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A New Iterative Approach to the Corrective

Security-Constrained Optimal Power Flow Problem
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Abstract— This paper deals with techniques to solve the correc-
tive security-constrained optimal power flow (CSCOPF) problem.
To this end, we propose a new iterative approach that comprises
four modules: a CSCOPF which considers only a subset of poten-
tially binding contingencies among the postulated contingencies,
a (steady-state) security analysis (SSSA), a contingency filtering
(CF) technique, and an OPF variant to check post-contingency
state feasibility when taking into account post-contingency cor-
rective actions. We compare performances of our approach and
its possible variants with classical CSCOPF approaches such as
the direct approach and Benders decomposition (BD), on three
systems of 60, 118, and 1203 buses.

Index Terms— Benders decomposition, contingency filtering,
optimal power flow, security-constrained optimal power flow

I. INTRODUCTION

THE security-constrained optimal power flow (SCOPF)

problem is a nonlinear, non-convex, large-scale opti-

mization problem [1], [2]. The SCOPF has been formulated

under two modes: “preventive” [1] and “corrective” [2], called

hereafter PSCOPF and CSCOPF, respectively. In this paper

we focus on the CSCOPF which, unlike the PSCOPF, con-

siders the possibility of re-scheduling control means in post-

contingency states, other than those with automatic response

to contingencies (e.g., active power of generators participating

in frequency control, automatic tap-changers, capacitor/reactor

bank switching, secondary voltage control, etc). The under-

lying assumption of CSCOPF approach is that operational

limits violation (e.g., power flows, bus voltages, etc.) can be

generally endured up to (at least) several minutes without

damaging the corresponding equipment, which lets some time

for (automatic or human) corrective actions to be implemented.

The major difficulty of the SCOPF problem is its high

dimensionality, especially for large systems and/or when many

contingencies are considered [3]–[5]. Trying to solve this

problem directly for a large power system, by imposing

simultaneously all post-contingency constraints, would lead to

prohibitive memory and CPU times requirements. Moreover,

because in real life applications most contingencies do not con-

strain the optimum, including them all into the SCOPF prob-

lem increases the complexity of the computations by shrinking

the feasible region, and can lead to algorithmic/numerical

problems. This is especially true under stressed operating

conditions, i.e., when the SCOPF solution is most useful.
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Alternatively, since the seminal paper [2], (generalized)

Benders decomposition (BD) [6], [7] has been widely used

to solve various CSCOPF problems, such as: optimization

of operation cost, reactive power planning, computation of

available transfer capability, etc. [2], [8]–[15]. The CSCOPF

problem is considered either as such [2], [8]–[12], or is em-

bedded in a more general formulation such as generators unit

commitment [13]–[15]. In the context of the unit commitment

problem most CSCOPF approaches use simplified linear (DC)

formulation, in order to reduce problem complexity, except

for [15]. An exhaustive list of generalized BD applications in

power systems is provided in [16].

BD approach consists of decomposing the original CSCOPF

problem into a master problem and several slave subproblems

which interact iteratively. It is very appealing due to the

possibility to keep the size of master and slave problems very

tractable (almost the same as optimizing a system pre- or post-

contingency state only) as well as to distribute computations

among several processors, which can considerably speed-up

computations [2]. On the other hand, BD requires (theoreti-

cally) the convexity of the feasible region which can not be

guaranteed in the AC model CSCOPF, and consequently it is

recommended to be used with care [2], [9].

To mitigate the drawbacks of these two approaches we pro-

pose instead a new Iterative CSCOPF approach (ICSCOPF),

which comprises four modules: a standard CSCOPF module

applied to a small subset of potentially binding contingen-

cies, a (steady-state) security analysis (SSSA) module, a

contingency filtering (CF) module, and an OPF module to

check the “controllability” of post-contingency states. This

approach essentially aims to efficiently identify an as small as

possible superset of the binding contingencies at the CSCOPF

optimum. We call binding a contingency which leads to active

post-contingency constraints, different than in the base case,

related to branch currents and/or voltage magnitudes. Assum-

ing that the CSCOPF problem is feasible, the set of binding

contingencies is the smallest subset of the full postulated

contingency set which provides the same optimal objective

value as the full set. We provide extensive simulations results

on 3 test systems of up to 1203 buses, with 2 different filtering

schemes, and comparisons with Benders decomposition.

The rest of the paper is organized as follows. Section II

introduces the CSCOPF problem. Section III presents the

ICSCOPF approach and its variants. Section IV provides

numerical comparisons with competing approaches for the

solution of two CSCOPF problems. Conclusions are drawn

in Section V. Details concerning the application of Benders

decomposition are collected in the Appendices.
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II. CORRECTIVE SECURITY-CONSTRAINED OPTIMAL

POWER FLOW PROBLEM

The CSCOPF problem can be formulated as follows [2]:

min
x0,...,xc,u0,...,uc

f0(x0,u0) (1)

s.t. gk(xk,uk) = 0 k = 0, . . . , c (2)

hk(xk,uk) ≤ 0 k = 0, . . . , c (3)

|uk − u0| ≤ ∆uk k = 1, . . . , c (4)

where f0 is the objective function, and for the k-th system

configuration (k = 0 corresponds to the pre-contingency

configuration, while k = 1, . . . , c correspond to the c post-

contingency configurations), xk is the vector of state variables

(i.e., real and imaginary part of voltage at all buses), uk is the

vector of control variables (e.g., generators active power, gen-

erators voltage, controllable transformer ratios, shunt element

reactances, phase shifters angle, etc.), ∆uk = Tk duk/dt is

the vector of maximal allowed variation of control variables

between the base case and k-th post-contingency state, Tk is

the assumed time horizon allowed for corrective actions to

ensure post-contingency state feasibility and duk/dt is the rate

of change of control variables in response to contingency.

Constraints (2) and (3) impose the feasibility of the pre-

contingency and corrected post-contingency states. Equality

constraints (2) are essentially the AC bus power balance equa-

tions, while the inequality constraints (3) include physical lim-

its of equipments (e.g., bounds on: generators active/reactive

powers, controllable transformers ratio, shunts reactance, etc.)

and operational limits (e.g., branch currents and voltage mag-

nitudes). Inequalities (4) are “coupling” constraints aimed to

prevent unrealistic variations of control variables between the

base case and post-contingency states.

III. ITERATIVE APPROACH TO THE CSCOPF SOLUTION

A. Rationale of the ICSCOPF approach

Let P⋆
0 be an optimal operating point (computed by an OPF

or a CSCOPF considering only a subset of the c postulated

contingencies), and u⋆
0 be its corresponding vector of optimal

controls settings. Clearly, u⋆
0 is also the optimal solution of the

CSCOPF problem (1-4) if for any contingency k = 1, . . . , c
there exist corrective controls uk satisfying (4) and ensuring

the feasibility of post-contingency state xk. We may check

this by solving for every contingency k the following Post-

Contingency Optimal Power Flow (PCOPF) problem:

min
xk,uk,zk

eT zk = y⋆
k (5)

s.t. gk(xk,uk) = 0 (6)

hk(xk,uk) ≤ 0 (7)

|uk − u⋆
0| ≤ ∆uk + zk (8)

zk ≥ 0 (9)

where e is a vector of ones of appropriate dimension and zk

is a vector of (positive) slack variables aimed to relax the

coupling constraints.

The objective of this PCOPF problem is to minimize the

degree of post-contingency infeasibility, measured by the

violations of the coupling constraints (8). The contingency k is

called controllable [14] if y⋆
k = 0 (or equivalently, if z⋆

k = 0),

meaning that a feasible post-contingency state may be reached

thanks to available corrective actions. Conversely, we will call

the k-th contingency uncontrollable if y⋆
k > 0 (or equivalently,

if at least one component of z⋆
k is strictly positive), which

implies that with the given u⋆
0 no feasible post-contingency

state may be reached with available corrective controls.

The conjecture behind the ICSCOPF approach is that in

order to identify the binding contingencies at the CSCOPF

optimum, it is sufficient to include only uncontrollable con-

tingencies in the CSCOPF problem. Furthermore, to speed-

up computations, we propose to use a contingency filter

to identify (ideally) all uncontrollable contingencies, while

introducing as few as possible controllable contingencies.

B. Algorithm of the ICSCOPF approach

The basic algorithm of the ICSCOPF approach is as follows:

1) Let P0 be the operating point to be optimized and

C = {1, . . . , c} the contingency set with respect to which

the system must be secure when post-contingency cor-

rective actions are taken into account. Set the potentially

binding contingency subset Cb = ∅.
2) Solve the CSCOPF by including, beside base case

constraints, only the post-contingency constraints for the

subset Cb. Let P⋆
Cb

be the optimal operating point.

3) Simulate each contingency in C\Cb at P⋆
Cb

by a classical

load flow program. If none of them leads to constraint

violations, P⋆
Cb

is the locally secure optimal solution

and the computation terminates. Otherwise, let Cc be

the subset of critical contingencies (i.e., those leading

to some constraint violations).

4) Filter the contingencies from the Cc subset at P⋆
Cb

. Let

Cs ⊆ Cc be the subset of selected contingencies.

5) Check the post-contingency state feasibility of contin-

gencies from Cs at P⋆
Cb

by PCOPF, described in Sec-

tion III-A. Let Cu ⊆ Cs be the subset of uncontrollable

contingencies. If Cu 6= ∅, set Cb ← Cb ∪ Cu and go to

step 2.

6) Check the post-contingency feasibility of contingencies

from Cc \Cs at P⋆
Cb

by PCOPF. If each PCOPF problem

is feasible, P⋆
Cb

is the locally secure optimal solution

and the computation terminates. Otherwise, let Cu be the

subset of uncontrollable contingencies. Set Cb ← Cb∪Cu
and go to step 2.

Observe that, since initially the current subset of potentially

binding contingencies is empty (Cb = ∅), the first CSCOPF

call is in fact an OPF computation, which contains only

base case constraints. The main advantage of using the first

OPF computation is that, if the resulting operating point

turns out to be secure with respect to the contingency set

C, there is no need to iterate on CSCOPF computations.

Additionally, binding contingencies can be sooner revealed

by the subsequent filtering techniques, especially if the OPF

outcome is close to the sought security-constrained optimum.

We solve the CSCOPF and PCOPF problems intervening at

steps 2, 5 and 6 by the interior-point method [17].
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Step 3 of the algorithm is a (reduced) SSSA. The simu-

lation of the system response to contingencies at this step

is performed by a classical full AC load flow computation

software. For an optimal base case P⋆
Cb

, at some stage, a

contingency is called critical (it belongs to subset Cc) if it leads

to post-contingency constraint violations or post-contingency

load flow divergence. Otherwise, it is called non-critical. Note

that, since classical load flow software does not take into

account some time-varying control actions (e.g., generation

rescheduling, shunt reactance change, etc.), the SSSA alone

can not decide whether the current optimal base case P⋆
Cb

is

the optimum of the CSCOPF if some contingencies from the

subset C \Cb violate constraints. Indeed, if a such contingency

leads to constraint violation it may be possible that the post-

contingency feasibility is ensured without altering the optimal

base case, thanks to the computation of post-contingency

corrective actions by the CSCOPF. The aim of using the SSSA

is thus two-fold: to filter out non-critical contingencies (subset

C \ Cb \ Cc) as well as to serve as a basis for the contingency

filtering performed at step 4.

Step 4 performs a contingency filtering with the aim to

further reduce the number of contingencies that are treated

at the subsequent steps. Any efficient contingency filtering

technique can be used to this purpose. In this work, unless

otherwise specified, we use the non-dominated contingency

(NDC) approach motivated by the good results obtained with

it in the context of PSCOPF [18]. Additional filtering results

will also be provided by means of the classical severity-

index based contingency ranking technique [1], [3]. These

two techniques are described in Section III-C. The selected

(respectively discarded) contingencies by the CF technique at

the current iteration form the subset Cs (respectively Cc \ Cs).

Steps 5 and 6 check, by means of PCOPF problems, whether

the contingencies from the subsets Cs or Cc \ Cs lead to con-

straints violation that can not be removed by post-contingency

controls only, and filter out controllable contingencies.

In the context of this iterative algorithm, we can guarantee

that the full CSCOPF optimal solution has been reached, when

all contingencies that are not yet included in the CSCOPF are

non-critical (see step 3), or when the PCOPF check shows that

all critical contingencies turn out to be also controllable.

Observe that, in our approach, the set of contingencies Cb
treated at step 2 can only grow from one iteration to the next.

Steps 3, 4, 5 and 6 are designed so as to control the growth of

Cb, by efficiently identifying the uncontrollable contingencies

at every iteration. Obviously, a contingency labeled as non-

critical, discarded or controllable at an iteration may become

critical, selected, uncontrollable at subsequent iterations, and

possibly binding at the final optimal solution.

C. Contingency filtering techniques

1) Severity-index based contingency ranking approach:

The classical severity-index (SI) based contingency ranking

technique, most often used in the context of any iterative

SCOPF solution, is based on post-contingency violations,

derived from SSSA applied to the SCOPF solution [1], [3].

Let us denote by hkr(P
⋆
Cb

) the left-hand value of constraint

r, ∀r ∈ {1, . . . , q}, relative to any contingency k ∈ Cc, where

q is the size of any vector hk in (3). This quantity is computed

at step 3 of the ICSCOPF procedure after simulating, by a

classical power flow program, contingency k at the current

operating point P⋆
Cb

. Let us further define by

h+

kr(P
⋆
Cb

) = max(0, hkr(P
⋆
Cb

))

the constraint violation (by extension, we set this quantity to

+∞, ∀r ∈ {1, . . . , q}, for contingencies leading to load flow

divergence).

The classical severity index used in the context of SCOPF

contingency selection is defined for contingency k as [1], [3]:

SI(k) = ||

q∑

r=1

wr h+

kr(P
⋆
Cb

)||2, (10)

where wr denotes the weight associated to constraint r, which

unless explicitly specified will be taken equal to 1, and || · ||2
denotes the euclidean norm. The value of this SI is refreshed

at every iteration the ICSCOPF procedure.

2) Non-dominated contingency (NDC) approach: The NDC

technique [18] relies on the comparison (at every iteration of

the ICSCOPF procedure) of the constraints violations among

critical contingencies (the subset Cc).

Intuitively, a critical contingency is dominated at a given

step of the ICSCOPF procedure, if there exists another con-

tingency which leads to larger violation for every constraint.

We say that contingency k dominates contingency j if:

h+

kr(P
⋆
Cb

) ≥ h+

jr(P
⋆
Cb

), ∀r ∈ {1, . . . , q},

and the inequality is strict for at least one r ∈ {1, . . . , q}, h+

kr

and h+

jr referring to the same type of constraint. We say that

contingency k is dominated in Cc if there is a contingency

j ∈ Cc \ {k} that dominates it. The set of these contingencies

and its complement are respectively denoted by Cd and Cs
(Cs = Cc \ Cd). We say that contingency k is non-dominated

in Cc if no contingency j ∈ Cc \ {k} dominates it. Thus, for

contingency k to be non-dominated it is not mandatory that it

dominates at least one contingency from Cc.

When filtering contingencies according to this technique,

we identify at step 4 of the ICSCOPF the members of Cs in

the following way:

1) Initialization: let Cd = ∅.
2) For each contingency j ∈ Cc do:

a) For each contingency k ∈ Cc \ ({j} ∪ Cd) do:

If k dominates j let Cd ← Cd ∪ {j}.

3) Let Cs = Cc \ Cd.

When using this CF technique we call alternatively a se-

lected (respectively discarded) contingency as non-dominated

(respectively dominated).

D. ICSCOPF algorithm variants

Note that several shortcuts of the basic ICSCOPF algorithm

are possible by disabling one or more steps or using alternative

techniques at some steps, as described below.

1) Without filtering (WF): is obtained by disabling the

steps 4, 5 and 6 of the ICSCOPF algorithm, and includes au-

tomatically in the CSCOPF all critical contingencies identified

by SSSA at each iteration (the SSSA acts as the sole filter).
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TABLE I

RECAPITULATION OF THE TERMINOLOGY USED FOR CONTINGENCIES

Type Explanation

uncontrollable it does not lead to feasible post-contingency state
when taking into account only corrective actions

controllable it leads to feasible post-contingency state thanks to
corrective actions only

critical it leads to post-contingency constraints violations at
the power flow solution or to power flow divergence

non-critical it does not lead to post-contingency constraints violations
at the power flow solution or to power flow divergence

selected it is selected by a certain filter

discarded it is discarded by a certain filter

non-dominated there is no contingency that leads to larger violations of
every constraint

dominated there is a contingency that leads to larger violations of
every constraint

TABLE II

TEST SYSTEMS SUMMARY

system n g d b l t o s c

Nordic32 60 23 22 81 57 31 4 12 53

IEEE118 118 54 91 186 175 11 9 14 184

RTE 1203 177 767 1797 1394 403 203 11 1210

2) Infeasible post-contingency optimal power flow (IP-

COPF): is obtained by disabling the contingency filtering step

of the ICSCOPF algorithm. Thus one adds to the CSCOPF at

every iteration uncontrollable contingencies only.

3) Severity index-based (SI): consists in using at step 4 of

the ICSCOPF algorithm the classical SI of Section III-C.1 to

filter contingencies, instead of the NDC scheme.

A comparison of performances of the basic ICSCOPF

approach and its variants will be provided in Section IV.

Besides, the direct approach (DA) and Benders decomposition

(see Appendix A) are provided as baseline for comparison.

For convenience, we recapitulate in Table I our terminology

concerning the various types of contingencies.

IV. NUMERICAL RESULTS

A. Description of the test systems used

In this Section we present detailed numerical results ob-

tained with the presented CSCOPF approaches on three test

systems: a 60-bus system, which is a modified variant of the

Nordic32 system [19], the IEEE118 system [20], and a model

of the RTE (the French transmission system operator) system.

A summary of their characteristics is given in Table II, where:

n, g, d, b, l, t, o, s, and c denote the number of: buses,

generators, loads, branches, lines, transformers, transformers

with controllable ratio, shunt elements, and contingencies

considered in CSCOPF, respectively. All tests have been

performed on a PC 1.7-GHz Pentium IV with 512-Mb RAM.

B. Results with the IEEE118 test system

1) Problem statement: We focus on the problem of min-

imizing the overall generation cost by means of a “decou-

pled” CSCOPF. Control variables are the generators active

power. Equality constraints are the AC bus active/reactive

power balance equations and imposed voltages of generators.

Inequality constraints are bounds on generator active/reactive

TABLE III

BINDING CONSTRAINTS AT SUCCESSIVE CSCOPF SOLUTIONS

iter Pg Qg I cpl total

1 3 0 3 - 6

2 11 0 24 70 105

3 19 0 32 88 139

TABLE IV

SSSA AND CF REPORT AT SUCCESSIVE CSCOPF SOLUTIONS

SSSA CF

iter ncc ncv ∆Im(%) ∆Ia(%) nsc ndc

1 49 71 78.9 9.5 19 30

2 35 47 34.8 9.3 12 23

3 32 43 29.0 9.0 11 21

TABLE V

UNCONTROLLABLE AND BINDING CONTINGENCIES

iter uncontrollable contingencies binding contingencies

1 31, 40, 53, 84, 96, 175 -

2 32, 122 31, 40, 84, 96, 175

3 - 31, 40, 84, 96, 175, 32, 122

powers, limits on branch currents and coupling constraints.

These constraints apply both in pre- and in post-contingency

states. As regards the coupling constraints we assume that,

following the loss of a transmission (respectively generation)

equipment, every generator is able to reschedule up to 8 %
(respectively 10 %) of its active power physical range.

2) Application of the ICSCOPF approach: We solve the

CSCOPF problem following by the ICSCOPF algorithm of

Section III-B, while filtering contingencies with the NDC

approach of Section III-C.2. We first run the base case OPF

(no contingency constraints) and observe that 3 branch current

constraints are binding at the optimal solution. The SSSA at

this point yields 49 critical contingencies (out of 184) leading

to branch current violations. The CF reveals among them 19

non-dominated contingencies which are further checked with

the PCOPF. Only 6 of these contingencies are deemed uncon-

trollable and hence are included in the CSCOPF. The latter is

run again, leading to 24 active branch current constraints at the

optimum, corresponding to 5 different post-contingency states.

The SSSA at this point yields 35 critical contingencies (out

of 178), 12 being considered as non-dominated and among

these 2 are found uncontrollable by PCOPF. These are added

to those already selected and CSCOPF is run again with the

resulting set of 8 contingencies, providing 32 active branch

current constraints in 7 post-contingency states. The SSSA

performed at this point indicates 32 critical contingencies (out

of 176). Since, after checking them with PCOPF, all turn out

to be controllable the sought optimum is reached. As a matter

of fact 7 contingencies (out of 184) are actually binding at the

final optimum.

The main results of the computational process are summa-

rized in Tables III, IV, and V.

Table III provides the number and type of binding con-

straints at the optimum of the CSCOPF. The columns labeled

with Pg , Qg, I , and cpl refer to constraints relative to generator

active power, generator reactive power, branch current, and

generator active power coupling constraints, respectively.
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Table IV displays the SSSA and CF report at the optimal

solution provided by the CSCOPF, where ncc, ncv, ∆Im

(respectively ∆Ia), nsc, and ndc represent the number of crit-

ical contingencies, the total number constraints violated, the

maximum (respectively the average) branch overload among

all critical contingencies, the number of selected contingencies

and the number of discarded contingencies, respectively.

Table V lists the uncontrollable and binding contingencies at

successive CSCOPF solutions. Observe that, in this example,

almost all uncontrollable contingencies at various iterations

are binding at the final optimum.

By comparing Tables IV and V one can conclude that the

efficiency of the NDC filtering technique is quite satisfactory.

Thus, the CF is very efficient at the first iteration, allowing

the identification of all 6 uncontrollable contingencies (5 of

them being binding at the next iteration) by keeping 19 non-

dominated (out of 49 critical) contingencies, thereby saving 30

runs of the PCOPF module. The CF is slightly less efficient

at the second iteration, where it identifies the 2 uncontrollable

contingencies (both being binding at the final optimum) by

keeping 12 non-dominated (out of 35 critical) contingencies

and saving however 23 runs of the PCOPF.

Clearly, additional uncontrollable contingencies may appear

during iterations of the sequential procedure, due to shifting

the optimal base case to accommodate the uncontrollable

contingencies identified in previous iterations. This is a rea-

sonable risk taken by the iterative approach with respect to

the direct approach, since in practice only a small number

of contingencies from the whole set are binding at the final

optimum. As is shown in Table XVI of Appendix D, this effect

is even worse if one uses the Benders decomposition, since any

uncontrollable contingency at an iteration is taken into account

just by a linearized constraint, added to the base case OPF.

3) Comparison of various CSCOPF approaches: We now

compare the efficiency in terms of overall CPU time of various

CSCOPF approaches described in Section III, namely: the

proposed ICSCOPF approach, its variants WF, IPCOPF and SI

(see Section III-D), the direct approach (DA), and the BD. For

completeness, details about the BD algorithm and its results

are given in Appendices A and B.

Table VI reports, for these CSCOPF approaches, the overall

CPU time (in seconds) of all tasks during the CSCOPF

solution. In this Table npbc = card(Cb) denotes the number

of potentially binding contingencies handled in the CSCOPF

iterative approach at every iteration, while nr is the number of

contingencies for which the PCOPF variant is run. According

to the sequential CSCOPF algorithm nr is equal to either nsc
or ncc = nsc + ndc. As regards BD, the superscript * which

appears in the column npbc indicates that Benders cuts are

accumulated during iterations to OPF base case constraints

(see Appendix B). Finally, for the SI approach we provide

the range of overall CPU time of CSCOPF solution, when the

number of top ranked contingencies selected at every iteration,

which we denote by M , is allowed to vary between 1 and 20.

The CPU times of other tasks during SI approach correspond

to its best performances, obtained for M = 11.

Note first that any iterative CSCOPF approach, with or with-

out filtering, is (significantly) faster than the direct approach.

TABLE VI

COMPARISON OF VARIOUS APPROACHES TO THE CSCOPF SOLUTION

approach iter CSCOPF (npbc) SSSA CF PCOPF (nr) time

ICSCOPF
1 0.5 (0) 2.7 0.0 9.2 (19)

60.12 7.9 (6) 2.7 0.0 5.8 (12)
3 13.2 (8) 2.6 0.0 15.5 (32)

DA - 232.1 (184) - - - 232.1

WF
1 0.5 (0) 2.7 - -

152.12 68.7 (49) 1.9 - -
3 76.5 (54) 1.8 - -

IPCOPF
1 0.5 (0) 2.7 - 24.1 (49)

85.82 7.9 (6) 2.7 - 16.6 (35)
3 13.2 (8) 2.6 - 15.5 (32)

SI

1 0.5 (0) 2.7 0.0 5.3 (11)
2 5.1 (4) 2.7 0.0 5.3 (11) 92.2...
3 6.4 (5) 2.7 0.0 15.5 (32) ...124.7
4 9.8 (7) 2.7 0.0 5.4 (11)
5 13.2 (8) 2.6 0.0 15.5 (32)

BD
1 0.5 (0) 2.7 0.0 9.2 (19)

48.12 0.6 (0*) 2.7 0.0 7.7 (15)
3 0.7 (0*) 2.7 0.0 21.4 (42)

In this example BD approach outperforms all other CSCOPF

approaches in terms of overall CPU time, being followed by

ICSCOPF. Observe also that even for the best parameter M
setting, the SI technique leads to a much slower execution time

than with the (NDC-based) ICSCOPF. More details about the

comparison between ICSCOPF and SI approaches are reported

in Appendix C.

Despite of the significant number of contingencies binding

at the optimum, in this example the BD performs very well

due to: (i) the infeasibility degree of slave subproblems is

rather small during iterations (see Table XIV), indicating that

the base case OPF solution is quite close to that of CSCOPF,

and (ii) the post-contingency voltage magnitudes are hardly

sensitive to generators active power rescheduling.

Let us stress the importance of CF within all CSCOPF

techniques. For instance by disabling the CF step in the BD

approach the execution time increases from 48.1 s to 75.8 s,

i.e., more than the ICSCOPF technique. Also, both ICSCOPF

and IPCOPF techniques are faster than WF scheme. Last but

not least, the computing time of the CF task is negligible (order

of milliseconds) when using the NDC or SI techniques.

Note that there are two factors which influence the time

saved by contingency filtering. The first one is the number of

calls to PCOPF variant and depends on the filter quality. The

smaller the number of calls to PCOPF variant, the higher the

overall time saving. For instance, although the contingencies

included in CSCOPF are the same in both ICSCOPF and IP-

COPF approaches, ICSCOPF approach calls 54 times less the

PCOPF variant than IPCOPF technique. The second factor is

the number of selected but uncontrollable contingencies, which

is unpredictable beforehand and varies from one problem to

another. Clearly, the lower the number of such contingencies,

the higher the time saved by ICSCOPF approach.

C. Results with the Nordic32 test system

1) Problem statement: We concentrate on the generation

cost minimization by means of a “full” CSCOPF. For this

problem we consider the following control variables: genera-

tors active power, generators voltage, controllable transformer
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TABLE VII

BINDING CONSTRAINTS AT SUCCESSIVE CSCOPF SOLUTIONS

iter Pg Qg I V r x cpl total

1 18 0 1 22 0 3 - 44

2 46 3 4 108 4 19 85 269

TABLE VIII

SSSA AND CF REPORT AT SUCCESSIVE CSCOPF SOLUTIONS

SSSA CF

iter ncc ncvI ncvV ∆Im ∆Ia ∆Vm ∆Va nsc ndc
(%) (%) (%) (%)

1 23 40 9 77.3 20.4 5.0 2.6 13 10

2 4 0 7 - - 3.2 1.9 4 0

TABLE IX

UNCONTROLLABLE AND BINDING CONTINGENCIES

iter uncontrollable contingencies binding contingencies

1 5, 12, 13, 15, 18, 19, 22, 23, 11 -

2 - 5, 12, 13, 18

ratios and shunt reactances. Equality constraints are again the

bus active/reactive power balance equations, while inequality

constraints include bounds on all control variables as well as

limits on generators reactive power, bus voltage magnitudes

and branch currents. The bus voltage magnitudes are allowed

to vary between 0.95 pu (respectively 0.92 pu) and 1.05 pu

(respectively 1.08 pu) in pre-contingency (respectively post-

contingency) state. In the coupling constraints we assume

that, following the outage of a transmission (respectively

generation) equipment, every generator is able to reschedule

up to 10 % (respectively 20 %) of its active power physical

range. The transformers ratio (respectively shunts reactance)

are allowed to vary, following a contingency, up to 50 %
(respectively 20 %) of their physical range. Generator terminal

voltages are allowed to vary freely between 0.95 pu and

1.05 pu in both pre- and post-contingency states.

2) Application of the ICSCOPF approach: The main results

of the ICSCOPF approach are provided in Tables VII, VIII,

and IX.

Table VII yields the number and type of binding con-

straints at the CSCOPF optimum for successive iterations. The

columns labeled with V , r, and x refer to constraints relative

to bus voltage magnitudes, controllable transformer ratios, and

shunt reactances, respectively.

Table VIII reports results of SSSA and NDC-based CF at

each iteration, where ncvI (respectively ncvV ) and ∆Vm

(respectively ∆Va) represent the number of branch current

(respectively voltage magnitude) violations and the maxi-

mum (respectively average) voltage magnitude limit violation

among all critical contingencies.

Table IX provides the uncontrollable and binding contin-

gencies at successive CSCOPF solutions. Note that, 2 among

the 4 binding contingencies (5 and 12) are both thermal and

voltage limited, while the others only thermal constrained.

Unlike the previous example, the binding contingencies are

identified at iteration 2 since all of them are non-dominated

and uncontrollable at iteration 1; the other 4 critical and

non-dominated contingencies at iteration 2 turn out to be

controllable by means of PCOPF variant (see Table VIII).

TABLE X

COMPARISON OF VARIOUS APPROACHES TO THE CSCOPF SOLUTION

approach iter CSCOPF (npbc) SSSA CF PCOPF (nr) time

ICSCOPF
1 0.5 (0) 0.5 0.0 7.1 (13)

19.7
2 9.2 (8) 0.4 0.0 2.0 (4)

DA - 72.9 (53) - - - 72.9

WF
1 0.5 (0) 0.5 - -

28.1
2 27.6 (23) 0.3 - -

IPCOPF
1 0.5 (0) 0.5 - 12.3 (23)

26.5
2 10.8 (9) 0.4 - 2.0 (4)

SI
1 0.5 (0) 0.5 0.0 3.2 (6) 15.2...
2 7.9 (6) 0.5 0.0 2.6 (5) ...25.0

BD

1 0.5 (0) 0.5 0.0 7.1 (13)

58.0

2 0.5 (0*) 0.5 0.0 6.8 (12)
3 0.5 (0*) 0.5 0.0 6.8 (12)
4 0.5 (0*) 0.5 0.0 5.4 (10)
5 0.6 (0*) 0.5 0.0 6.0 (11)
6 0.6 (0*) 0.5 0.0 6.1 (11)
7 0.6 (0*) 0.5 0.0 6.1 (11)
8 0.6 (0*) 0.5 0.0 5.3 (10)

By comparing Tables VIII and IX, one observes again that

NDC technique performs well. Indeed, it classifies as non-

dominated 13 (out of 23 critical) contingencies and identifies

correctly 8 out of 9 uncontrollable contingencies, except of

contingency 11 which anyway is not binding at the optimum.

Unlike the previous example, a less extent of uncontrollable

contingencies are binding at the optimum (4 out of 9).

3) Comparison of various CSCOPF approaches: Table X

reports the CPU times of all tasks during the CSCOPF

solution of considered approaches. Detailed numerical results

of CSCOPF solution by BD are provided in Appendix D.

As regards the SI approach we provide the range of overall

CPU time of CSCOPF solution, when parameter M is allowed

to vary between 1 and 20, while using the same weight,

and equal to 1 in (10), for both branch current and voltage

magnitude post-contingency violations with respect to their

limits. The CPU times of other tasks during SI approach

correspond to its best performances, obtained for M = 6.

Appendix E provides additional results about comparison of

NDC and SI filtering techniques.

Since in SI approach the parameter M is set beforehand,

we can conclude that in this case ICSCOPF and SI approaches

lead to comparable performances, being faster than other

competing techniques.

In contrast with the previous example BD approach con-

verges very slowly, being faster only than the DA (see the

Appendix D). We also notice that in this case the CF improves

very little (7.2 s) the overall execution time of BD approach

(see Appendix E for an explanation).

D. Results with the RTE system

We solve the same type of CSCOPF problem as in Section

IV-B.1 for a 1203-bus model of the RTE system (see Table II).

The main results obtained with the ICSCOPF approach and

with BD are reported in Tables XI, XII, and XIII, using the

same format as in Section IV-B.

We notice that in this large scale example only one con-

tingency (405) is binding at the optimum. On the other

hand, when applying the ICSCOPF technique we find that

13 contingencies are critical at the first iteration and 6 among
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TABLE XI

SSSA AND CF REPORT AT SUCCESSIVE CSCOPF SOLUTIONS

SSSA CF

iter ncc ncv ∆Im(%) ∆Ia(%) nsc ndc

1 13 13 25.7 7.3 6 7

2 6 6 10.2 4.8 5 1

TABLE XII

INFEASIBILITY DEGREE (MW) OF UNCONTROLLABLE CONTINGENCIES

iter uncontrollable contingencies
393 405

1 190.5 300.1

2 0.0 27.2

3 0.0 0.3

TABLE XIII

COMPARISON OF VARIOUS APPROACHES TO THE CSCOPF SOLUTION

approach iter CSCOPF (npbc) SSSA CF PCOPF (nr) time

ICSCOPF
1 6.2 (0) 181.5 0.0 56.4 (6)

564.7
2 84.3 (2) 181.2 0.0 55.1 (6)

DA - - (1210) - - - -

WF
1 6.2 (0) 181.5 - -

989.4
2 622.3 (13) 179.4 - -

IPCOPF
1 6.2 (0) 181.5 - 122.2 (13)

630.5
2 84.3 (2) 181.2 - 55.1 (6)

SI
1 6.2 (0) 181.5 0.0 29.5 (3) 537.8...
2 84.3 (2) 181.2 0.0 55.1 (6) ...989.4

BD
1 6.2 (0) 181.5 0.0 56.4 (6)

745.02 7.0 (0*) 181.5 0.0 47.8 (5)
3 7.8 (0*) 181.5 0.0 75.3 (8)

them are selected by the NDC filter. The latter performs quite

well since the 6 selected contingencies indeed include the 2

uncontrollable contingencies (see Table XII) and the single

one that is binding at the optimum.

Table XIII shows that the ICSCOPF approach is again faster

than the other techniques (computer memory requirements

prevented us from performing DA due to the large number of

contingencies (1210) to be included with this method into the

CSCOPF). The overall CPU time reported in the last column

of this Table shows that the ICSCOPF approach also scales

well to large systems and large contingency lists.

The conclusions drawn in Appendices C and E concerning

the comparison of NDC and SI filtering techniques still hold

in the case of the RTE system.

Looking more closely at the CPU times of the CSCOPF

itself (third column) of Tables XIII, VI and X we observe

that it grows faster than linearly with the number of contin-

gencies included in these computations. Thus, we expect that

the ICSCOPF method could significantly outperform the BD

approach when the number of uncontrollable contingencies

at every iteration remains reasonably small and/or when the

accuracy of the linear Benders cuts is questionable, such as

in very stressed operating conditions, or when the CSCOPF

optimum is far enough from the base case OPF solution.

V. CONCLUSIONS

This paper has presented and compared performances in

terms of CPU time of several approaches aiming to solve the

CSCOPF problem. They have been tested on three systems of

60, 118 and 1203 buses.

We have proposed a new iterative approach to the solution

of CSCOPF problem which proves being overall faster than

other competing techniques. The ICSCOPF approach exhibits

additional advantages over the popular BD technique in terms

of convergence robustness and theoretical soundness in the

context of non-convex non-linear CSCOPF problems. The

numerical results obtained with the ICSCOPF approach show

that for solving the full problem, it is more effective to

include progressively some potentially binding contingencies

in the CSCOPF formulation, than to optimize the base case

while keeping on shrinking its feasible region by accumulating

Benders cuts. In conclusion the ICSCOPF approach appears

to outperform the BD approach for CSCOPF computations.

This paper also emphasizes the importance of contingency

filtering within sequential CSCOPF algorithms. Although the

NDC technique, which was adapted here from its original

context of PSCOPF, appears to perform slightly less well in

the context of CSCOPF, it compares quite favorably to the

classical severity index-based contingency ranking technique.

Moreover, it is worth to stress that the NDC technique is a pa-

rameter free technique as opposed to SI-based schemes, where

parameters such as the number of top ranked contingencies

selected and weights relative to different types of constraint

violations must be chosen in an ad hoc way.

Finally, let us note that all these variants of the iterative

CSCOPF approach as well as BD can benefit of a parallel

computation framework to further speed-up computations.
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APPENDIX

A. Solving the CSCOPF by Benders decomposition

The (generalized) BD for CSCOPF solution consists of

decomposing the original problem (1-4) into a master problem

and several slave subproblems which interact iteratively [2].

The slave subproblem corresponding to contingency k can

be formulated as the PCOPF (5-9).

In the BD approach for each uncontrollable contingency k a

Benders cut (11) is generated and added to the master problem:

bk(u0) = y⋆
k + π

⋆
k

T (u0 − u⋆
0) ≤ 0 (11)

where π
⋆
k is the vector of dual variables corresponding to

the constraint (8) at the optimum of the slave subproblem.

This constraint conveys information about how the current

optimum u⋆
0 should be modified in order to reduce the problem

infeasibility. Observe that the sole unknown in (11) is u0.
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TABLE XIV

INFEASIBILITY DEGREE (MW) OF UNCONTROLLABLE CONTINGENCIES

iter uncontrollable contingencies
31 32 40 53 84 96 122 175

1 27.9 0.0 111.3 11.0 41.8 45.8 0.0 12.7

2 0.9 16.1 0.0 0.0 0.5 4.2 5.6 2.5

3 0.0 0.1 0.0 0.0 0.1 0.2 0.0 1.0

TABLE XV

SSSA AND CF REPORT AT SUCCESSIVE MASTER PROBLEM SOLUTIONS

SSSA CF

iter ncc ncv ∆Im(%) ∆Ia(%) nsc ndc

1 49 71 78.9 9.5 19 30

2 43 58 64.8 10.7 15 28

3 42 55 64.8 10.7 16 26

The master problem is formulated as:

min
x0,u0

f0(x0,u0) (12)

s.t. g0(x0,u0) = 0 (13)

h0(x0,u0) ≤ 0 (14)

b(u0) ≤ 0 (15)

and contains base case constraints (13, 14) as well as all

Benders cuts of type (11) provided by slave subproblems at

every iteration, which we write compactly as (15).

The standard algorithm of CSCOPF solution by BD contains

the following steps [2]:

1) Solve a relaxation (12-14) of the master problem. Let

u⋆
0 be the optimal solution.

2) For each contingency k = 1, . . . , c solve the slave

subproblem (5-9). If y⋆
k > 0, build the corresponding

Benders cut (11).

3) If the infeasibility of each slave subproblem is below a

predefined tolerance ε, i.e., y⋆
k ≤ ε, ∀k = 1, . . . , c the

convergence is achieved and u⋆
0 is the optimal solution.

4) Solve the full master problem (12-15) by adding all

Benders cuts generated at step 2. Let u⋆
0 be the optimal

solution. Go to step 2.

To further speed-up computations the BD standard algo-

rithm is enhanced by using a SSSA and then the NDC filter

at step 2, before solving the slave subproblems.

B. Application of Benders decomposition approach on the

IEEE118 test system

The main results of CSCOPF solution by BD using the

algorithm of Appendix A, while filtering contingencies with

the NDC technique, are provided in Tables XV and XIV.

Table XIV displays the infeasibility degree (in MW) of

uncontrollable contingencies at successive solutions of the

master problem. We declare the convergence of BD as soon as

the infeasibility of all slave subproblems become smaller than

ε = 5 MW (see the algorithm of Appendix A), value kept for

all subsequent examples of the paper. This Table shows that 12

Benders cuts have been finally added to the master problem.

Note that, likewise in the ICSCOPF approach, contingencies

32 and 122 become uncontrollable at the second iteration.

Table XV shows SSSA and CF results at successive master

problem solutions. Except for the first iteration, these latter are

TABLE XVI

INFEASIBILITY DEGREE (MW) OF UNCONTROLLABLE CONTINGENCIES

iter uncontrollable contingencies
5 11 12 13 15 18 19 22 23

1 154.9 335.2 927.2 654.5 656.3 1040.2 323.5 418.6 411.0

2 138.1 0.0 76.3 0.0 0.0 190.4 0.0 0.0 19.5

3 12.1 0.0 193.6 0.0 0.0 251.2 0.0 63.7 94.1

4 10.6 16.7 561.1 662.2 622.3 39.4 0.0 14.9 3.8

5 3.8 0.0 31.8 11.9 0.0 22.9 0.0 0.0 3.9

6 1.2 0.0 10.7 1.2 0.0 10.0 0.0 0.0 0.0

7 0.5 0.0 6.6 1.7 0.0 4.7 0.0 0.0 0.0

8 0.6 0.0 2.3 1.2 0.0 2.6 0.0 0.0 0.0

TABLE XVII

SSSA AND CF REPORT AT SUCCESSIVE MASTER PROBLEM SOLUTIONS

SSSA CF

iter ncc ncvI ncvV ∆Im ∆Ia ∆Vm ∆Va nsc ndc
(%) (%) (%) (%)

1 23 40 9 77.3 20.4 5.0 2.6 13 10

2 12 11 7 30.6 12.2 3.6 2.0 12 0

3 12 12 7 36.9 15.7 3.7 1.9 12 0

4 13 18 5 54.1 18.2 4.0 2.3 10 3

5 11 11 7 27.0 11.2 4.0 2.0 11 0

6 11 10 7 22.8 11.6 3.9 2.2 11 0

7 11 11 7 24.2 11.7 3.3 2.0 11 0

8 10 10 5 23.9 11.5 3.3 2.1 10 0

different from the CSCOPF solutions of Table IV. We never-

theless observe that the NDC approach provides also here very

satisfactory results, since the 6 uncontrollable contingencies at

iterations 1 and 2 are identified by selecting 19 (out of 49) and

15 (out of 43) contingencies, respectively.

C. Comparison of contingency filtering techniques on the

IEEE118 test system

We assess the NDC and SI filtering schemes based on

their ability to identify all uncontrollable contingencies at an

iteration and thereby to accelerate the CSCOPF solution.

The fastest SI-based CSCOPF solution (see Table VI)

corresponds to M = 11, where M has been varied between

1 and 20. Therefore, even for the best parameter M setting,

the SI-based filtering scheme leads to a much slower CSCOPF

execution time than the NDC-based technique.

The NDC technique provides better results than SI scheme

due to higher filtering accuracy. Thus, according to SI tech-

nique, the 6 uncontrollable contingencies at iteration 1 (see

Table V) are ranked on positions: 1, 6, 9, 11, 14 and 37,

respectively. Likewise, the 2 uncontrollable contingencies at

iteration 2 are ranked on positions: 5 and 15, respectively.

Thus, with SI scheme one needs to select at least the first

37 contingencies (out of 49) at iteration 1 and the first 15

contingencies (out of 35) at iteration 2. Since by using NDC

technique one selects 19 contingencies at iteration 1, and 12

at iteration 2, respectively (see Table V), it results that, in this

case, NDC technique clearly outperforms the SI scheme.

D. Application of Benders decomposition approach on the

Nordic32 test system

The main results of BD approach, using the NDC technique

to filter contingencies, are gathered in Tables XVI and XVII.

Table XVI yields the infeasibility degree of uncontrollable

contingencies at successive solutions of the master problems,
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a total number of 38 Benders cuts being accumulated into the

master problem until convergence.

Note that, despite the very high initial infeasibility degree of

most uncontrollable contingencies, its decrease is satisfactory

at iteration 2. In contrast, the infeasibility degree of most

uncontrollable contingencies significantly increases at next two

iterations (3 and 4), while from iteration 5 on the convergence

is slow. This behavior of BD implies that the new Benders cuts

added to the master problem are unable to drive monotonically

the successive optimal base cases to the final optimum.

By comparing Tables XVI and XVII one can observe that

NDC filtering accuracy is rather poor at some iterations, e.g.,

at the second iteration it selects all 12 critical contingencies

as dominated while only 4 of them are really uncontrollable.

This behavior will be explained in Appendix E.

E. Comparison of contingency filtering techniques on the

Nordic32 test system

The best performances of SI technique are obtained for

M = 6, which allows to identify all 4 binding contingencies

at the CSCOPF optimum. More precisely, the ICSCOPF

approach is faster than SI scheme for M ∈ [1, 5] and M ≥ 14
while leading to exactly the same performances for M = 13.

Note that filtering further uncontrollable contingencies in-

stead of selecting them all may be risky because uncontrollable

but non-binding contingencies at an iteration may become

active at the final optimum. Recall that NDC approach se-

lects 13 contingencies missing one uncontrollable non-binding

contingency (11). In order to select the same 8 uncontrollable

contingencies SI technique needs to keep at least the 8

top ranked contingencies, being thus more (respectively less)

accurate than NDC for M ∈ [8, 12] (respectively M ≥ 14).

To assess the impact of weighting factors on CPU times,

we consider in the SI formula (10) constant weights (equal to

1) for branch current limit violation, while varying weights

related voltage limits violation between 0 and 100. Thus,

weighting voltage limit violations 5 times higher than branch

current violations leads to include 3 false alarms in the

contingency ranking, which worsens the identification of un-

controllable and binding contingencies. In these experiments

the recorded CPU times of SI-based CSCOPF solution varies

between 18.1 s and 25.0 s, which compares less favorably to

NDC-based CSCOPF solution.

The good results obtained with SI technique in this case

indicate that the overall amount of post-contingency violations

is a reasonable indicator to assess whether a contingency

is more prone to be uncontrollable than another. However,

since this SI disregards the corrective controls sensitivity to

remove violations, it may miss low ranked but uncontrol-

lable contingencies. In contrast, NDC technique handles such

situations by looking to both violation amount as well as

whether violations are related to the same network elements

or not. On the other hand, if critical contingencies lead to

violations of different network elements, the NDC technique

may select almost all critical contingencies as non-dominated,

while sometimes (see Appendix D) a good number of them

are actually controllable by corrective actions only. Notice that

this potential drawback of the NDC technique is mitigated

in the context of iterative PSCOPF solution [18], where

post-contingency violations corresponding to different network

elements often require different preventive actions.
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