast

computation. The major feature of Spark that makes it unique is its ability to perform

in-memory computations, but it can also perform disk-based processing when data sets

are too large to fit into the available memory, ease of use and complex analysis frame-

work of large data processing. Spark uses the concept of Resilient Distributed Datasets

(RDDs) [35] which is the immutable distributed collection of objects. Internally, Spark

distributes the data in RDD to different nodes across the cluster to achieve paralleliza-

tion. RDDs can cache both input data and intermediate data in memory which largely

reduces the Input-Output cost for reading and writing from and to the file system allow-

ing it to be reused efficiently especially for iterative machine learning algorithms. Once

the data is loaded in a RDD, two basic types of operation can be performed:

• Transformations: that create a new RDD from the existing RDDs by applying pro-

cesses such as mapping, filtering and more.

• Actions: compute a result based on RDD, and either returned or saved to an external

storage system.

Spark provide a machine learning library MLlib, it consist of popular learning algorithms

such as classification, regression, clustering etc.

Spark streaming is built on top of core Spark API for live processing of data from var-

ious sources like Twitter and Kafka. Incoming data stream is grouped into batches of

interval less than a second and processed by the batch processing Spark engine integrat-

ing the powerful features to near real-time processing. Spark implements an extension

through the Spark streaming module providing a high-level abstraction called discre-

tized stream or DStream which is a sequence of mini-batches where each mini-batch is

represented as a Spark RDD.

In this work the streaming data processing task uses Spark where Spark streaming

handles the Kafka data stream using Spark streaming library, while the DT implementa-

tion is performed using the Spark machine learning library, MLlib.

Spark architecture

Spark is a distributed processing engine and it follows the master-worker architecture,

so for every Spark application it will create one master process and multiple workers. In

Spark terminology, the master is the driver and the workers are the executors. Since the

driver is the master, it is responsible for analyzing, distributing, scheduling and monitor-

ing work across the executors. The driver is also responsible for maintaining all the nec-

essary information during the lifetime of the application. On the other side, executors

are only responsible for executing the code assigned to them by driver and reporting the

status back to the driver, Fig. 5.

Use case datasets

To implement the proposed model for this research, two datasets have been used. The

data set we used for diabetic data analysis is taken from a website named Kaggle [36]

which provides online datasets for data scientists and aims at discovering and seamlessly

Page 10 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

analyzing open data. The diabetes dataset consist of 15 000 records and nine attributes,

each record has eight attributes which are pregnancies, glucose, blood pressure, skin

thickness, insulin, bmi, diabetes pedigree function, age and one of the two possible out-

comes, namely whether the patient is tested positive for diabetes indicated by 1 or not

indicated by 0.

The second one is the processed.cleveland.data of Heart Disease (HD) database, it

was used and analyzed. This is a labelled dataset which consist of 303 records and 14

attributes (Table 2). It was used in many machine learning research works. For each

heart disease observation, we have constructed a labelled dataset with attributes,

where class label attribute labelled with two classes, presence of heart disease and

absence of heart disease. The class label attribute values modified to just 0 and 1,

where value 1 indicates presence of heart disease replacing values 1, 2, 3 and 4 while

value 0 indicates absence of heart disease, turning it to a binary class dataset.

In this module, datasets are analysed using the predictive analysis approach using

Spark environment. The data is loaded from the csv file into an RDD of Strings. We

use the map transformation on the RDD, which will apply the Parse RDD function

to transform each String element in the RDD into an RDD of Labeled Point and use

it for training and testing the machine learning model which predicts health status.

As the focus of this work is primarily on real-time data collection, streaming data

Fig. 5 Spark architecture

Page 11 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

processing, distributed machine learning and distributed storage, the datasets used

and the expected related health status is not very important since this datasets can

be easily replaced by any other relevant dataset.

Spark implementation of parallel decision tree

After collecting the data from distributed sources of various diseases, the classification

of these data needs to build a classification model which is capable to classify the attrib-

utes of a user in absence or presence of disease. A classification is one main technique of

data mining useful to find hidden information. The classification consists of examining the

characteristics of a newly introduced element in order to assign it to a class of a predefined

set. DT are widely used for classification and regression problems. DT are popular meth-

ods for the machine learning tasks of classification, it used extensively in machine learning

because they are easy to use, easy to operationalize, easy to interpret and extend to the mul-

ticlass classification setting. The prediction has been performed using DT based on Spark’s

machine MLlib which supports DT for binary and multiclass classification.

A DT is a machine learning model that partitions the data into subsets. The partitioning

process starts with a binary split and continues until no further splits can be made. Recur-

sive partitioning is the step-by-step process by which a DT is constructed by either splitting

or not splitting each node, each partition is selected by finding the best among all possible

splits. The split is based on a particular criterion such as Gini impurity and Entropy. The

measure of the homogeneity of the label at the node level is based on the impurity of the

node. Currently, the implementation provides two classification impurity measures which

are Gini and Entropy.

The most popular representative of DT is C4.5 it was developed by J. Ross Quinlan [37], it

was the standard algorithm for DT on Spark which has the same parallel idea with C4.5 on

MapReduce (Algorithm 1).

Table 2 Heart disease dataset attributes description

No Attributes Description

1 Age Age in years

2 Sex Sex (1= male, 0= female)

3 Cp Chest pain type

4 Restbpss Resting blood pressure

5 Chol Serum Cholesterol

6 Fbs Fasting blood sugar

7 Restecg Resting electrocardiographic results

8 Thalach Maximum heart rate

9 Oldpeak ST depression induced by exercise relative to rest

10 Exang Exercise induced angina

11 Slope Slope of peak exercise ST segment

12 Ca Number of major vessels colored with fluoroscopy

13 Thal 3 (normal), 6 (fixed defect), 7 (reversible defect)

14 Num Class (1 = presence of heart disease, 0 = absence
of heart disease)

Page 12 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Algorithm 1 DT algorithm description

Input: training dataset T; attributes S.
Output: decision tree Tree

if T is NULL then
return failure

end if
if S is NULL then

return Tree as single node with most frequent class label in T
end if
if |S| = 1 then

return Tree as single node S
end if
set Tree = {}
for a ∈ S do

SetInfo(a, T) = 0, andsplitInfo(a, T) = 0
Compute Entropy(a)
for v ∈ values(a,T) do

set Ta,v as the subset of T with attribute a = v

Info(a, T)+ =
Ta,v

Ta

Entropy(av)

SplitInfo(a, T)+ =
Ta,v

Ta

log
Ta,v

Ta

end for
Gain(a, T) = Entropy(a) − Info(a, T)

GainRatio(a, T) = Gain(a,T)
SplitInfo(a,T)

end for
set abest = argmax{GainRatio(a, T)}
attach abest into Tree
for v ∈ values(abest,T) do

call C4.5(Ta,v)
end for
return Tree

In this algorithm the entropy of attribute S is calculated as:

It represents the ratio of instances in S which has the j-th class label, C denote the num-

ber of classes and p(S, j) is the proportion of instances in S that are assigned to j-th class.

is the information needed after splitting by attribute S, where values Ts is the set of val-

ues of S in T, Ts is the subset of T induced by S and Ts,v is the subset of T in which attrib-

ute S has a value of v. Accordingly information gain is defined as:

which measures the information gain after splitting by attribute S. The information gain

ratio of attributes S is defined as:

where SplitInfo is defined as :

(1)Entropy = −

C∑

j=1

p(S, j) ∗ logp(S, j)

(2)Info(S,T) = −
∑

v∈Values(Ts)

|T (S, v)|

|TS |
Entropy(Sv)

(3)Gain(S,T) = Entropy(S) − Info(S,T)

(4)GainRatio(S,T) =

Gain(S,T)

SplitInfo(S,T)

Page 13 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Hence, an adequate and parallel model for predicting health status in big data context

using Spark is needed. Based on this, a C4.5 model adaptation is more important. In this

work the parallelization of C4.5 is performed using Spark. The pseudo-code of C4.5 on

Spark is illustrated in Fig. 6.

Firstly, we use SparkContext to get access to the cluster. Loading data to an RDD

using textFile() function. The input training dataset is regarded as a RDD on Spark

through textFile(). The .cache() method is used, it caches an RDD reused without re-

computing. A flatMap function is another transformation operation of Spark, it is

almost similar to the map function in MapReduce framework. The reduceByKey func-

tion is the parallel version of reduce in MapReduce framework that merges the values

for each key using the provided function and returns an RDD. Algorithm 2 represents

the steps to train and test the DT on Spark based distributed environment. In this

work, Spark streaming handles the Kafka topic data streams using Spark streaming

library, while the DT implementation is performed using MLlib. The Machine learn-

ing process is given in Fig. 7.

(5)SplitInfo(S,T) = −
∑

v∈Values(Ts)

|T (S, v)|

|TS |
∗ log

|T (S, v)|

|TS |

Fig. 6 Implementation of C4.5 on Spark

Page 14 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Algorithm 2 Steps to train and test the DT on Spark

Step1: Start new SparkContext
Laoding required package and APIs
sparkContext(master,appName, sparkHome)

step2: Load and parse the dataset into an RDD
rowData(RDD) : sc.textFile(path)
Data(RDD) : Map(pareseFunction(rowData))
parse each input line in parallel

Step3: Split the data into training and test sets
Set related parameters
trainData(RDD), testData(RDD): randomSplit(Data)
trainData.cache(): cache the trainData in memory
testData.cache(): cache the testData in memory
train the model

step4: Test the model
LabelAndPredict(RDD) : Map(predictFunction(testData)) parse and predict each input line

in parallel
Save model : save(sc, path)

Data storage and visualization

The results as well as data streams generated by all the user needs to be stored in a

distributed way to ensure the data availability with no single point of failure. Distrib-

uted databases are more scalable and provide better performance compared to tradi-

tional database systems. Apache Cassandra [38] is a free, open-source and distributed

NoSQL database system designed for managing large amounts of structured, semi-

structured and unstructured data across many commodity servers, it provides high

availability with no single point of failure. The architecture of Cassandra greatly con-

tributes to its being able to scale, perform and offer continuous availability. Also Cas-

sandra provides extremely fast write and read speeds with Spark [39]. The distributed

databases have several features that each bring value added to their use:

Fig. 7 Machine learning process

Page 15 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

• The reasonable cost and ease of implementation.

• Partitioning and replication of data across multiple machines.

• Scalability by adding columns, allowing more data to be processed quickly, espe-

cially larger data.

• The speed of data transfer compared to conventional databases.

• Scalability by adding additional nodes to the cluster without the need to create a dis-

tribution. Here after data processing with Spark, the result data is stored in a table

with a primary key through Cassandra. Data stored in database will be queried later

for historical data analysis, visualizing, reporting and real-time monitoring.

Apache Zeppelin [40] is a web based and multipurpose notebook that enables interac-

tive data analytics, it is an open-source data analysis environment that runs on top of

Apache Spark. The notebook supports real-time interactive data exploration, visuali-

zation, and collaboration. Zeppelin supports a growing list of programming languages

and interfaces, including Scala, Python, Hive, SparkSQL, AngularJS, shell, and mark-

down. It can make beautiful data driven, interactive and collaborative documents with

scala and more. Apache Zeppelin is useful for working interactively with long work-

flows: developing, organizing, and running analytic code and visualizing results. Zeppe-

lin can dynamically create input forms in your notebook and provide basic graphics to

show results and the notebook URL can be shared among collaborators. Using Zeppe-

lin, a real-time data dashboard has been created which will retrieve data from the Cas-

sandra database and displays it in charts and tables and many others. This dashboard is

refreshing data in every second. Dashboard can be shared with an authorized person,

who could be a physician, doctor, a participating health firm or an external consultant

to allow them to look at the collected data regardless of their patient and health status.

Experiments

Experiment setup

The real-time health status prediction system based on Spark, Kafka and Cassan-

dra was written using Scala and Zeppelin as a development platform which support

many interpreters like Scala, Spark and Cassandra. Indeed, we don’t need to create

an assembly package containing the code and its dependencies. Firstly, the proposed

application is carried out on single node cluster created with core i7 processor and

8 GB RAM, having Ubuntu 16.04 operating system through Spark platform which

integrates DT model with Kafka streaming data handling. The application after estab-

lishing connection to the Kafka streaming as detailed in Fig. 2, is continuously receiv-

ing the data streams from multiple Kafka producers and once it encounters the health

attributes check streams, it extracts the attribute values from each topic of disease

events sent by Kafka streaming and apply the DT model to predict the health status.

On the other hand, each predicted status is stored in a table through Cassandra data-

base, based on the identifier (ID) as a primary key which is more suitable for the data

redundancy. Data stored in database will be queried later for historical data analysis.

After testing the application on single node cluster, a multi-node cluster was cre-

ated. Table 3 shows the characteristics of our master and worker nodes.

Page 16 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

In this step, all experiments were conducted with the available computing resources

on a cluster of one master node and two nodes acting as workers. VMware virtual nodes

are used in the Ubuntu 16.04 operating system. Firstly, a group called Spark and Spark

user account has been created to simplify the communication between nodes. Java and

Scala have been installed. We install Open SSH Server, generate key pairs and configure

passwordless ssh between the nodes such that Spark master can connect, start, stop and

execute jobs in different workers. We have unpacked and installed Spark, Kafka and Cas-

sandra in single node. Two topics and tables have been created, one for heart disease and

one other for diabetes disease. We edit .bashrc file located in user’s home directory and

add environment variables such as JAVA_HOME and SPARK_HOME. Add file slaves

in $SPARK_HOME/conf which must include hostname of workers. To have the same

copy of different frameworks, we copy the single node cluster setup folder three times,

rename one as master and other as worker1 and worker2. Change the hostname and

hosts on all nodes. Algorithm 3 represents the steps to setup the cluster.

Algorithm 3 The steps to setup the cluster

Step1: Create a group called spark, an user called spuser and add the spuser to sudoers list
addgroup spark
adduser –ingroup spark spuser
visudo
ALL= (ALL) ALL

Step2: Install ssh server and change permissions and disable IPV6
apt-get install openssh-server
ssh-keygen
cat home/.ssh/id rsa.pub ≫ home/.ssh/authorized keys
chmod 700 home/.ssh/authorized keys

Step3: Install Java, Scala, Spark, Kafka, Cassandra and Zeppelin
Download zip file of all installation
Unpacked and move all these zip files to /usr/local/
Change permissions of all files to have all permissions for spuser

Step4: Update home/.bashrc file
Add all necessary environment variables

Step5: Setup multinode cluster
Copy the single node cluster 3 times
Rename one Master and other as worker1 and worker2
Update hostname and hosts of all 3 nodes

Step6: Starting the cluster
Open terminal (Ctr+Alt+T)
Cd home/usr/local/kafka/bin
Start Zookeeper
Start Kafka
Create Kafka topic
Cd home/usr/local/cassandra/bin
Start Cassandra
Create a keyspace and table
Cd /usr/local/zeppelin/bin
Start Zeppelin

Table 3 Cluster nodes characteristics

Parameter Master Worker

Processor Core i7 Core i3

Cores 4 4

Memory 8 GB 4 GB

Operating system Ubuntu 16.04 Ubuntu 16.04

Page 17 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Algorithm 4 describes the main steps to implement our Spark application in Zeppelin

notebook.

Algorithm 4 Processing steps of Spark application

Step 1 : Spark context
Create an instance of SparkContext (sc by default in Zeppelin notebook) and StreamingContext

to use all Spark streaming features
Step 2: Get Kafka streams

Create the direct stream with the Kafka parameters and topic using createDirectStream method
of KafkaUtils
Step 3: Data processing

Extract identifier and attributes from each stream and from each topic using foreachRDD method
Apply the saved machine learning model to predict health status
Save all attributes and predicted label to Cassandra keyspace and table using saveToCassandra

method
Step 4: Start the computation

Start Spark streaming context using start method

We conducted three scenarios with a stream interval of 1 , 2 and 3 s. Our conducted

experiments is shown in Table 4.

Results and discussion

Performnace evaluation of machine learning model

The two datasets have been randomly split into a training data set and a test data set, 70%

of the data is used to train the model, and 30% will be used for testing. DT has been trained

over this data. For large distributed datasets, sorting feature values is expensive, in this

implementation, an approximate set of split candidates are calculated over a sampled frac-

tion of data and the ordered splits create bins and maxBins parameter specify the maxi-

mum number of such bins, so maxDepth parameter specifies the maximum depth of the

DT. Using the dataset below with varying parameters maxDepth, maxBins and indices of

impurity, different DT models has been tested and the classification accuracy values are cal-

culated in each case. Using the testing dataset and based on the model error analysis which

avoids negative effects of both under fitting and over fitting, it has been discovered that

the higher accuracy prediction stabilizes as the number of maxBins and maxDepth take the

values indicated in Table 5. Figure 8 represents in bar chart the performance of the imple-

mentation of DT using Spark.

• Receiver operating characteristic (ROC) curve: is one of the most important and effec-

tive metrics of evaluating the quality or performance of diagnostic tests. The ROC curve

is supported by MLlib.

• Classification accuracy: This is defined as the ratio of all correct predictions made to

overall prediction data. In this work, classification accuracy for the datasets are meas-

ured using the equation:

Table 4 Conducted experiments

No of nodes Events/s Kafka Topic partitions Spark workers Cassandra

1 ∼ 550,000 1 1 1 1

2 ∼ 1,300,000 2 2 2 2

Page 18 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false

negatives, respectively.

Sensitivity measures the proportion of actual positives which are correctly identified and

specificity measures the proportion of negatives which are correctly identified. These are

formulated by:

The effectiveness of our machine learning model was conducted on two synthetic data

sets. The empirical results indicate that our implementation of the DT algorithm with

Spark is both effective and scalable. From the table above, the proposed model provides

stable and high prediction quality.

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

FP + TN

Table 5 Classification results

Dataset Diabetes Heart disease

maxBins 250 100

maxDepth 8 6

Sensitivity (%) 85.97 80.00

Specificity (%) 94.38 85.36

ROC curve (%) 90.03 82.3

Accuracy (%) 91.57 82.40

Fig. 8 Machine learning results

Page 19 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

Apache Spark vs Weka performance

With its capabilities like in-memory computation, Spark performance can be several

times faster than other traditional technologies especially in iterative machine learn-

ing. In order to show the efficiency of Spark based prediction system in terms of time of

training and testing the machine learning model on large data, other data records have

been simulated. The simulation is performed using scikit-learn which is a Python library

for machine learning that provides functions for generating a suite of test problems.

To test and demonstrate the scalability of our approach, a comparative study between

execution time of DT based on Spark and Weka tool was performed. In this context, to

have sufficient database size, we increase the number of records. Then, the speed of the

DT algorithm using scala and MLlib library was measured and compared with the same

algorithm in Weka. Indeed, we have compared the running time of DT in the cluster

(Spark) against Weka. Figs. 9 and 10 represent in bar chart the performance comparison

of the implementation of DT using Spark and Weka. In this simulation when the number

of records is equal to or higher than 3 million, the model training is not supported by

using simple C4.5 in Weka.

As we can see from the line and bar chart, running DT model with Spark is faster

than Weka tool. It takes only 43.2 s to train the model in case of 4 million records with

Fig. 9 Execution time comparison of DT using Spark and standard DT: time taken to build model

Fig. 10 Execution time comparison of DT using Spark and standard DT : time taken to test model

Page 20 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

diabetes dataset when Weka takes 185 s. Also it takes only 58.43 s to train the model in

case of 4 million records with heart disease dataset when Weka takes 274.36 s. The pro-

posed Spark based DT takes less time to train and test the machine learning model. The

parallel DT algorithm of Spark Mllib reaches best scalability owing to the distributed

computing on cluster nodes and in-memory computation. Spark MLlib processes data

in less time because it divides the job into several tasks which are executed on workers

nodes. After an analysis of the results achieved has been made, it can be concluded that

Spark provides the best way to implements the proposed system to predict health status

in real-time.

Spark based DT scalability

In this step, performance evaluation of the proposed Spark-based C4.5 algorithm in a

distributed parallel environment is performed. Different numbers of nodes and different

sizes of training datasets are considered. As mentioned earlier, we have 2 nodes and our

training dataset ranges from 100k to 4 million in terms of the number of records.

Figures 11, 12, 13 and 14 illustrate the execution time of our Spark-based C4.5 algo-

rithm with a different number of nodes. When the number of instances is 2, 3 and 4

Fig. 11 Performance comparison of DT using Spark for different nodes: time taken to build model

Fig. 12 Performance comparison of DT using Spark for different nodes: time taken to test model

Page 21 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

million, respectively, we can see that the total execution time decreases as the number

of nodes increases. This indicates that the higher the number of nodes involved in com-

putation, the faster the algorithm will be due to the distributed computing. In contrast,

the execution time of standard DT using Weka with two nodes remains stable due to the

undistributed computing.

Throughput

Firstly, the DT model was built and tested separately by varying parameters such as

impurity, maxDepht and maxBins, the minimum model error is taken into account

based on the classification accuracy of the model. An offline model has been created and

saved in order to use it in real-time. In our case, data producers consist of two simula-

tor applications, one for heart disease streams and other for diabetes. Each one sends

approximately 270,000 events per second per node (it can be more) in predefined format

to the specified topic and which in turn serves them to consumers (Spark streaming),

Fig. 15.

Fig. 13 Performance comparison of DT using Spark and Weka for different nodes: time taken to build model.

K: thousand, M: Million

Fig. 14 Performance comparison of DT using Spark and Weka for different nodes: time taken to test model.

K: thousand, M: Million

Page 22 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

For sake of simplicity we are using two producers. All these data events will be cap-

tured by Kafka streaming in real-time and are sent to the Spark streaming application,

Kafka data streaming module is responsible for managing the events streams. Stream-

ing application consumes data streams and processes them for predicting the health

status, series of transformation on Dstreams is performed using Spark streaming API.

For each instance, the generated identifier and attribute values were extracted and

applies machine learning model on extracted health attributes. The details of each

instance were persisted in Cassandra database table for querying them later. We

measured the processing time for all tasks using the Spark monitoring API. Figure 16

represents the performance evaluation of the proposed system. We see that the sys-

tem can process roughly 550 k records per second/node, approximately 30 MB per

second/node.

As we can see from Fig 16:

• the larger the throughput, the more cost of processing time.

• the more nodes we use, the less of processing time.

• if enough nodes are leveraged, even the size of throughput is big, the performance

can be near to the optimal one. For example, given a throughput of 2.5 million

records, if we use 2 nodes, the execution time is near to 2 s. While the execution time

Fig. 15 Simulation topics

Fig. 16 Performance evaluation: processing time

Page 23 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

is near to 3 s when we use a single node. The execution time of the same throughput

decrease by adding other nodes.

• Spark streaming with distributed machine learning is a good choice to deal with real-

time problems. Namely, by leveraging more nodes, we can resolve big data problems

especially those related to real-time prediction in healthcare field.

Using Apache Zeppelin a data dashboard has been created which will retrieve data

from the Cassandra database and displays it in charts and tables. This application

uses Angularjs and Spark SQL to push the data to the web page in fixed intervals, so

data will be refreshed automatically. It can be accessible on desktop as well as mobile

devices. The database can be queried by different queries like, number of instance,

number of positive and negative cases, some statistics, consult the state of a patient

by his identifier in order to extract the critical and useful information or to under-

stand the user behavioral patterns by the practitioners.

Our study focuses on application of machine learning model on streaming big data

coming from various source of diseases, with Kafka serving for managing the event

streams and transforming healthcare data into information. Through discussing the

result of our experiment, it is concluded that Spark is especially fit for iterative algo-

rithms that require multiple passes on data. It provides a faster execution engine for

distributed and streaming processing. The usage of Spark in this system improves the

data processing speed time more than other traditional tool of data mining.

The main difference between proposed system and traditional data analytics

approaches is that the traditional methods analyze one instance at time and it depends

of imported data volume. On the other hand, our system can process thousands of

instances coming each second in real-time based on Dstream which is a collection of

RDD and each RDD represents one or more instances. Also, the system supports big

data processing, uses real-time and distributed machine learning, handles incoming

streams using Spark streaming instead of MapReduce, predicts different type of diseases

at the same time based on the concept of Kafka topic, provide high speed in real-time

classification which becomes more meaningful since the volume of generated data from

devices, cloud and many others is increasing at an observable rate.

Conclusion

The amount of healthcare data is constantly growing time by time at alarming rate in

different and inconsistent data sources. Improving the patient outcome and making scal-

able real-time health status prediction system, streaming computing platform is needed.

However, this vertiginous volume of data can no longer be collected, processed, stored,

and exploited by traditional information technology solutions combining physical infra-

structures and relational databases. Based on the challenges discussed previously, many

flaws in traditional information technology in scaling with the hardware in parallel which

is not suitable in dealing with growing data. In this paper a real-time health status pre-

diction and analytics system is proposed and tested on cluster, it was built around open

source big data technologies. The data events coming from various diseases ingested

to Spark through Kafka streaming. Using the Spark streaming API, the system process

received relevant health data events by applying DT to predict health status, send an

Page 24 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

alert to care providers and store the details in distributed database. The stored result will

be queried to perform healthcare data analytics and stream reporting.

The creation of a distributed and real-time healthcare analytics system using tradi-

tional analytical tools is extremely complex, it requires a variety of skills, intensive and

more expensive programs and considerable amount of time and money. However, using

efficient open source big data technologies and data mining techniques can easily do

the same job. With slight modification, the same system can predict others diseases,

also it can be extended to other domain. As a future work, we aim to integrate real data

sources, such as mobile devices, sensor data and social media data to our system for

interacting user’s requests.

Abbreviations

IoT: Internet of Thing; DT: decision tree; RDBMS: relational database management system; HDFS: Hadoop Distributed File

System; BDSC: big data streaming computing; MLlib: machine learning library; RDD: Resilient Distributed Datasets; HD:

heart disease; IT: information technology.

Acknowledgements

Not applicable.

Authors’ contributions

AE proposed and developed the real-time prediction system presented in this article, prepared and analyzed the data,

interpreted the results, and authored the manuscript. Comments, guidance, significant discussion that highly improved

the quality of manuscript were received from KM. All mentioned authors contribute to the elaboration of the article.

Both authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 12 July 2019 Accepted: 18 November 2019

References

 1. Manogaran G, Lopez D. Health data analytics using scalable logistic regression with stochastic gradient descent.

Int J Adv Intell Paradigms. 2018;10(1–2):118–32.

 2. Hu H, Wen Y, Chua T-S, Li X. Toward scalable systems for big data analytics: a technology tutorial. IEEE Access.

2014;2:652–87.

 3. Cattell R. Scalable sql and NoSQL data stores. ACM Sigmod Record. 2011;39(4):12–27.

 4. Moniruzzaman A, Hossain SA. NoSQL database: New era of databases for big data analytics-classification, char-

acteristics and comparison. 2013. arXiv preprint arXiv :1307.0191.

 5. Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM.

2008;51(1):107–13.

 6. Belle A, Thiagarajan R, Soroushmehr S, Navidi F, Beard DA, Najarian K. Big data analytics in healthcare. BioMed Res Int.

2015; 2015.

 7. Anuradha J, et al. A brief introduction on big data 5vs characteristics and hadoop technology. Procedia Comput Sci.

2015;48:319–24.

 8. Banaee H, Ahmed MU, Loutfi A. Data mining for wearable sensors in health monitoring systems: a review of recent

trends and challenges. Sensors. 2013;13(12):17472–500.

 9. Mathew PS, Pillai AS. Big data challenges and solutions in healthcare: a survey. In: Snášel V, Abraham A, Krömer P,

Pant M, Muda A, editors. Innovations in bio-inspired computing and applications. Berlin: Springer; 2016. p. 543–53.

 10. Sun J, Reddy CK. Big data analytics for healthcare. In: Proceedings of the 19th ACM SIGKDD International Discovery

and Data Mining. New York: ACM; 2013. p. 1525–1525.

 11. Masethe HD, Masethe MA. Prediction of heart disease using classification algorithms. Proc World Congress Eng

Comput Sci. 2014;2:22–4.

 12. Bhardwaj A, Tiwari A. Breast cancer diagnosis using genetically optimized neural network model. Expert Syst Appl.

2015;42(10):4611–20.

 13. Tomar D, Agarwal S. A survey on data mining approaches for healthcare. Int J Bio-Sci Bio-Technol. 2013;5(5):241–66.

http://arxiv.org/abs/1307.0191

Page 25 of 25Ed‑daoudy and Maalmi J Big Data (2019) 6:104

 14. Herland M, Khoshgoftaar TM, Wald R. A review of data mining using big data in health informatics. J Big Data.

2014;1(1):2.

 15. Rallapalli S, Gondkar R, Rao GVM. Cloud based k-means clustering running as a Mapreduce job for big data health-

care analytics using Apache mahout. In: Satapathy S, Mandal J, S Udgata, Bhateja V, editors. Information systems

design and intelligent applications. Berlin: Springer; 2016. p. 127–35.

 16. Sarkar BB, Paul S, Cornel B, Rohatinovici N, Chaki N. Personal health record management system using Hadoop

framework: An application for smarter health care. In: International Workshop Soft Computing Applications. Berlin:

Springer; 2016. p. 385–93.

 17. Sampath P, Tamilselvi S, Kumar NS, Lavanya S, Eswari T. Diabetic data analysis in healthcare using Hadoop architec-

ture over big data. Int J Biomed Eng Technol. 2017;23(2–4):137–47.

 18. Rathore MM, Paul A, Ahmad A, Anisetti M, Jeon G. Hadoop-based intelligent care system (HICS): analytical approach

for big data in IoT. ACM Trans Internet Technol (TOIT). 2017;18(1):8.

 19. Basco JA, Senthilkumar N. Real-time analysis of healthcare using big data analytics. Comput Inf Technol.

2017;263:042056.

 20. Yadranjiaghdam B, Pool N, Tabrizi N. A survey on real-time big data analytics: Applications and tools. In: 2016

international conference On computational science and computational intelligence (CSCI). New York: IEEE; 2016. p.

404–9.

 21. Hazarika AV, Ram GJSR, Jain E. Performance comparison of hadoop and spark engine. In: 2017 international confer-

ence on I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC). New York: IEEE; 2017. p. 671–4.

 22. Rallapalli S, Suryakanthi T. Predicting the risk of diabetes in big data electronic health records by using scalable

random forest classification algorithm. In: 2016 international conference on advances in computing and communi-

cation engineering (ICACCE). New York: IEEE; 2016. p. 281–4.

 23. Feroz MN, Mengel S. Examination of data, rule generation and detection of phishing urls using online logistic

regression. In: 2014 IEEE international conference on big data (Big Data). New York: IEEE; 2014. p. 241–50.

 24. Zhao T, Ni H, Zhou X, Qiang L, Zhang D, Yu Z. Detecting abnormal patterns of daily activities for the elderly living

alone. In: International conference on health information science. Berlin: Springer; 2014. p. 95–108.

 25. Rathore MM, Ahmad A, Paul A, Wan J, Zhang D. Real-time medical emergency response system: exploiting IoT and

big data for public health. J Med Syst. 2016;40(12):283.

 26. Manogaran G, Lopez D. A survey of big data architectures and machine learning algorithms in healthcare. Int J

Biomed Eng Technol. 2017;25(2–4):182–211.

 27. Lee K, Agrawal A, Choudhary A. Real-time disease surveillance using twitter data: demonstration on flu and cancer.

In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. New

York: ACM; 2013. p. 1474–7.

 28. Akhtar U, Khattak AM, Lee S. Challenges in managing real-time data in health information system (HIS). In: Interna-

tional conference on smart homes and health telematics. Berlin: Springer; 2016. p. 305–13.

 29. Ed-daoudy A, Maalmi K. Application of machine learning model on streaming health data event in real-time to

predict health status using spark. In: 2018 International symposium on advanced electrical and communication

technologies (ISAECT). New York: IEEE; 2018. p. 1–4.

 30. Ed-daoudy A, Maalmi K. Real-time machine learning for early detection of heart disease using big data approach. In:

2019 International conference on wireless technologies, embedded and intelligent systems (WITS). New York: IEEE;

2019. p. 1–5.

 31. Bauer H, Patel M, Veira J. The Internet of Things: sizing up the opportunity. http://www.mckin sey.com/. Accessed 15

Dec 2017.

 32. Apache kafka. https ://kafka .apach e.org. Accessed 15 Dec 2017.

 33. Hunt P, Konar M, Junqueira FP, Reed B. Zookeeper: Wait-free coordination for internet-scale systems. In: USENIX

Annual technical conference, vol. 8. Boston, MA, USA; 2010.

 34. Apache Spark. https ://spark .apach e.org. Accessed 15 Dec 2017.

 35. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX confer-

ence on networked systems design and implementation. Berkeley: USENIX Association; 2012. p. 2.

 36. kaggle. https ://www.kaggl e.com/fmend es/diabe tes-from-dat26 3x-lab01 . Accessed 24 Dec 2018.

 37. Quinlan JR. C4. 5: programs for machine learning. Amsterdam: Elsevier; 2014.

 38. Apache cassandra. http://cassa ndra.apach e.org. Accessed 15 Dec 2017.

 39. Hassan M, Bansal SK. Semantic data querying over NoSQL databases with Apache Spark. In: 2018 IEEE international

conference on information reuse and integration (IRI). New York: IEEE; 2018. p. 364–71.

 40. Apache zeppelin. https ://zeppe lin.apach e.org. Accessed 15 Dec 2017.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.mckinsey.com/
https://kafka.apache.org
https://spark.apache.org
https://www.kaggle.com/fmendes/diabetes-from-dat263x-lab01
http://cassandra.apache.org
https://zeppelin.apache.org

	A new Internet of Things architecture for real-time prediction of various diseases using machine learning on big data environment
	Abstract
	Introduction
	Background
	Big data challenges in healthcare
	Related work

	Methods
	Proposed architecture for real-time health status prediction and analytics system
	Data sources
	Kafka real-time data collection
	Spark streaming data processing
	Spark architecture
	Use case datasets
	Spark implementation of parallel decision tree

	Data storage and visualization

	Experiments
	Experiment setup

	Results and discussion
	Performnace evaluation of machine learning model
	Apache Spark vs Weka performance
	Spark based DT scalability
	Throughput

	Conclusion
	Acknowledgements
	References

