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Introduction

Over the past two decades our era can be described as big data era where digital data 

is becoming increasingly important in many domains like healthcare, science, technol-

ogy and society. A large amount of data has been captured and generated from multi-

ple areas, multiple sources such as streaming machines, high throughput instruments, 
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sensor networks, mobile application and from every single field especially in healthcare, 

this high data volume represents big data [1]. Storing, processing, visualizing and knowl-

edge extraction through this voluminous and varied data types has become a challenge 

using inadequate state of-the-art technologies tools. One of the most important tech-

nological challenges of big data analytics is exploring ways to effectively obtain valua-

ble information for different types of users. Currently, the various forms of healthcare 

data sources are being collected in both clinical and non-clinical environments, where 

the digital copy of a patient’s medical history are the most important data in healthcare 

analytics.

Therefore, designing a distributed data system to deal with big data faces three main 

challenges: First, due to the heterogeneous and huge volume of data, it is difficult to col-

lect data from distributed locations. Second, storage is the main problem for heteroge-

neous and massive datasets. Big data system needs to store while providing performance 

guarantee. Last challenge is related to big data analytics, more precisely to mining mas-

sive datasets in real-time or near real-time that include modeling, visualization, pre-

diction, and optimization [2]. These challenges require new processing paradigm as 

the current data management systems are not efficient in dealing with heterogeneous 

nature of data or the real-time. However, traditional relational database management 

systems (RDBMS) such as MySQL are mainly employed for management of structured 

data. These traditional systems do not provide any support for unstructured or semi-

structured data. From a scalability perspective, when the data size grows, there are many 

standard RDBMS failures in scaling for parallel hardware management and fault toler-

ance, which is not suitable for managing growing data. To deal with the problems asso-

ciated with massive and heterogeneous data storage, many research works have been 

proposed by the research community, such as NoSQL database management systems [3] 

which are useful when working with a huge quantity of data when the data’s nature does 

not require a relational model [4].

MapReduce [5] is a parallel processing technique to process massive data distributed 

on a commodity cluster; it consists of the Map and Reduce operations. One of the major 

limitation of MapReduce is its inefficiency in running iterative algorithms. MapReduce 

is not designed for iterative processing. Hadoop (High-availability distributed object-ori-

ented platform) is a batch processing system used for distributed storage and processing 

of big data using the MapReduce programming model. It offers a distributed storage sys-

tem via its Hadoop Distributed File System (HDFS), it also highly fault tolerant. Hadoop 

supports batch processing only, it is not suitable for real-time stream processing and in-

memory computation and it is not always easy to implement the MapReduce paradigm 

for all problems. Depending on the volume of the data being processed, the output can 

be delayed significantly. In contrast, stream computing involves continual input and out-

come of data and it is emphasizes on the velocity of data. Big data streaming computing 

(BDSC) provides high throughput, distributed messages, real-time computing and low-

latency processing. With it’s massively parallel processing architectures, BDSC is a good 

choice to gain useful knowledge from big data which is the key requirement of big data 

analytics in healthcare.

The rapid expansion of large data analyzes has begun to play a pivotal role in the devel-

opment of healthcare practices and research. It has provided tools for the collection, 
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management, analysis and absorption of large amounts of disparate, structured and 

unstructured data produced by existing healthcare systems [6]. Nowadays, BDSC plays 

an important role in big data analytics to get the hidden value of big data in healthcare 

in real-time. However due the healthcare distributed data sources (the data are com-

ing from the different sources), such as relational databases, Hadoop, search system and 

other analytics system. Applying machine learning on this big data stream is challeng-

ing as the traditional machine learning systems are not suitable to handle such massive 

volume or varied velocity. Other problem is related to the analytical data processing. 

Performing richer analytical data processing involves efficient data integration between 

systems. Most of the state of the art works involve machine learning, but in case of real-

time machine learning applied to streaming big data is not handled. On the other hand 

most of the healthcare analytics solution mainly focused on Hadoop which is a batch 

oriented computing. Recently, the number of elderly and citizens suffering from chronic 

diseases is rising rapidly, disadvantages of conventional health services are becoming 

more and more important. Moreover, the use of medical IoT is increasing for continuous 

monitoring in order to perform real-time actions in case of emergencies especially for 

heart disease. Therefore, the millions of sensors generate massive volume of data. Pro-

cessing these data and performing real-time actions in critical situations is a challenging 

task.

Based on the challenges facing the healthcare system we have proposed and developed 

a solution in healthcare with a real-time health status prediction use case. This solution 

based on the Kafka data streaming, Spark streaming, Spark MLlib, NoSQL Cassandra, 

and Apache Zeppelin. Multiple streams of messages that are generated from Kafka’s pro-

ducers are processed at Spark streaming with machine learning, then are stored in a dis-

tributed storage NoSQL for visualization and analytics. Efficient processing of data in 

healthcare increases the quality of patient monitoring.

The rest of this paper is illustrated over a few sections: In “Background”, we present 

a brief introduction to big data challengers in healthcare with related work followed 

by detailed description of the proposed system in “Methods” section. Section “Experi-

ments” presents the implementation process, while section “Results and discussion” 

presents results and discussion of proposed model. Finally, in section “Conclusion” we 

conclude the paper and present future work.

Background

Big data challenges in healthcare

The healthcare industry today generates large amount of data that can be described with 

the 5V’s big data characteristics mainly Volume, Variety, Velocity, Veracity and Value [7]. 

The volume refers to the healthcare data to be collected and analyzed are considerable 

and constantly increasing, variety make reference to the healthcare data collected from 

multiple sources. The healthcare data and domain knowledge in health field should be 

up to date namely velocity. The veracity refers to the reliability of the healthcare data. 

Finally, valuable information could be found by carefully analyzing the massive data in 

healthcare. Healthcare data comes from distributed sources such as, electronic medical 

records, clinical images, diagnosis data and health claim data, streaming system, sensors 

attached to the patient’s bedside to continually track patient vitals. They produce huge 
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chunks of data where the traditional data processing system are inadequate to deal with 

them effectively [8]. The big data challenges can be summarized in Fig. 1 [9].

In this paper we focused on the first five major big data challenges such as data inte-

gration, data processing, data mining techniques, data storage and data visualization.

Related work

Nowadays, big data analytics especially healthcare analytics has become an important 

issue for a large number of research areas such as data mining, machine learning with 

the huge increasingly healthcare data as well as the potential information inside. The 

evolution of science and technology in healthcare has made a significant breakthrough 

in data collection. In healthcare sector, data are collected by three main types of dig-

ital data such as clinical records, health research records and organization operations 

records [10] provides a brief overview of healthcare data sources.

The extraction of knowledge from these distributed, large and various amount of data 

has become a challenging task using traditional techniques of data mining which is the 

process of extracting hidden interesting patterns from massive database. Techniques of 

data mining help to process the data and turn them into useful information. Many pre-

diction and recommendation systems have been studied in healthcare. In [11] an experi-

ment was performed for the prediction of heart attacks and comparison to find the best 

method of prediction. A breast cancer classification is performed by using genetically 

optimized neural network model [12]. Other data mining and information retrieval 

techniques have been proposed in [13, 14].

Healthcare analytic has been studied in many systems such as epidemic prediction 

and prevention, health recommendation system, medical decision making in order 

to improve quality of care, taking, reducing costs, and increasing efficiency. In [15] a 

cloud based K-means clustering running as a MapReduce job has been proposed which 

use healthcare data on cloud for clustering. A web enabled distributed electronic and 

Fig. 1 Big data challenges
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personal health record management framework is proposed using Hadoop and HBase 

[16].

In [17], predicting diabetes mellitus and type of treatment to be adopted is performed 

by using the predictive analysis algorithm and Hadoop MapReduce environment. A 

Hadoop based intelligent care system is proposed in [18] that illustrates Internet of 

Things (IoT) based big data contextual sharing across all devices in a health system. 

The proposed system adopts a network architecture with enhanced processing capa-

bilities for collecting data generated by different connected devices. The collected data 

are forwarded to intelligent building. Real-time analysis focused on electronic medical 

records produced from many sources such as medical devices and mobile applications 

is described in [19]. The proposed framework combined Hadoop, MongoDB and impro-

vised treatment technique which was meant for improving the results of the treatment 

of patient records.

Most of the healthcare analytics solution mainly focused on Hadoop [20], it can 

process a large volume and diverse data sources in case of batch oriented computing. 

Hadoop would be limited for real-time computing, which Spark is faster than Hadoop 

and has a better performance especially in problems involving iterative machine learn-

ing [21]. Hadoop and Spark are both Apache projects and most popular tools in the big 

data ecosystem, with great excitement around Spark. Table  1 cover some differences 

between these two platforms. On the other hand a number of scalable machine learning 

algorithms are developed to overcome the various issues in big data analytics. In [22] a 

predictive model related to the risk of diabetes is performed using a scalable Random 

Forest classification algorithm. Usage of online logistic regression for detection of phish-

ing URL is discussed in [23] where Hadoop is used for data processing and Mahout for 

machine learning. An automated method that is able to detect abnormal patterns for 

the elderly living alone entering and exiting behaviors collected from simple sensors 

equipped in home-based setting is described in [24], the method is based on markov 

chain model. A real-time medical emergency response system that involves IoT based 

medical sensors deployed on the human body is discussed in [25]. An overview of big 

Table 1 Spark and Hadoop MapReduce comparison

Hadoop MapReduce Apache Spark

Definition Open source big data framework wich deals 
with structured and unstructured data that 
are stored in HDFS, Hadoop MapReduce 
is designed in a way to process a large 
amount of data on a cluster

Open source big data framework, it’s a flexible 
in-memory framework that allows it to 
handle batch and real-time analytic and 
data processing workloads. Spark is basically 
designed for fast computation

Speed Reading and writing from/to the file system 
and disk slows down the processing speed

100 times faster in memory and 10 times 
faster even when runing on disk than 
hadoop MapReduce. Because of run com-
putation in memory

Easy of use In Hadoop MapReduce, developers need to 
code each operation and require abstrac-
tions, so it is difficult to easily program 
each problem

Spark is easier to use than Hadoop, because it 
has whole of high-level operators with RDDs

Real-time analysis No Yes

Execution model Batch Batch, streaming

In-memory No Yes
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data architectures and machine learning algorithms in healthcare is provided in [26]. 

Machine learning is involved in different research works, but streaming data is only pro-

cessed in a few works. Various research works were done to expose useful information in 

analysis of the social media data especially twitter and other sources for effective health-

care. For example a real-time flu and cancer surveillance system by mining twitter data 

is described in [27]. A model for real-time analysis of medical big data is proposed in 

[28]. The approach is exemplified through Spark streaming and Apache Kafka using the 

processing of healthcare big data stream. In [29] a real-time health status prediction sys-

tem is proposed, this work focuses on applying machine learning especially DT on data 

streams received from socket streams using Spark. In paper [30], authors propose a new 

heart disease monitoring system based on a new classification approach. It consists of 

the real-time distributed machine learning which uses the real-time predictive analysis 

algorithm in the Spark environment to predict heart disease.

Most of these works either consider a specific healthcare data sources or only focus on 

batch oriented computing. But in reality, healthcare data sources are divers and continu-

ously generating various data with high rate. Furthermore, either consider power tools 

for data analytics such as machine learning and data mining or focus only on data stor-

age and visualization. Hence, real-time analysis of healthcare that include stream data 

collection, real-time processing and power tools of machine learning, distributed data 

storage and real-time analytics is needed to build efficient system in dealing with distrib-

uted health data stream.

Over the last few decades, heart diseases and diabetes are the most common cause of 

global death. So early detection of these diseases and continuous monitoring can reduce 

the mortality rate. In addition, the availability of wearable health monitor, medical IoT 

technology adopted in the healthcare system and amount the growing patients diseases 

triggered the idea of taking benefit of big data technologies to predict health status in 

real-time. Real-time prediction can reduce physician attendance time, help doctors and 

patients react in advance to a probable disease. Another important feature of the pro-

posed approach was that once the patient disease is not normal, the emergency service 

is notified at once through an alert technology to perform real-time actions in case of 

emergencies.

Methods

Proposed architecture for real‑time health status prediction and analytics system

The proposed system is a data processing, monitoring application combining Kafka 

streaming and Spark streaming. This application will process real-time data sent by con-

nected devices and store that data for real-time analytics. Figure 2 shows the architec-

ture of proposed system. Firstly, Kafka producers continuously produce a stream of data 

messages, which are captured by Kafka streaming, a stream that is coming in the Kafka 

streaming is modeled by a topic which gives name to the multiple diseases. They are 

sent to the Spark streaming application, where the real-time processing is performed. 

The Spark streaming receives multiple health attributes from Kafka streaming and apply 

machine learning model to predict health status and store data in NoSQL Cassandra. 
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Using Apache Zeppelin the data will be retrieved from database and making dashboard 

that displays data in charts, lines and tables in real-time. Based on the proposed system 

architecture, data from monitors (IoT) can be analyzed in real-time and send an alert to 

care providers, so they know instantly about changes in a patient’s condition. The data 

will be refreshed automatically by fixing times intervals. The following subsections give 

detailed flow.

Data sources

The Internet of Things (IoT) is a network of physical devices and other items, embedded 

with electronics, smart clothing, software and smart applications, sensors, and network 

connectivity, so they can collect and exchange data with each other or with data cent-

ers systems. With the availability of wearable health monitor at many homes, the data 

generated by these devices is large in volume and random in nature and needs to be 

analyzed using a big data analytics system in order to understand the user behavioral 

patterns or extract the critical information. By 2020, 40% of IoT-related technology will 

be health-related, more than any other domain [31]. The convergence of medicine and 

information technologies such as medical informatics will transform healthcare as we 

know it, reducing inefficiencies, curbing costs, and saving lives. Real-time monitoring 

via IoT can save lives in event of a medical emergency like heart disease, diabetes and 

in many other chronic diseases. Many sources related to health are now available which 

constantly monitor health indicators. Figure 3 shows the workflow for the proposed sys-

tem with different data sources.

Fig. 2 Architecture of real-time health status prediction and analytics system
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Kafka real‑time data collection

As the data generated in healthcare field is growing at an exponential rate, managing this 

data with Spark itself becomes a challenge task, while Kafka is designed specifically to 

streaming data managing. Hence, it has been integrated in our system. In the proposed 

system architecture, data collection block is used for collecting the individual’s health 

data from distributed sources and multiple diseases using different devices integrated 

with telemedicine and telehealth. This bloc collect, filter and manage the patient’s clini-

cal data in a continuous manner. It allows us to classify streaming data into correspond-

ing topic (kind of disease) in which records are published.

Apache Kafka [32] is a distributed streaming system that uses publish-subscribe mes-

saging and is developed to be a distributed, partitioned, replicated service. The real-time 

data is streamed from the health monitoring devices through Kafka producer. Kafka 

servers store all incoming messages from publishers for some period of time and pub-

lish them to a stream of data called topic which is a category name to which records are 

published, topics are the core abstraction which Kafka provides for a stream of records. 

Each of these topics is split into multiple partitions, each storing one or more of those 

partitions with ability to accept multiple formats. On the consumer side, Kafka consum-

ers subscribe to one or more topics, and receive data as it’s published. A stream or topic 

can have many different consumers like real-time consumer, all with their own position 

in the stream maintained. Figure  4 shows the Kafka messaging system. The coordina-

tion and facilitation of distributed system is performed by using Zookeeper [33]. In our 

case study, data producers are two simulator applications for connected devices and uses 

Apache Kafka to generate data events.

Fig. 3 Workflow for the proposed system

Fig. 4 Kafka messaging system
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Spark streaming data processing

Apache Spark [34] is an open-source distributed processing engine, designed for fast 

computation. The major feature of Spark that makes it unique is its ability to perform 

in-memory computations, but it can also perform disk-based processing when data sets 

are too large to fit into the available memory, ease of use and complex analysis frame-

work of large data processing. Spark uses the concept of Resilient Distributed Datasets 

(RDDs) [35] which is the immutable distributed collection of objects. Internally, Spark 

distributes the data in RDD to different nodes across the cluster to achieve paralleliza-

tion. RDDs can cache both input data and intermediate data in memory which largely 

reduces the Input-Output cost for reading and writing from and to the file system allow-

ing it to be reused efficiently especially for iterative machine learning algorithms. Once 

the data is loaded in a RDD, two basic types of operation can be performed:

• Transformations: that create a new RDD from the existing RDDs by applying pro-

cesses such as mapping, filtering and more.

• Actions: compute a result based on RDD, and either returned or saved to an external 

storage system.

Spark provide a machine learning library MLlib, it consist of popular learning algorithms 

such as classification, regression, clustering etc.

Spark streaming is built on top of core Spark API for live processing of data from var-

ious sources like Twitter and Kafka. Incoming data stream is grouped into batches of 

interval less than a second and processed by the batch processing Spark engine integrat-

ing the powerful features to near real-time processing. Spark implements an extension 

through the Spark streaming module providing a high-level abstraction called discre-

tized stream or DStream which is a sequence of mini-batches where each mini-batch is 

represented as a Spark RDD.

In this work the streaming data processing task uses Spark where Spark streaming 

handles the Kafka data stream using Spark streaming library, while the DT implementa-

tion is performed using the Spark machine learning library, MLlib.

Spark architecture

Spark is a distributed processing engine and it follows the master-worker architecture, 

so for every Spark application it will create one master process and multiple workers. In 

Spark terminology, the master is the driver and the workers are the executors. Since the 

driver is the master, it is responsible for analyzing, distributing, scheduling and monitor-

ing work across the executors. The driver is also responsible for maintaining all the nec-

essary information during the lifetime of the application. On the other side, executors 

are only responsible for executing the code assigned to them by driver and reporting the 

status back to the driver, Fig. 5.

Use case datasets

To implement the proposed model for this research, two datasets have been used. The 

data set we used for diabetic data analysis is taken from a website named Kaggle [36] 

which provides online datasets for data scientists and aims at discovering and seamlessly 
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analyzing open data. The diabetes dataset consist of 15 000 records and nine attributes, 

each record has eight attributes which are pregnancies, glucose, blood pressure, skin 

thickness, insulin, bmi, diabetes pedigree function, age and one of the two possible out-

comes, namely whether the patient is tested positive for diabetes indicated by 1 or not 

indicated by 0.

The second one is the processed.cleveland.data of Heart Disease (HD) database, it 

was used and analyzed. This is a labelled dataset which consist of 303 records and 14 

attributes (Table 2). It was used in many machine learning research works. For each 

heart disease observation, we have constructed a labelled dataset with attributes, 

where class label attribute labelled with two classes, presence of heart disease and 

absence of heart disease. The class label attribute values modified to just 0 and 1, 

where value 1 indicates presence of heart disease replacing values 1, 2, 3 and 4 while 

value 0 indicates absence of heart disease, turning it to a binary class dataset.

In this module, datasets are analysed using the predictive analysis approach using 

Spark environment. The data is loaded from the csv file into an RDD of Strings. We 

use the map transformation on the RDD, which will apply the Parse RDD function 

to transform each String element in the RDD into an RDD of Labeled Point and use 

it for training and testing the machine learning model which predicts health status. 

As the focus of this work is primarily on real-time data collection, streaming data 

Fig. 5 Spark architecture
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processing, distributed machine learning and distributed storage, the datasets used 

and the expected related health status is not very important since this datasets can 

be easily replaced by any other relevant dataset.

Spark implementation of parallel decision tree

After collecting the data from distributed sources of various diseases, the classification 

of these data needs to build a classification model which is capable to classify the attrib-

utes of a user in absence or presence of disease. A classification is one main technique of 

data mining useful to find hidden information. The classification consists of examining the 

characteristics of a newly introduced element in order to assign it to a class of a predefined 

set. DT are widely used for classification and regression problems. DT are popular meth-

ods for the machine learning tasks of classification, it used extensively in machine learning 

because they are easy to use, easy to operationalize, easy to interpret and extend to the mul-

ticlass classification setting. The prediction has been performed using DT based on Spark’s 

machine MLlib which supports DT for binary and multiclass classification.

A DT is a machine learning model that partitions the data into subsets. The partitioning 

process starts with a binary split and continues until no further splits can be made. Recur-

sive partitioning is the step-by-step process by which a DT is constructed by either splitting 

or not splitting each node, each partition is selected by finding the best among all possible 

splits. The split is based on a particular criterion such as Gini impurity and Entropy. The 

measure of the homogeneity of the label at the node level is based on the impurity of the 

node. Currently, the implementation provides two classification impurity measures which 

are Gini and Entropy.

The most popular representative of DT is C4.5 it was developed by J. Ross Quinlan [37], it 

was the standard algorithm for DT on Spark which has the same parallel idea with C4.5 on 

MapReduce (Algorithm  1). 

Table 2 Heart disease dataset attributes description

No Attributes Description

1 Age Age in years

2 Sex Sex (1= male, 0= female)

3 Cp Chest pain type

4 Restbpss Resting blood pressure

5 Chol Serum Cholesterol

6 Fbs Fasting blood sugar

7 Restecg Resting electrocardiographic results

8 Thalach Maximum heart rate

9 Oldpeak ST depression induced by exercise relative to rest

10 Exang Exercise induced angina

11 Slope Slope of peak exercise ST segment

12 Ca Number of major vessels colored with fluoroscopy

13 Thal 3 (normal), 6 (fixed defect), 7 (reversible defect)

14 Num Class (1 = presence of heart disease, 0 = absence 
of heart disease)
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Algorithm 1 DT algorithm description

Input: training dataset T; attributes S.
Output: decision tree Tree

if T is NULL then
return failure

end if
if S is NULL then

return Tree as single node with most frequent class label in T
end if
if |S| = 1 then

return Tree as single node S
end if
set Tree = {}
for a ∈ S do

SetInfo(a, T ) = 0, andsplitInfo(a, T ) = 0
Compute Entropy(a)
for v ∈ values(a,T ) do

set Ta,v as the subset of T with attribute a = v

Info(a, T )+ =
Ta,v

Ta

Entropy(av)

SplitInfo(a, T )+ =
Ta,v

Ta

log
Ta,v

Ta

end for
Gain(a, T ) = Entropy(a) − Info(a, T )

GainRatio(a, T ) = Gain(a,T )
SplitInfo(a,T )

end for
set abest = argmax{GainRatio(a, T )}
attach abest into Tree
for v ∈ values(abest,T ) do

call C4.5(Ta,v)
end for
return Tree

In this algorithm the entropy of attribute S is calculated as:

It represents the ratio of instances in S which has the j-th class label, C denote the num-

ber of classes and p(S, j) is the proportion of instances in S that are assigned to j-th class.

is the information needed after splitting by attribute S, where values Ts is the set of val-

ues of S in T, Ts is the subset of T induced by S and Ts,v is the subset of T in which attrib-

ute S has a value of v. Accordingly information gain is defined as:

which measures the information gain after splitting by attribute S. The information gain 

ratio of attributes S is defined as:

where SplitInfo is defined as :

(1)Entropy = −

C∑

j=1

p(S, j) ∗ logp(S, j)

(2)Info(S,T ) = −
∑

v∈Values(Ts)

|T (S, v)|

|TS |
Entropy(Sv)

(3)Gain(S,T ) = Entropy(S) − Info(S,T )

(4)GainRatio(S,T ) =

Gain(S,T )

SplitInfo(S,T )
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Hence, an adequate and parallel model for predicting health status in big data context 

using Spark is needed. Based on this, a C4.5 model adaptation is more important. In this 

work the parallelization of C4.5 is performed using Spark. The pseudo-code of C4.5 on 

Spark is illustrated in Fig. 6.

Firstly, we use SparkContext to get access to the cluster. Loading data to an RDD 

using textFile() function. The input training dataset is regarded as a RDD on Spark 

through textFile(). The .cache() method is used, it caches an RDD reused without re-

computing. A flatMap function is another transformation operation of Spark, it is 

almost similar to the map function in MapReduce framework. The reduceByKey func-

tion is the parallel version of reduce in MapReduce framework that merges the values 

for each key using the provided function and returns an RDD. Algorithm 2 represents 

the steps to train and test the DT on Spark based distributed environment. In this 

work, Spark streaming handles the Kafka topic data streams using Spark streaming 

library, while the DT implementation is performed using MLlib. The Machine learn-

ing process is given in Fig. 7. 

(5)SplitInfo(S,T ) = −
∑

v∈Values(Ts)

|T (S, v)|

|TS |
∗ log

|T (S, v)|

|TS |

Fig. 6 Implementation of C4.5 on Spark



Page 14 of 25Ed‑daoudy and Maalmi  J Big Data           (2019) 6:104 

Algorithm 2 Steps to train and test the DT on Spark

Step1: Start new SparkContext
Laoding required package and APIs
sparkContext(master,appName, sparkHome)

step2: Load and parse the dataset into an RDD
rowData(RDD) : sc.textFile(path)
Data(RDD) : Map(pareseFunction(rowData))
parse each input line in parallel

Step3: Split the data into training and test sets
Set related parameters
trainData(RDD), testData(RDD): randomSplit(Data)
trainData.cache(): cache the trainData in memory
testData.cache(): cache the testData in memory
train the model

step4: Test the model
LabelAndPredict(RDD) : Map(predictFunction(testData)) parse and predict each input line

in parallel
Save model : save(sc, path)

Data storage and visualization

The results as well as data streams generated by all the user needs to be stored in a 

distributed way to ensure the data availability with no single point of failure. Distrib-

uted databases are more scalable and provide better performance compared to tradi-

tional database systems. Apache Cassandra [38] is a free, open-source and distributed 

NoSQL database system designed for managing large amounts of structured, semi-

structured and unstructured data across many commodity servers, it provides high 

availability with no single point of failure. The architecture of Cassandra greatly con-

tributes to its being able to scale, perform and offer continuous availability. Also Cas-

sandra provides extremely fast write and read speeds with Spark [39]. The distributed 

databases have several features that each bring value added to their use:

Fig. 7 Machine learning process
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• The reasonable cost and ease of implementation.

• Partitioning and replication of data across multiple machines.

• Scalability by adding columns, allowing more data to be processed quickly, espe-

cially larger data.

• The speed of data transfer compared to conventional databases.

• Scalability by adding additional nodes to the cluster without the need to create a dis-

tribution. Here after data processing with Spark, the result data is stored in a table 

with a primary key through Cassandra. Data stored in database will be queried later 

for historical data analysis, visualizing, reporting and real-time monitoring.

Apache Zeppelin [40] is a web based and multipurpose notebook that enables interac-

tive data analytics, it is an open-source data analysis environment that runs on top of 

Apache Spark. The notebook supports real-time interactive data exploration, visuali-

zation, and collaboration. Zeppelin supports a growing list of programming languages 

and interfaces, including Scala, Python, Hive, SparkSQL, AngularJS, shell, and mark-

down. It can make beautiful data driven, interactive and collaborative documents with 

scala and more. Apache Zeppelin is useful for working interactively with long work-

flows: developing, organizing, and running analytic code and visualizing results. Zeppe-

lin can dynamically create input forms in your notebook and provide basic graphics to 

show results and the notebook URL can be shared among collaborators. Using Zeppe-

lin, a real-time data dashboard has been created which will retrieve data from the Cas-

sandra database and displays it in charts and tables and many others. This dashboard is 

refreshing data in every second. Dashboard can be shared with an authorized person, 

who could be a physician, doctor, a participating health firm or an external consultant 

to allow them to look at the collected data regardless of their patient and health status.

Experiments

Experiment setup

The real-time health status prediction system based on Spark, Kafka and Cassan-

dra was written using Scala and Zeppelin as a development platform which support 

many interpreters like Scala, Spark and Cassandra. Indeed, we don’t need to create 

an assembly package containing the code and its dependencies. Firstly, the proposed 

application is carried out on single node cluster created with core i7 processor and 

8  GB RAM, having Ubuntu 16.04 operating system through Spark platform which 

integrates DT model with Kafka streaming data handling. The application after estab-

lishing connection to the Kafka streaming as detailed in Fig. 2, is continuously receiv-

ing the data streams from multiple Kafka producers and once it encounters the health 

attributes check streams, it extracts the attribute values from each topic of disease 

events sent by Kafka streaming and apply the DT model to predict the health status. 

On the other hand, each predicted status is stored in a table through Cassandra data-

base, based on the identifier (ID) as a primary key which is more suitable for the data 

redundancy. Data stored in database will be queried later for historical data analysis.

After testing the application on single node cluster, a multi-node cluster was cre-

ated. Table 3 shows the characteristics of our master and worker nodes.
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In this step, all experiments were conducted with the available computing resources 

on a cluster of one master node and two nodes acting as workers. VMware virtual nodes 

are used in the Ubuntu 16.04 operating system. Firstly, a group called Spark and Spark 

user account has been created to simplify the communication between nodes. Java and 

Scala have been installed. We install Open SSH Server, generate key pairs and configure 

passwordless ssh between the nodes such that Spark master can connect, start, stop and 

execute jobs in different workers. We have unpacked and installed Spark, Kafka and Cas-

sandra in single node. Two topics and tables have been created, one for heart disease and 

one other for diabetes disease. We edit .bashrc file located in user’s home directory and 

add environment variables such as JAVA_HOME and SPARK_HOME. Add file slaves 

in $SPARK_HOME/conf which must include hostname of workers. To have the same 

copy of different frameworks, we copy the single node cluster setup folder three times, 

rename one as master and other as worker1 and worker2. Change the hostname and 

hosts on all nodes. Algorithm 3 represents the steps to setup the cluster. 

Algorithm 3 The steps to setup the cluster

Step1: Create a group called spark, an user called spuser and add the spuser to sudoers list
addgroup spark
adduser –ingroup spark spuser
visudo
ALL= (ALL) ALL

Step2: Install ssh server and change permissions and disable IPV6
apt-get install openssh-server
ssh-keygen
cat home/.ssh/id rsa.pub ≫ home/.ssh/authorized keys
chmod 700 home/.ssh/authorized keys

Step3: Install Java, Scala, Spark, Kafka, Cassandra and Zeppelin
Download zip file of all installation
Unpacked and move all these zip files to /usr/local/
Change permissions of all files to have all permissions for spuser

Step4: Update home/.bashrc file
Add all necessary environment variables

Step5: Setup multinode cluster
Copy the single node cluster 3 times
Rename one Master and other as worker1 and worker2
Update hostname and hosts of all 3 nodes

Step6: Starting the cluster
Open terminal (Ctr+Alt+T)
Cd home/usr/local/kafka/bin
Start Zookeeper
Start Kafka
Create Kafka topic
Cd home/usr/local/cassandra/bin
Start Cassandra
Create a keyspace and table
Cd /usr/local/zeppelin/bin
Start Zeppelin

Table 3 Cluster nodes characteristics

Parameter Master Worker

Processor Core i7 Core i3

Cores 4 4

Memory 8 GB 4 GB

Operating system Ubuntu 16.04 Ubuntu 16.04
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Algorithm 4 describes the main steps to implement our Spark application in Zeppelin 

notebook. 

Algorithm 4 Processing steps of Spark application

Step 1 : Spark context
Create an instance of SparkContext (sc by default in Zeppelin notebook) and StreamingContext

to use all Spark streaming features
Step 2: Get Kafka streams

Create the direct stream with the Kafka parameters and topic using createDirectStream method
of KafkaUtils
Step 3: Data processing

Extract identifier and attributes from each stream and from each topic using foreachRDD method
Apply the saved machine learning model to predict health status
Save all attributes and predicted label to Cassandra keyspace and table using saveToCassandra

method
Step 4: Start the computation

Start Spark streaming context using start method

We conducted three scenarios with a stream interval of 1 , 2 and 3 s. Our conducted 

experiments is shown in Table 4.

Results and discussion

Performnace evaluation of machine learning model

The two datasets have been randomly split into a training data set and a test data set, 70% 

of the data is used to train the model, and 30% will be used for testing. DT has been trained 

over this data. For large distributed datasets, sorting feature values is expensive, in this 

implementation, an approximate set of split candidates are calculated over a sampled frac-

tion of data and the ordered splits create bins and maxBins parameter specify the maxi-

mum number of such bins, so maxDepth parameter specifies the maximum depth of the 

DT. Using the dataset below with varying parameters maxDepth, maxBins and indices of 

impurity, different DT models has been tested and the classification accuracy values are cal-

culated in each case. Using the testing dataset and based on the model error analysis which 

avoids negative effects of both under fitting and over fitting, it has been discovered that 

the higher accuracy prediction stabilizes as the number of maxBins and maxDepth take the 

values indicated in Table 5. Figure 8 represents in bar chart the performance of the imple-

mentation of DT using Spark.

• Receiver operating characteristic (ROC) curve: is one of the most important and effec-

tive metrics of evaluating the quality or performance of diagnostic tests. The ROC curve 

is supported by MLlib.

• Classification accuracy: This is defined as the ratio of all correct predictions made to 

overall prediction data. In this work, classification accuracy for the datasets are meas-

ured using the equation: 

Table 4 Conducted experiments

No of nodes Events/s Kafka Topic partitions Spark workers Cassandra

1 ∼ 550,000 1 1 1 1

2 ∼ 1,300,000 2 2 2 2
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where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false 

negatives, respectively.

Sensitivity measures the proportion of actual positives which are correctly identified and 

specificity measures the proportion of negatives which are correctly identified. These are 

formulated by:

The effectiveness of our machine learning model was conducted on two synthetic data 

sets. The empirical results indicate that our implementation of the DT algorithm with 

Spark is both effective and scalable. From the table above, the proposed model provides 

stable and high prediction quality.

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

FP + TN

Table 5 Classification results

Dataset Diabetes Heart disease

maxBins 250 100

maxDepth 8 6

Sensitivity (%) 85.97 80.00

Specificity (%) 94.38 85.36

ROC curve (%) 90.03 82.3

Accuracy (%) 91.57 82.40

Fig. 8 Machine learning results
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Apache Spark vs Weka performance

With its capabilities like in-memory computation, Spark performance can be several 

times faster than other traditional technologies especially in iterative machine learn-

ing. In order to show the efficiency of Spark based prediction system in terms of time of 

training and testing the machine learning model on large data, other data records have 

been simulated. The simulation is performed using scikit-learn which is a Python library 

for machine learning that provides functions for generating a suite of test problems.

To test and demonstrate the scalability of our approach, a comparative study between 

execution time of DT based on Spark and Weka tool was performed. In this context, to 

have sufficient database size, we increase the number of records. Then, the speed of the 

DT algorithm using scala and MLlib library was measured and compared with the same 

algorithm in Weka. Indeed, we have compared the running time of DT in the cluster 

(Spark) against Weka. Figs. 9 and 10 represent in bar chart the performance comparison 

of the implementation of DT using Spark and Weka. In this simulation when the number 

of records is equal to or higher than 3 million, the model training is not supported by 

using simple C4.5 in Weka.

As we can see from the line and bar chart, running DT model with Spark is faster 

than Weka tool. It takes only 43.2 s to train the model in case of 4 million records with 

Fig. 9 Execution time comparison of DT using Spark and standard DT: time taken to build model

Fig. 10 Execution time comparison of DT using Spark and standard DT : time taken to test model
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diabetes dataset when Weka takes 185 s. Also it takes only 58.43 s to train the model in 

case of 4 million records with heart disease dataset when Weka takes 274.36 s. The pro-

posed Spark based DT takes less time to train and test the machine learning model. The 

parallel DT algorithm of Spark Mllib reaches best scalability owing to the distributed 

computing on cluster nodes and in-memory computation. Spark MLlib processes data 

in less time because it divides the job into several tasks which are executed on workers 

nodes. After an analysis of the results achieved has been made, it can be concluded that 

Spark provides the best way to implements the proposed system to predict health status 

in real-time.

Spark based DT scalability

In this step, performance evaluation of the proposed Spark-based C4.5 algorithm in a 

distributed parallel environment is performed. Different numbers of nodes and different 

sizes of training datasets are considered. As mentioned earlier, we have 2 nodes and our 

training dataset ranges from 100k to 4 million in terms of the number of records.

Figures 11, 12, 13 and 14 illustrate the execution time of our Spark-based C4.5 algo-

rithm with a different number of nodes. When the number of instances is 2, 3 and 4 

Fig. 11 Performance comparison of DT using Spark for different nodes: time taken to build model

Fig. 12 Performance comparison of DT using Spark for different nodes: time taken to test model
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million, respectively, we can see that the total execution time decreases as the number 

of nodes increases. This indicates that the higher the number of nodes involved in com-

putation, the faster the algorithm will be due to the distributed computing. In contrast, 

the execution time of standard DT using Weka with two nodes remains stable due to the 

undistributed computing.

Throughput

Firstly, the DT model was built and tested separately by varying parameters such as 

impurity, maxDepht and maxBins, the minimum model error is taken into account 

based on the classification accuracy of the model. An offline model has been created and 

saved in order to use it in real-time. In our case, data producers consist of two simula-

tor applications, one for heart disease streams and other for diabetes. Each one sends 

approximately 270,000 events per second per node (it can be more) in predefined format 

to the specified topic and which in turn serves them to consumers (Spark streaming), 

Fig. 15.

Fig. 13 Performance comparison of DT using Spark and Weka for different nodes: time taken to build model. 

K: thousand, M: Million

Fig. 14 Performance comparison of DT using Spark and Weka for different nodes: time taken to test model. 

K: thousand, M: Million
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For sake of simplicity we are using two producers. All these data events will be cap-

tured by Kafka streaming in real-time and are sent to the Spark streaming application, 

Kafka data streaming module is responsible for managing the events streams. Stream-

ing application consumes data streams and processes them for predicting the health 

status, series of transformation on Dstreams is performed using Spark streaming API. 

For each instance, the generated identifier and attribute values were extracted and 

applies machine learning model on extracted health attributes. The details of each 

instance were persisted in Cassandra database table for querying them later. We 

measured the processing time for all tasks using the Spark monitoring API. Figure 16 

represents the performance evaluation of the proposed system. We see that the sys-

tem can process roughly 550 k records per second/node, approximately 30  MB per 

second/node.

As we can see from Fig 16:

• the larger the throughput, the more cost of processing time.

• the more nodes we use, the less of processing time.

• if enough nodes are leveraged, even the size of throughput is big, the performance 

can be near to the optimal one. For example, given a throughput of 2.5 million 

records, if we use 2 nodes, the execution time is near to 2 s. While the execution time 

Fig. 15 Simulation topics

Fig. 16 Performance evaluation: processing time
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is near to 3 s when we use a single node. The execution time of the same throughput 

decrease by adding other nodes.

• Spark streaming with distributed machine learning is a good choice to deal with real-

time problems. Namely, by leveraging more nodes, we can resolve big data problems 

especially those related to real-time prediction in healthcare field.

Using Apache Zeppelin a data dashboard has been created which will retrieve data 

from the Cassandra database and displays it in charts and tables. This application 

uses Angularjs and Spark SQL to push the data to the web page in fixed intervals, so 

data will be refreshed automatically. It can be accessible on desktop as well as mobile 

devices. The database can be queried by different queries like, number of instance, 

number of positive and negative cases, some statistics, consult the state of a patient 

by his identifier in order to extract the critical and useful information or to under-

stand the user behavioral patterns by the practitioners.

Our study focuses on application of machine learning model on streaming big data 

coming from various source of diseases, with Kafka serving for managing the event 

streams and transforming healthcare data into information. Through discussing the 

result of our experiment, it is concluded that Spark is especially fit for iterative algo-

rithms that require multiple passes on data. It provides a faster execution engine for 

distributed and streaming processing. The usage of Spark in this system improves the 

data processing speed time more than other traditional tool of data mining.

The main difference between proposed system and traditional data analytics 

approaches is that the traditional methods analyze one instance at time and it depends 

of imported data volume. On the other hand, our system can process thousands of 

instances coming each second in real-time based on Dstream which is a collection of 

RDD and each RDD represents one or more instances. Also, the system supports big 

data processing, uses real-time and distributed machine learning, handles incoming 

streams using Spark streaming instead of MapReduce, predicts different type of diseases 

at the same time based on the concept of Kafka topic, provide high speed in real-time 

classification which becomes more meaningful since the volume of generated data from 

devices, cloud and many others is increasing at an observable rate.

Conclusion

The amount of healthcare data is constantly growing time by time at alarming rate in 

different and inconsistent data sources. Improving the patient outcome and making scal-

able real-time health status prediction system, streaming computing platform is needed. 

However, this vertiginous volume of data can no longer be collected, processed, stored, 

and exploited by traditional information technology solutions combining physical infra-

structures and relational databases. Based on the challenges discussed previously, many 

flaws in traditional information technology in scaling with the hardware in parallel which 

is not suitable in dealing with growing data. In this paper a real-time health status pre-

diction and analytics system is proposed and tested on cluster, it was built around open 

source big data technologies. The data events coming from various diseases ingested 

to Spark through Kafka streaming. Using the Spark streaming API, the system process 

received relevant health data events by applying DT to predict health status, send an 
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alert to care providers and store the details in distributed database. The stored result will 

be queried to perform healthcare data analytics and stream reporting.

The creation of a distributed and real-time healthcare analytics system using tradi-

tional analytical tools is extremely complex, it requires a variety of skills, intensive and 

more expensive programs and considerable amount of time and money. However, using 

efficient open source big data technologies and data mining techniques can easily do 

the same job. With slight modification, the same system can predict others diseases, 

also it can be extended to other domain. As a future work, we aim to integrate real data 

sources, such as mobile devices, sensor data and social media data to our system for 

interacting user’s requests.
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