
ORIGINAL RESEARCH
published: 25 June 2020

doi: 10.3389/fphy.2020.00220

Frontiers in Physics | www.frontiersin.org 1 June 2020 | Volume 8 | Article 220

Edited by:

Jordan Yankov Hristov,

University of Chemical Technology

and Metallurgy, Bulgaria

Reviewed by:

Ahmed Elwakil,

University of Sharjah,

United Arab Emirates

Aydin Secer,

Yildiz Technical University, Turkey

*Correspondence:

Amin Jajarmi

a.jajarmi@ub.ac.ir

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 08 January 2020

Accepted: 22 May 2020

Published: 25 June 2020

Citation:

Jajarmi A and Baleanu D (2020) A

New Iterative Method for the

Numerical Solution of High-Order

Non-linear Fractional Boundary Value

Problems. Front. Phys. 8:220.

doi: 10.3389/fphy.2020.00220

A New Iterative Method for the
Numerical Solution of High-Order
Non-linear Fractional Boundary Value
Problems
Amin Jajarmi 1* and Dumitru Baleanu 2,3

1Department of Electrical Engineering, University of Bojnord, Bojnord, Iran, 2Department of Mathematics, Faculty of Arts and

Sciences, Cankaya University, Ankara, Turkey, 3 Institute of Space Sciences, Mǎgurele, Romania

The boundary value problems (BVPs) have attracted the attention of many scientists

from both practical and theoretical points of view, for these problems have remarkable

applications in different branches of pure and applied sciences. Due to this important

property, this research aims to develop an efficient numerical method for solving a

class of non-linear fractional BVPs. The proposed method is free from perturbation,

discretization, linearization, or restrictive assumptions, and provides the exact solution

in the form of a uniformly convergent series. Moreover, the exact solution is determined

by solving only a sequence of linear BVPs of fractional-order. Hence, from practical

viewpoint, the suggested technique is efficient and easy to implement. To achieve an

approximate solution with enough accuracy, we provide an iterative algorithm that is

also computationally efficient. Finally, four illustrative examples are given verifying the

superiority of the new technique compared to the other existing results.

Keywords: fractional calculus, boundary value problems, series expansion, uniform convergence, iterativemethod

1. INTRODUCTION

The application of boundary value problems (BVPs) can be found in different fields of pure
and applied sciences; for instance, the narrow converting layers bounded by stable layers, which
are believed to surround A-type stars, may be modeled by BVPs [1]. Also, these problems
may model the dynamo action in some stars [2]. More discussions on the application of BVPs
have also been provided in Chandrasekhar [3], Baldwin [4], and Khalid et al. [5]. More to the
point, the approximation schemes to solve non-linear BVPs can be found in different sources of
numerical analysis [6, 7]. In Agarwal [8], Agarwal discussed the existence of unique solution for
these problems; however, no numerical method is contained therein. Boutayeb and Twizell [9]
developed the finite difference methods to solve the above-mentioned problems effectively. They
also improved a second-order method in Twizell and Boutayeb [10] to solve the general and special
BVPs. Besides, Twizell [11] advanced a finite difference scheme of order two to investigate the
solution of these problems. However, the existing methods suffer from enormous computational
effort. To solve this difficulty, some alternative schemes have been presented including the Adomian
decompositionmethod (ADM)with Green’s function [12], homotopy perturbationmethod (HPM)
[13], and variational iteration method (VIM) [14].

During the past decades, many scientists have frequently shown that themathematical equations
with fractional calculus architectures can describe the reality more precisely than the classic
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integer models with ordinary time-derivatives [15–19]. Recently,
the advantages of this approach have been extensively
investigated for various practical applications [20–27].
Concerning the fractional BVPs, some noticeable efforts
have been done in Ali et al. [28] and Ugurlu et al. [29]. The
aforesaid problems have also noteworthy real applications in
different areas of science and technology. For instance, a hybrid
Caputo fractional modeling was considered in Baleanu et al. [30]
for thermostat with hybrid boundary conditions. In Patnaik et al.
[31], the application of a fractional-order non-local continuum
model was studied for a Euler-Bernoulli beam. The authors
in Salem et al. [32] analyzed the coupled system of non-linear
fractional Langevin equations with multi-point and non-
local integral boundary conditions. The existence of extremal
solutions of fractional Langevin equation involving non-linear
boundary conditions was also investigated in Fazli et al. [33].
However, the properties of fractional BVPs should be studied
deeply and approximation schemes should be continuously
improved solving the above-mentioned problems appropriately.
To this end, some valuable studies have been carried out, and a
number of noteworthy results have been achieved. For instance,
an existence theorem was discussed in Zhang and Su [34] for
a linear fractional differential equation (FDE) with non-linear
boundary conditions by using the method of upper and lower
solutions in reverse order. In Arqub et al. [35], a new kind of
analytical method was proposed to predict and represent the
multiplicity of solutions to non-linear fractional BVPs. In Khalil
et al. [36], the authors studied a coupled system of non-linear
FDEs whose approximate solution was achieved under two
different types of boundary conditions. In Cui et al. [37], a
monotone iterative method was investigated for non-linear
fractional BVPs while the fractional order was considered
between 2 and 3. In Asaduzzaman and Ali [38], the existence of
positive solution was investigated to the BVPs for coupled system
of non-linear FDEs.

Motivated by the aforementioned statement, this manuscript
aims to design a new iterative method to generate the
approximate solution of non-linear fractional BVPs in the form
of uniformly convergent series. The proposed method is free
from perturbation, discretization, linearization, or restrictive
assumptions. Moreover, contrary to the VIM [14] or the ADM
[12], the suggested technique provides the exact solution without
identifying the Lagrange multipliers or calculating the Adomian’s
polynomials. The new scheme just requires solving a sequence
of linear fractional-order BVPs. Finally, four numerical examples
are solved to verify the efficiency of the new technique.

The rest of paper is structured in the following way.
Hereinafter, we review the fractional calculus approach and its
main definitions. Section 3 describes the problem statement. A
numerical technique is extended in section 4 solving non-linear
fractional BVPs. Numerical and comparative results are reported
in section 5, and finally, the paper is finished in section 6 by some
concluding remarks.

2. PRELIMINARIES

This part is devoted to some preliminary results concerning the
fractional operators. In the following, the Caputo derivative and

the Riemann-Liouville integral are introduced, and their main
properties are investigated as well [15].

Definition 2.1. For t ∈ (0,T) and n − 1 < α ≤ n, the αth-order
Caputo derivative of a function x(t) is defined by

C
0D

α
t (x(t)) =

1

Ŵ(n− α)

∫ t

0
(t − τ )n−α−1x(n)(τ )dτ , (1)

where Ŵ(·) is the gamma function. The corresponding Riemann-
Liouville integral is also described as

C
0I

α
t (x(t)) =

1

Ŵ(α)

∫ t

0
(t − τ )α−1x(τ )dτ . (2)

With regard to the Caputo derivative (1), we can write

C
0D

α
t (a1x1(t)+ a2x2(t)) = a1

C
0D

α
t x1(t)+ a2

C
0D

α
t x2(t). (3)

Furthermore, the Caputo derivative of a constant function is zero,
i.e., if x(t) ≡ k, then we have C

0D
α
t k = 0. Additionally, the

derivative and integral operators (1) and (2) satisfy the following
anti-derivative property

C
0I

α
t

[
C
0D

α
t x(t)

]

= x(t)− x(0). (4)

More to the point, the Lipschitz condition is satisfied by the
Caputo derivative (1)

∥
∥C
0D

α
t x1(t)−

C
0D

α
t x2(t)

∥
∥ ≤ L

∥
∥x1(t)− x2(t)

∥
∥ , (5)

where L > 0 is the Lipschitz constant.
For additional information, the interested readers can refer to

Kilbas et al. [15].

3. THE STATEMENT OF THE PROBLEM

To formulate a fractional BVP, consider the following FDE

C
0D

α
t (x(t)) = f (x(t), t), n− 1 < α ≤ n, t ∈ (0,T), (6)

where the function f (·) is analytic with regard to its arguments
and f (0, t) = 0, ∀t ∈ (0,T). The expression C

0D
α
t denotes the αth-

order Caputo derivative, and n is an even number. The boundary
conditions for Equation (6) are given by

x(2k)(0) = a2k, x
(2k)(T) = b2k, k = 0, 1, . . . ,

n

2
, (7)

where a2k, b2k (k = 0, 1, . . . , n2 ) are real finite numbers. As
is well-known, the exact solution of the fractional BVP (6)-(7)
can hardly be achieved except in very special cases. Hence, an
efficient iterative technique will be developed hereinafter in order
to derive the corresponding approximate solution.
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4. THE ITERATIVE METHOD

In this section, an efficient iterative method is improved to solve
the fractional BVP (6), (7). To this end, first the following lemma
is presented and proved.

Lemma 4.1. The solution of the fractional BVP (6)-(7) is analytic
with respect to the boundary conditions a2k, b2k, k = 0, 1, . . . , n2 .

Proof: Let x(·) be the solution of the BVP (6)-(7). Define αi =

x(i)(0) and βj = x(j)(T), i, j = 0, . . . , n − 1. Then x(·) is the
solution of the following initial value problems (IVPs)

{
C
0D

α
t (x(t)) = f (x(t), t), n− 1 < α ≤ n, t ∈ (0,T),

x(i)(0) = αi, i = 0, . . . , n− 1,
(8)

{
C
0D

α
t (x(t)) = f (x(t), t), n− 1 < α ≤ n, t ∈ (0,T),

x(j)(T) = βj, j = 0, . . . , n− 1.
(9)

Since f (x(t), t) is assumed to be analytic, x(·), as the solution of the
IVPs (8) and (9), is analytic with respect to αi and βi, respectively
[39]. Thus, x(·), as the solution of the BVP (6)-(7), is analytic with
respect to a2k, b2k, k = 0, 1, . . . , n2 .

Now, we state and prove the following theorem.

Theorem 4.1. The solution of the fractional BVP (6)-(7) is
expressed by the uniformly convergent series x(t) =

∑∞
i=1 x̂i(t),

where x̂i(t) is attained by solving the sequence of linear
fractional BVPs

{
C
0D

α
t (x̂1(t)) = λ1(t)x̂1(t),

x̂
(2k)
1 (0) = a2k, x̂

(2k)
1 (T) = b2k, k = 0, 1, . . . , n2 ,

(10)

and for i = 2, 3, 4, . . .

{
C
0D

α
t (x̂i(t)) = λ1(t)x̂i(t)+ Fi(t, x̂1(t), x̂2(t), . . . , x̂i−1(t)),

x̂
(2k)
i (0) = 0, x̂

(2k)
i (T) = 0, k = 0, 1, . . . , n2 .

(11)
The non-homogeneous term Fi is determined by

Fi(t,x̂1(t), x̂2(t), . . . , x̂i−1(t)) =

i
∑

j=2

λj(t)
∑

k1 ,...,ki+1−j

j!

k1! · · · ki+1−j!

i+1−j
∏

p=1

x̂
kp
p (t),

(12)

λj(t) = 1
j!

∂ j

∂xj
f (x, t)

∣
∣
∣
x=0

, and the summation
∑

k1 ,...,ki+1−j

is taken

over all combinations of non-negative integer indices k1 through
ki+1−j such that

















i+1−j
∑

p=1

kp = j,

i+1−j
∑

p=1

pkp = i.

(13)

Proof: By using the Maclaurin series of f (x(t), t) with respect to
x(t), we have

C
0D

α
t (x(t)) = λ1(t)x(t)+ λ2(t)x

2(t)+ λ3(t)x
3(t)+ · · · , (14)

where λj(t) = 1
j!

∂ j

∂xj
f (x, t)

∣
∣
∣
x=0

. Besides, the solution of

the fractional BVP (6)-(7) for an arbitrary vector xb =
(

a0, a2, . . . , an, b0, b2, . . . , bn
)

is expressed by

x(t) = g(xb, t), (15)

where the vector function g :Rn × (0,T) → R is analytic based
on Lemma 4.1. In addition, we have g(0, t) = 0, ∀t ∈ (0,T), since
we have assumed that f (0, t) = 0 for all t ∈ (0,T). Therefore, by
applying the Maclaurin series of g(xb, t) with respect to xb, from
Equation (15) we derive

x(t) = g(xb, t)
∣
∣
xb=0

︸ ︷︷ ︸

0

+
∂

∂xb
g(xb, t)

∣
∣
∣
∣
xb=0

xb

︸ ︷︷ ︸

x̂1(t)

+ xTb




1

2!

∂2

∂x2
b

g(xb, t)

∣
∣
∣
∣
∣
xb=0



 xb

︸ ︷︷ ︸

x̂2(t)

+ · · · .

(16)

Since the function g(xb, t) is analytic with respect to xb, the
Maclaurin series (16) exists and is uniformly convergent. Now,
we perturb the boundary conditions by an arbitrary parameter
ε > 0, i.e., xb → εxb. Then, Equation (16) is reformulated by

x(t) = g(εxb, t) = εx̂1(t)+ ε2x̂2(t)+ · · · . (17)

Substituting x(t) from Equation (17) into the
expansion (14) yields

C
0D

α
t (εx̂1(t)+ ε2x̂2(t)+ · · · ) = λ1(t)

(

εx̂1(t)+ ε2x̂2(t)+ · · ·
)

+λ2(t)
(

εx̂1(t)+ ε2x̂2(t)+ · · ·
)2

+ · · · .

(18)

Rearranging Equation (18) with respect to the order of ε results

εC0D
α
t (x̂1(t))+ ε2C0D

α
t (x̂2(t))+ · · · + εiC0D

α
t (x̂i(t))+ · · · =

ε
(

λ1(t)x̂1(t)
)

+ ε2
(

λ1(t)x̂2(t)+ λ2(t)x̂
2
1(t)

)

+ · · ·

+εi
(

λ1(t)x̂i(t)+ Fi(t, x̂1(t), x̂2(t), . . . , x̂i−1(t))
)

+ · · · ,

(19)

where

Fi(t,x̂1(t), x̂2(t), . . . , x̂i−1(t)) =

i
∑

j=2

λj(t)
∑

k1,...,ki+1−j

j!

k1! · · · ki+1−j!

i+1−j
∏

p=1

x̂
kp
p (t),

(20)
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and the summation
∑

k1 ,...,ki+1−j

is taken over all combinations of

non-negative integer indices k1 through ki+1−j such that

















i+1−j
∑

p=1

kp = j,

i+1−j
∑

p=1

pkp = i.

(21)

Since, Equation (19) must be satisfied for any ε > 0, we should
equalize the coefficient of εi on the left-hand side of Equation (19)
with its corresponding coefficient on the right-hand side. This
procedure yields

ε1 : C0D
α
t (x̂1(t)) = λ1(t)x̂1(t), (22)

ε2 : C0D
α
t (x̂2(t)) = λ1(t)x̂2(t)+ λ2(t)x̂

2
1(t), (23)

...

εi : C0D
α
t (x̂i(t)) = λ1(t)x̂i(t)+ Fi(t, x̂1(t), x̂2(t), . . . , x̂i−1(t)), (24)

...

Now, we put t = 0 and t = T in Equation (17) and in its second-
and fourth-order derivatives in order to achieve the boundary
conditions for the sequence (22)-(24). Again, we should equalize
the coefficients of εi on the both sides of the resultant equations.
Thus, we obtain

ε1 : x̂
(2k)
1 (0) = a2k, x̂

(2k)
1 (T) = b2k, k = 0, 1, . . . ,

n

2
, (25)

εi : x̂
(2k)
i (0) = 0, x̂

(2k)
i (T) = 0, k = 0, 1, . . . ,

n

2
, i ≥ 2, (26)

and the proof is complete.

As can be seen, Equation (10) formulates a homogeneous
linear BVP of fractional-order. By solving this problem, x̂1(t)
is achieved in the first step. Following the proposed procedure
in Theorem 4.1, we then obtain x̂i(t) (i ≥ 2) by solving the
non-homogeneous linear fractional BVP (11) in the ith step.
Moreover, the non-homogeneous term in (11) is determined
from Equation (12) by using the known functions provided in the
previous steps. Thus, a recursive procedure should be employed
here to solve the considered sequence.

4.1. Approximate Solution
Although Theorem 4.1 suggests a closed-form expression for the
solution of BVP (6)-(7), it is almost impossible to compute this
solution in its present form since it is an infinite series. Hence,
for the purpose of practical implementation, we need to truncate
the series by considering its first M components where M is

TABLE 1 | The suggested technique at different iterations for Example 5.1.

i (iteration time) ‖yi(t) − yi−1(t)‖∞

1 -

2 2.2× 10−3

3 4.6574× 10−6

4 1.2394× 10−8

5 3.7049× 10−11

6 1.1878× 10−13

7 3.9916× 10−16

8 1.3874× 10−18

9 4.9470× 10−21

10 1.7993× 10−23

a positive integer number. Thus, the Mth-order approximate
solution xM(t) becomes

xM(t) =

M
∑

i=1

x̂i(t). (27)

To evaluate the value of M in Equation (27), the following
criterion is considered according to the required accuracy.
Indeed, the Mth-order approximate solution (27) has enough
accuracy if for δ > 0, a given positive constant, the two
consecutive solutions yM−1(t) and yM(t) satisfy

∥
∥xM(t)− xM−1(t)

∥
∥
∞

=
∥
∥x̂M(t)

∥
∥
∞

< δ, t ∈ (0,T). (28)

Here, we present an iterative algorithm to design an approximate
solution with enough accuracy.
Algorithm:

Step 1. Determine the first-order term x̂1(t) from
Equation (10) and set i = 2.
Step 2. Determine the ith-order term x̂i(t) from Equation (11).
Step 3. SetM = i. By using the expression (27), compute xM(t).
Step 4. If the condition (28) holds for a given small enough
constant δ > 0, go to Step 5; else, replace i by i + 1 and go to
Step 2.
Step 5. Consider xM(t) as the appropriate approximate
solution.

5. NUMERICAL SIMULATIONS

In this part, four numerical examples are employed in order to
verify the effectiveness of the new suggested technique. Here,
we consider the examples form [13, 14] for the purpose of
comparison with the other existing results.

Example 5.1. Consider a fractional BVP in the form below

{
C
0D

α
t x(t) = e−tx2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(2k)(0) = 1, x(2k)(1) = e, k = 0, 1, 2,
(29)

whose exact solution is x(t) = et for α = 6.
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FIGURE 1 | Simulation curves of the exact solution and the second-order

approximate solution for Example 5.1.

TABLE 2 | Numerical comparison between the proposed iterative method and the

other approximation techniques for Example 5.1.

Absolute error∗

t Exact solution HPM [13] and Proposed method

VIM [14] (M = 2)

0.0 1.000000000 0.000000 0.000000

0.1 1.105170918 4.56500× 10−5 9.196986030× 10−5

0.2 1.221402758 1.1522210× 10−3 2.207276648× 10−4

0.3 1.349858808 4.4830030× 10−3 3.678794412× 10−4

0.4 1.491824698 1.1323624× 10−2 7.357588824× 10−4

0.5 1.648721271 2.3094929× 10−2 3.678794412× 10−4

0.6 1.822118800 4.1367190× 10−2 7.357588824× 10−4

0.7 2.013752707 6.7875828× 10−2 7.357588824× 10−4

0.8 2.225540928 1.04538781× 10−1 8.829106592× 10−4

0.9 2.459603111 1.53475695× 10−1 1.839397206× 10−3

1.0 2.718281828 2.17029144× 10−1 0.000000

∗ |Exact solution − Approximate solution|.

Following the new technique as in section 4, we solve
the presented sequence of fractional BVPs (10)-(11) in a
recursive manner. Simulation results up to 10th iteration
for α = 6 are reported in Table 1. As is shown, the
error is reduced further by considering more components
of x(t). To achieve an approximate solution with enough
accuracy, the new algorithm is applied with δ = 0.01.
From Table 1, we observe that the convergence is achieved
just in the second step, i.e.,

∥
∥x2(t)− x1(t)

∥
∥
∞

= 2.2 ×

10−3 < δ. Simulation curve of x2(t) and the exact solution
are plotted in Figure 1. This figure indicates that the second-
order approximate solution is in good agreement with the
exact solution.

The problem (31) for α = 6 has also been solved by using
the HPM [13] and the VIM [14], respectively. Notice that the
results of both methods are exactly the same as shown in Noor

TABLE 3 | The suggested technique at different iterations for Example 5.2.

i (iteration time)
∥
∥y(i)(t) − y(i−1)(t)

∥
∥

∞

1 -

2 1.3343× 10−5

3 4.3500× 10−10

4 1.8102× 10−14

5 8.4664× 10−19

6 4.2478× 10−23

7 2.2340× 10−27

8 1.2153× 10−31

9 6.7823× 10−36

10 3.8611× 10−40

et al. [14]. Table 2 depicts the exact solution and the absolute
errors achieved by applying two iterations of the HPM, VIM, and
the proposed technique in this paper. Comparative results in this
table verify the superiority of the suggested algorithm compared
to the other approximation methods available in the literature.

Example 5.2. Consider the following non-linear BVP of
fractional-order









C
0D

α
t x(t) = etx2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(0) = 1, ẋ(0) = −1, ẍ(0) = 1,

x(1) = e−1, ẋ(1) = −e−1, ẍ(1) = e−1,

(30)

whose exact solution is in the form x(t) = e−t for α = 6.

Following the same procedure as in Example 5.1, we report the
simulation results up to 10th iteration in Table 3. This table
shows that considering more components of x(t) provides more
precise results. From this table, it is also indicated that the
proposed algorithm with δ = 10−4 converges after only two
iterations, i.e.,

∥
∥x2(t)− x1(t)

∥
∥
∞

= 1.3343 × 10−5 < δ. In
Figure 2, the simulation curve of x2(t) is compared with the exact
solution. Comparative results indicate that the second-order
approximate solution is very close to the exact solution. Figure 3
shows the relation between the iteration time and the error given
by the expression (28) using infinite norm for Examples 5.1 and
5.2. In this figure, the logarithmic scale is applied for the vertical
axis. This figure verifies that the error decreases significantly as
the iteration time increases.

The problem given by Equation (32) for α = 6 has also been
solved by using the HPM and the VIM in Noor and Mohyud-
Din [13] and Noor et al. [14], respectively. As can be seen in
Noor et al. [14], the results of both methods are exactly the same.
Table 4 exhibits the exact solution along with the absolute errors
related to the HPM, VIM, and the proposed iterative algorithm.
Comparing the results shows that the new approach is superior
to the other existing methods.

Example 5.3. Consider the following non-linear fractional BVP

{
C
0D

α
t x(t) = Eα(−tα)x2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(2k)(0) = E
(2k)
α (tα)

∣
∣
∣
t=0

, x(2k)(1) = E
(2k)
α (tα)

∣
∣
∣
t=1

, k = 0, 1, 2,

(31)
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FIGURE 2 | Simulation curves of the exact solution and the second-order

approximate solution for Example 5.2.

FIGURE 3 | Relation between the iteration time and the error for Examples 5.1

and 5.2.

whose exact solution is x(t) = Eα(t
α) where Eα(·) is known as the

Mittag-Leffler function.

Simulation curve of x2(t), i.e., the second-order approximate
solution, for different values of α are plotted in Figure 4A.
This figure indicates that the approximate solution tends to
the classic integer solution for α = 6 when α → 6
as expected.

Example 5.4. Consider the non-linear fractional BVP

{
C
0D

α
t x(t) = Eα(t

α)x2(t), 5 < α ≤ 6, t ∈ (0, 1),

x(k)(0) = E
(k)
α (−tα)

∣
∣
∣
t=0

, x(k)(1) = E
(k)
α (−tα)

∣
∣
∣
t=1

, k = 0, 1, 2,

(32)

TABLE 4 | Numerical comparison between the proposed iterative method and the

other approximation techniques for Example 5.2.

Absolute error∗

t Exact solution HPM [13] and Proposed method

VIM [14] (M = 2)

0.0 1.000000000 0.000000 0.000000

0.1 0.9048374180 1.6258200× 10−4 1.4715178× 10−4

0.2 0.8187307531 1.2692469× 10−3 1.2140022× 10−3

0.3 0.7408182207 4.1817793× 10−3 5.3342519× 10−4

0.4 0.6703200460 9.6799540× 10−3 8.8291066× 10−4

0.5 0.6065306597 1.8469340× 10−2 5.5181916× 10−4

0.6 0.5488116361 3.1188364× 10−2 0.000000

0.7 0.4965853038 4.8414696× 10−2 5.5181916× 10−4

0.8 0.4493289641 7.0671036× 10−2 5.8860711× 10−4

0.9 0.4065696597 9.8430340× 10−2 3.3109150× 10−3

1.0 0.3678794412 1.3212056× 10−1 0.000000

∗ |Exact solution− Approximate solution|.

whose exact solution is x(t) = Eα(−tα).

In the same way as in Example 5.3, Figure 4B depicts the second-
order approximate solution tending to the classic integer solution
as α goes to 6.

6. CONCLUSION

This paper studied a new iterative scheme to provide the solution
of non-linear fractional BVPs in terms of a uniformly convergent
series. The proposed procedure was free from perturbation,
discretization, linearization, or restrictive assumptions.
Furthermore, contrary to the other approximation schemes
such as ADM [12] and VIM [14], the suggested technique
kept away from calculating the Adomian’s polynomials or
identifying the Lagrange multipliers, respectively. Hence,
from practical viewpoint, the suggested technique is more
efficient than the above-mentioned approximation methods.
Simulation results, demonstrating the efficacy, high accuracy,
and simplicity of the proposed method, were also included. In
the following, we summarize the main aspects of our numerical
findings. Tables 1, 3 provided the simulation results up to
10th iteration, and Figure 3 depicted the relation between
the iteration time and the error given by the expression (28).
From these results it is obvious that the error is reduced
further by considering more components of x(t). Simulation
curves in Figures 1, 2 also indicated that the second-order
approximate solution is in good agreement with the exact
solution. Tables 2, 4 exhibited the exact solution and the
absolute error derived by employing two iterations of the
HPM [13], VIM [14], and our new iterative algorithm. These
tables clearly indicated the improvements made by employing
the proposed method. The simulation curves for different
values of α were given in Figures 4A,B verifying that the
numerical approximate solution for α < 6 tends to the classic
integer solution as α → 6. Future works can be focused on
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FIGURE 4 | Simulation curves of the second-order approximate solution for α = 5.5, 5.6, 5.7, 5.8, 5.9, 6 [(A) Example 5.3 and (B) Example 5.4].

extending the suggested numerical technique to solve other types
of BVPs.
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