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AbstractÐThe purpose of this article is to give a new analysis of the Anisotropic

Diffusion (AD) and propose an adaptive nonlinear filtering based on a judicious

choice of the Conductance Function (CF) and the edgeness threshold. A new

undesirable effect, which we call the ªpinhole effect,º may result when AD is

introduced for the first time. A robust solution to this effect is proposed and

evaluated through experimental data. The evolution of the diffused signal is

analyzed through a physical model using the Optical Flow Technique (OFT). The

overall strategy is evaluated through experimental results obtained on synthetic

and actual images.

Index TermsÐNonlinear anisotropic diffusion, fluid mechanics, homogeneity,

image enhancement, noise smoothing, optical flow.
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1 INTRODUCTION

ONE way to facilitate contour extraction is to design a filter which
combines a low pass filtering in homogeneous regions and a
sharpening effect in transition regions. However, it is not easy to
design a linear filter which achieves these two conflicting goals.
This motivates the development of a multitude of nonlinear filters
based on order statistics [1], [2], mathematical morphology [3], [4],
or Partial Differential Equations (PDEs) related to diffusion process
[5], [6], [7]. A nonlinear filter class that has been proven very
efficient is the one based on nonlinear anisotropic diffusion. The
basic idea is to consider the image signal as a medium where
diffusion can take place with a variable conductance [5], [8].
However, some drawbacks and limitations in this model have been
mentioned in the literature [9], [10], [11]. Indeed, CatteÂ et al. [9]
have proven the ill-posedness, in some cases, of the diffusion
equation when using the CF proposed by Perona and Malik.
Whitaker and Pitzer have pointed out the staircasing effect that
may occur on wide smooth edges when the conductance
parameter is not carefully adapted to the range of gradient values
[10]. Besides these works, an interesting strategy has been
proposed by Li and Chen [11]. The basic idea is to use a decreasing
function of the gradient and to adapt the conductance parameter �
during the diffusion process evolution. They have also noticed, as
did Whitaker and Pizer, that choosing an appropriate single value
for � so as to both sharpen the edge and remove the noise is rather
a difficult task. The aim of this work is twofold : to give a new look
at the AD in the framework of physics and to propose an Adaptive
Nonlinear Anisotropic Diffusion (ANAD) for image enhancement.
The paper is organized into six sections. After a brief introduction,
the anisotropic diffusion model of Perona and Malik is recalled,
followed by the improvements suggested by Li and Chen. Section 3
presents a physical interpretation of the AD with the help of OFT
and a new image model we introduce, ªthe corpuscular model.º
The next section is devoted to the improvements we propose.
Section 5 presents the experimental results and the evaluation of

the proposed method. Concluding remarks and open questions are
given in the last section.

2 STANDARD NONLINEAR ANISOTROPIC DIFFUSION

(SNAD) AND SOME IMPROVEMENTS

Let us recall Perona and Malik's model, which we call SNAD. The
image is considered as a medium where a fluid can diffuse in an
anisotropic manner. In this case, the heat equation which governs
the temporal evolution of the intensity is given by:

@

@t
I�x; t� � rT �c�x; t�rI�x; t��; �1�

where c�x; t� is the conductance function. The idea of Perona and
Malik is to chose a decreasing CF of the gradient in order to insure
high diffusion in homogeneous regions and weak diffusion near
edges. They suggested two heuristic functions satisfying these
requirements:

c1�x; t� � exp ÿkrI�x; t�k
�

� �2

or

c2�x; t� � 1

1� krI�x; t�k=�� �1�� �where � > 0�: �2�

However, CatteÂ et al. [9] have shown that, for some gradient
values, the problem turns to an inverse heat equation which is
known to be an ill-posed problem. To overcome this difficulty,
another scaling parameter � intervening in an implicit Gaussian
filtering is introduced [10], [11]. In the method of Whitaker and
Pizer (WP method), a decreasing function of time ��t� is suggested.
But, these authors do not give a strategy allowing us to
automatically adapt this parameter to the local properties of the
image signal. Li and Chen [11] used the same idea but adopted
another strategy, where the conductance parameter �� is empiri-
cally adapted to the signal activity. In the following sections, we
give a strategy which automatically computes the adequate value
of ��. We also experimentally show why the CFs c1 and c2 are not
well adapted in some cases for filtering purpose. To track the
diffusion process, we make use of the OFT in the framework of a
physical model where the image is considered as a set of particles.

3 OPTICAL FLOW TECHNIQUE (OFT) AS AN AID FOR

DIFFUSION TRACKING

First, in order to make the article self-sufficient, the Standard
Optical Flow (SOF) of Horn and Schunck [12] is recalled. We do
not use more elaborated OFT [13], which have been proven more
efficient than SOF, since the aim of this work is not to evaluate the
OFT.

3.1 Optical Flow and Fluid Dynamics

The strong hypothesis of SOF is the intensity constraint (IC) which
states the intensity conservation during the movement:

It � uIx � vIy � 0; �3�
where �u; v� are the components of the velocity vector V and the
subscribes indicate the derivations with respect to the temporal
and spatial variables. Further constraints are necessary to solve for
both components of V. Horn and Schunck introduced an
additional constraint, called the smoothness constraint (SC), which
states that the displacement field is supposed to be smooth. The
(IC) and (SC) could be put together and expressed as the following
optimization problem:
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It � uIx � vIy
� �2��2 kruk2 � krvk2

h in o
d
; �4�

where 
 is the local neighborhood where the vector field V is
supposed to be smooth and where � is a parameter allowing to
control the weight accorded to the (SC). Using the well-known
Euler-Lagrange formalism, an iterative solution is obtained.
Schunck has noticed that the IC is equivalent to the equation of
continuity derived from the fluid mechanics in the case of a
noncompressible fluid [14]. Otherwise, the introduction of the
divergence term of V1 yields:

It � uIx � vIy � �ux � vy�I � 0: �5�
If we again make the analogy with fluid mechanics, the heat

equation (1) could be interpreted as the second law of Fick [15]
which governs the diffusion of particles in a fluid. Indeed, if n�x; t�
is the mean density of particles, this law is expressed in the
following equation.

@

@t
n�x; t� � rT c�x; t�rn�x; t�� �; �6�

where c is the self-diffusion coefficient. Thus, we can see that (6) is
nothing but (1) where I is replaced by n. Notice that this law
follows from the two following relations:

j � ÿc�x; t�rn �7�

@

@t
n�x; t� � rT j � 0; �8�

where j is the current density vector given by:

j � n�x; t�V�x; t�: �9�
Replacing j in (8) by its expression (9), we can see that (8) is

equivalent to (5), where I plays the role of n. This analogy shows
that the diffusion equation (1) of Perona and Malik implicitly
contains the IC (5). Therefore, this observation fully justifies the use

of the OF-GIC to analyze the diffusion process in image signal.

3.2 The Corpuscular Image Model (CIM)

Now, we consider the image as a collection of fictive identical
particles embedded in a 2d space 
 of finite size. This set could be
discretized into a finite number of nonoverlapping subsets !j
representing a pixel or a group of adjacent pixels. Let n�x; t� be the
spatio-temporal distribution of the particle density. It is assumed
that, in this fictive gas, the particles have the same elementary
charge, say g, for example, which could represent a quantum of
gray level in the digital image. Then, the intensity measured in the
subset !j at the instant t is given by:

Ij�t� �
Z
!j

gn�x; t�d! � gNj�t�; �10�

where Nj�t� is the number of particles contained in an elementary
set !j at the instant t. Thus, in our physical representation, a ªblack
pixelº is assimilated to a vacuum domain (no particle), whereas a
ªwhite pixelº corresponds to a domain with the maximum allowed
number of particles. With this formalism, one can define the
average instantaneous velocity of the particles contained in the
subset !j, at the location x by:

Vj�x; t� � 1

Nj�t�
XNj�t�

k�1

Vk�!j; t�; �11�

where Vk�!j; t� is the individual velocity of the kth fictive particle
belonging to !j at instant t. The use of OF-GIC as a tool for tracking
these particles is then plausible. To assert this statement, let us
examine the synthetic image of Fig. 1, where a central block of size
16� 16 is submitted to a directional diffusion in a 32� 32 matrix.
In this experiment, the diffusion could be interpreted, in the
framework of CIM, as a displacement, in the diagonal direction, of
fictive particles contained in the central block. In terms of image
signal, this diffusion corresponds to an intensity change of +2.
Figs. 1a and 1b show the image before and after diffusion,
respectively. Fig. 1c displays the flow field obtained using SOF.
The use of OF-GIC leads to the more realistic result shown in
Fig. 1d. It could be noticed that, even with the OF-GIC, the flow
field is not correctly estimated near the block border. This is due to
the regularization constraint, which tends to propagate the
smoothness of the flow field. This result confirms the inadequacy
of using SOF for computing the flow field and the usefulness of
OF-GIC in tracking and visualizing gray level changes as flow field
in the framework of the CIM.

4 ADAPTIVE NONLINEAR ANISOTROPIC DIFFUSION

(ANAD)

For the sake of simplicity and clarity of the analysis, the main ideas
of our filtering method are progressively presented.

4.1 Analysis of the Conductance Function Behavior

It could be noticed from Figs. 2a and 2b that the transition length
between the maximum and minimum conductance values varies
with the parameter �. This transition length, or gradient gray-level
range, increases with �. This makes the control of the diffusion
difficult. A more well-behaved CF (see Fig. 2c), preserving this
transition range whatever the � value, is the following:

c3�x; t� � 1

2
tanh  �ÿ krI�x; t�k� �� � � 1� �; �12�

where  controls the steepness of the min-max transition region,
whereas � controls the extent of the diffusion region in terms of
gradient gray-level. In all our experiments, fixing  � 0:2 is proven
to be efficient [16]. To substantiate all these observations, we use
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1. When we deal with this equation, we refer to Optical Flow with
Generalized Intensity Constraint (OF-GIC), while we refer to Standard
Optical Flow (SOF) when (3) is used.

Fig. 1. Comparison of SOF with OF-GIC. (a) Original image. (b) Image (3a) after

diffusion. (c) Flow field obtained with SOF. (d) Flow field obtained with OF-GIC.
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Fig. 2. Conductance functions for different � values (solid � � 1, dashed � � 2, dotted � � 3). (a) Conductance function c1. (b) Conductance function c2. (c) Conductance

function c3.

Fig. 3. The effect of the conductance function choice. (a) Test image (the arrows indicate the transition where the gradient gray-level is 20 (i.e., threshold �s)). (b)

Diffused field with c1. (c) Diffused field with c3.



the synthesized image shown in Fig. 3a. The OF-GIC allows to

track the effect of the diffusion when using the two CFs c1 and c3.

In this experiment, AD is performed for 10 iterations with � � 20

and  � 0:2. Notice that the use of c1 yields an ill-defined diffusion

in high gradient regions leading to slow transition where initially

the gradient reaches its maximum value (see Fig. 3b). Thus,

diffusion continues even in sharp regions when using c1, whereas,

our function c3 results in a well-defined sharp transition in these

regions (see Fig. 3c).

4.2 Pinhole Effect (PE)

A new phenomenon PE is addressed in the following: It happens

when a pixel or a group of adjacent pixels with a gray-level of

intermediate value is near a sharp transition region. To illustrate

PE in physics context, consider a medium where two or more

regions with different conductivity are separated by interfaces.

Then, it is assumed that a fluid can only diffuse inside regions, but

never across frontiers. Now, if there exists a small hole on an

interface, then the fluid can diffuse across these frontiers. In the

image context, the pixel responsible of the PE will be called

ªvanishing pointº (VP). When diffusion takes place, this point

serves as a junction between the two regions leading to an

undesirable smoothing effect through edges. To point out this

effect, a synthetic image with a VP in the vicinity of a sharp edge is

generated. Figs. 4b, 4c, and 4d show the SNAD evolution after 25,

50, and 150 iterations, respectively. In order to avoid PE, a simple

method is proposed and evaluated in the following: To localize VP

we examine the gradient of the current pixel and those of its

neighbors. Let �ÿ, ��, and �0 represent, respectively, the mean

gray-level of pixels with negative flow, that of pixels with positive

flow, and that of the central pixel. For a given gradient threshold

value �s, the central pixel is considered as a VP if the following

conditions are simultaneously satisfied:

0 � �0 ÿ �ÿ � �s
0 � �� ÿ �0 � �s
�s � �� ÿ �ÿ

9=; �13�
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Fig. 4. Pinhole effect illustration. (a) Original image. (b) Result of SNAD after 25

iterations. (b) Result of SNAD after 50 iterations. (d) Result of SNAD after 150

iterations.

Fig. 5. Pinhole effect illustration in actual image: comparison of SNAD with ANAD. (a) Original noisy image. (b) SNAD with c3, �2 � 50, after six iterations. (c) SNAD with

c3, �s � 100, after six iterations. (d) ANAD with c3, �s � 100, after six iterations. (e) Zoomed region of interest of image (c). (f) Zoomed region of interest of image (d).



The method of computing �s will be addressed in the next
section and an analytical proof of the existence of PE and the
plausibility of conditions (13) is given in the Appendix. When VP is
detected, the diffusion is stopped or the point is replaced by a
neighbor. To analyze the PE in a realistic situation, we consider an
actual image representing a text corrupted by an additive white
gaussian noise (Fig. 5a) in order to create some VPs leading to PE.
Fig. 5b shows the result when applying SNAD with c3, �s � 50,
and after six iterations. For this �s value, the PE is not noticeable,

but the noise is not completely removed. Increasing the �s value
will result in an image where the noise is totally smoothed out, but
the PE is clearly visible, especially on the character contours, as
shown in Fig. 5c, whereas Fig. 5d displays the result obtained
when the PE is avoided using our criterion expressed in conditions
(13). For subjective comparison, a region of interest in images
Fig. 5c and Fig. 5d is zoomed and shown in Figs. 5e and 5f,
respectively.

4.3 Edgeness Threshold Estimation

The critical value �s defines two different behaviors of the
diffusion: blurring effect if krIk � � and edge sharpening for
krIk > �s. The  parameter determines the length of the min-max
diffusion range, i.e., the gradient range allowing varying the
process from minimum (zero) diffusion to maximum diffusion.
The proposed CF c3 allows adjusting the diffusion when the
gradient threshold �s is known. For this purpose, a simple effective
method for estimating the gradient threshold is described in the
following. In contrast with the approach of Li and Chen, where this
parameter is empirically chosen to decrease as the diffusion
evolves, we derive here a method making �s signal dependent. To
achieve that, we make use of two less restrictive assumptions:

. At least a fraction, say �, of the image is composed of
homogeneous regions (typically 10 percent).

. The random noise is identically and independently
distributed in the image.

The image is subdivided into nonoverlapping blocks of the
same size, typically between 4� 4 and 32� 32 pixels. A local
homogeneity or uniformity measure [17] is then defined and
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Fig. 6. Experimental �s�t� curve.

Fig. 7. Comparison of WP, LC, SNAD, and ANAD (with a block size 8� 8) for ªLenaº image. (a) Original image. (b) Noisy image (noise �2 � 400). (c) WP, �s � 25, after

10 iterations, NMSE = 0.2636 (five trials). (d) LC, �s � 45, after 10 iterations, NMSE = 0.2489 (five trials). (e) SNAD, �s � 35, after 10 iterations, NMSE = 0.2694 (five

trials). (f) ANAD, after 10 iterations, NMSE = 0.2323 (one trial).



measured in each block. Then, the blocks are sorted in order of
decreasing homogeneity. Only a fraction of the blocks with high

homogeneity measure are retained. They represent then the
homogeneous regions of the image, as assumed in our first
hypothesis. Now, we use the second hypothesis as an argument to
estimate the noise variance. Indeed, since the noise is assumed to
be randomly distributed in the image space, then a practical way to

estimate its variance is to consider homogeneous regions where
small variations or texture are mainly due to noise. Thus, in order
to estimate �s, we use, as Perona and Malik, a noise estimator
similar to that described in the edge detection method of Canny
[18]. But, in contrast with these authors, only selected homo-

geneous blocks are taken into account in this estimation. This
analysis is performed at each iteration and a new threshold �s
value is automatically determined. It could be noticed in Fig. 6 that
the curve representing the evolution of this parameter shares the

same decreasing behavior than that of Li and Chen. But, these
authors do not explain how to adapt �s to the signal local
characteristics during the process. Here, a solution for automati-
cally adapting �s at each iteration is proposed such as to make �s
signal dependent.

5 EXPERIMENTAL EVALUATION OF ANAD

To evaluate the efficiency of ANAD method, actual images
corrupted by Gaussian white noise are considered. Our method
is compared with the other cited methods. For subjective

comparison only, visual judgment is used, whereas, for objective
comparison, we use the Normalize Mean Square Error (NMSE)
given by:

NMSE �
X
x;y

Ir�x; y� ÿ I0�x; y�� �2=
X
x;y

Id�x; y� ÿ I0�x; y�� �2; �14�

where I0, Id, and Ir are the original, the degraded, and the filtered

signal, respectively. The standard Lena image (Fig. 7a) is used for
comparison. This image is corrupted by Gaussian noise and
treated by the four methods referenced WP for Whitaker-Pizer, LC
for Li-Chen, SNAD for Perona-Malik, and ANAD for our method.
The first three methods are applied with the optimum, on the basis

of NMSE and visual quality criteria, value of the conductance
parameter �s obtained after five trials. Through Figs. 7c, 7d, 7e, one
can observe that the results of applying these four methods are, on
the basis of visual quality criterion, slightly comparable, whereas,
on the basis of NMSE criterion, ANAD outperforms the other

compared methods.

6 CONCLUSION

Through this study it is demonstrated that the method presented

here is an improvement of the nonlinear anisotropic diffusion
filtering. It has been shown that it is possible to obtain an adaptive
and automatic AD with some simple assumptions about the signal
and the noise. It is proven that the use of OFT with GIC as a tool for
tracking the process may help in understanding the diffusion in

image signal. Furthermore, a new CF sharing some interesting
properties has been introduced. It is also proven that, even when
the CF is well understood, this nonlinear filtering can produce
unexpected results, such as PE. In summary, the superiority of the
proposed method over the others is essentially its adaptability and

flexibility. Indeed, in our method, the only parameter to chose is
the size of the block analysis. It is easier to have an intuitive idea
about the size of the homogeneous block than to select the
adequate value for �s after many trials, as done in the other cited

methods. Some opened questions are being examined in the near
future. It essentially concerns the strategy to adopt for providing a

low computational cost and adapting the block size during the
iterative process evolution.

APPENDIX

Here, for the sake of simplicity, the PE in the case of 1D discrete
signal is analyzed. Let Ii be the intensity of the point i, Iiÿ1, and
Ii�1 those of its left and right neighbors, respectively. First, let us
assume this transition such that kIi�1 ÿ Iik > �s. Then, the
diffusion could not take place in this case. Now, let us consider a
simple situation where the intensity of the center point at i is such
that Ii � �Ii�1 � Iiÿ1�=2. Thus, this point is a VP since the
condit ions expressed in (13) are ful f i l led. Indeed,
0 � I0

i ÿ I0
i�1 � �s, 0 � Iiÿ1

0 � �s, and �s � I0
iÿ1 ÿ I0

i�1, where the
superscript 0 stands for the initial state. If we call cEi and cWi the
conductance coefficients (East and West, resp.), the iterative
version of (1) can be written in the following form:

It�1
i � Iti � � cE�EI � cW�WI� �ti; �A:1�

where t is the temporal parameter, � 2 �0; 1=3� to insure the

stability of the iterative scheme and the nearest-neighbor differ-

ence operators are: �EIi � Ii�1 ÿ Ii and �WIi � Iiÿ1 ÿ Ii. The

conductance coefficients are updated every iteration as done in [8]:

ctEi � c krIti�1=2k
� �

and ctWi
� c krItiÿ1=2k
� �

.

Given the form of the considered signal the left and right

discrete differences are the same: krI0
i�1=2k � krI0

iÿ1=2k, i.e., c0
Ei
�

c0
Wi
� c0

i and I0
iÿ1 ÿ I0

i � I0
i ÿ I0

i�1 � �0
i , where �0

i > 0.
The use of (A.1) at the first iteration yields:

I1
i � I0

i � � cE�EI � cW�WI� �0i c
� I0

i � � c0
i I

0
i�1 ÿ I0

i

ÿ �� c0
i I

0
iÿ1 ÿ I0

o

ÿ �� �0
i

� I0
i � �c0

i ÿ�0
i ��0

i

� � � I0
i

I1
iÿ1 � I0

iÿ1 � �c0
Eiÿ1

�EI
0
iÿ1

� I0
iÿ1 � �c krI0

iÿ1=2k
� �

�I0
i ÿ I0

iÿ1�
� I0

iÿ1 ÿ �c0
i�

0
i

I1
i�1 � I0

i�1 � �c0
Wi�1

�WI
0
i�1

� I0
i�1 � �c krI0

i�1=2k
� �

�I0
i ÿ I0

i�1�
� I0

i�1 � �c0
i�

0
i :

This result shows that the VP i is not affected by the diffusion
and that the same amount of quanta, in the framework of the CIM,
is received or emitted by the right and left neighboring cells,
respectively. In terms of intensity, it corresponds to a gray-level
variation of �c0

i�
0
i (i.e., PE).
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