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Recently, the High-G MEMS accelerometer (HGMA) has been used in navigation, mechanical property detection, consumer
electronics, and other fields widely. As the core component of a measuring system, it is very crucial to enhance the calibration
accuracy of the accelerometer. In order to remove the noises in the accelerometer output signals to enhance its calibration
accuracy, a combined denoisingmethod which combines variational mode decomposition (VMD) with permutation entropy (PE)
and wavelet threshold is given in this article. For the sake of overcoming the defect of signal distortion caused by the traditional
denoising methods, this joint denoising method combines the good decomposition characteristics of VMD and the good
denoising ability of wavelet threshold and introduces PE as a judgment criterion to achieve a good balance between denoising
effect and signal fidelity. 3e combination of PE and VMD not only avoids the phenomenon of mode aliasing but also improves
the ability to identify the noise components, which makes the wavelet threshold denoising more specific. Firstly, some intrinsic
mode functions (IMFs) are obtained by using VMD to decompose the complex signal containing noise which is outputted from
the accelerometer. Secondly, the IMF components can be divided into noise IMF components, mixed IMF components, and useful
IMF components by PE algorithm. 3irdly, the noise IMF components can be discarded directly, and then the mixed IMF
components can be denoised by wavelet threshold to obtain the noiseless IMF components; in addition, the useful IMF
components need to be retained. Finally, the final denoising signal can be obtained by reconstructing the IMF components which
have been denoised by the wavelet threshold and the useful IMF components retained before denoising. 3e experimental results
prove that the combined denoising algorithm combines themerits of VMD, PE, and wavelet threshold, and this new algorithm has
a good performance in the calibration denoising of accelerometer. Compared with the serious signal distortion caused by using
only EMD or wavelet threshold, this method not only has a good denoising effect (the noises in the static part are eliminated by
99.97% and the SNR of the dynamic part is raised to 18.56) but also can maintain a good signal fidelity (the error of shock peak
amplitude is 3.4%, the error of vibration peak amplitude is 0.4%, and the correlation coefficient between the denoising signals and
dynamic part is as high as 0.982).

1. Introduction

With the rapid progress of MEMS technologies, the research
on inertial sensor components has been developed well. 3e
High-G MEMS accelerometer is an outstanding representa-
tive of the inertial sensors. It not only overcomes the dis-
advantages of the traditional sensors such as large volume and
large weight but also has the features of the high efficiency,
high reliability, and high sensitivity [1–3]. Based on these

advantages, it has been used in missile guidance, navigation,
consumer electronics, and other fields widely [4–6]. As the
core component of a measuring system, the performance of
HGMA largely determines the system precision. Inevitably,
due to the influences of the sensor itself, the hardware circuit,
and the working environment, the accelerometer output
signals are often mixed with noises, so it is essential to adopt
the denoising algorithm to remove the noises in the output
signals to improve the accuracy of the accelerometer [7, 8].
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For some common denoising algorithms, such as Fourier
transform, wavelet transform, and Kalman filter, these al-
gorithms inevitably have different degree of defects. 3e
Fourier transform can reflect the relationship between the
time function and the spectrum function, and it can be well
applied to the analysis and processing of stationary signals,
but it lacks the time-domain positioning function: that is, it
can only give the overall effect of the signals, which makes it
impossible to reflect the essential characteristics of the
signals at a certain time. Compared with stationary signals,
the instantaneous frequencies of nonstationary signals are
functions of time, so the Fourier transform is not appro-
priate for the nonstationary analysis. 3e Kalman filter
adopts matrix operation, which makes it have long com-
putation time and serious waveform distortion. Wavelet
transform is known as the microscope for signal analysis and
processing because of its good ability to capture the local
features of signals in time-frequency domain. Wavelet
transform shrinkage (thresholding) denoising algorithm
which was first proposed by Donoho and Johnstone [9, 10] is
often used to analyze the nonstationary signals. Although
wavelet threshold has good denoising property, denoising
the whole signal with wavelet threshold alone will cause
signal distortion. With the emergence of new time-fre-
quency analysis algorithms like the empirical mode de-
composition (EMD) algorithm, local mean decomposition
(LMD) algorithm, or some improved algorithms based on
them, the nonstationary signal analysis techniques become
more mature. EMD is an algorithm commonly used for
nonstationary signal analysis, which was proposed by Dr.
Norden Huang. EMD can decompose the complex signals
into some IMFs on the basis of the time scale characteristics
of the signals themselves. Once proposed, the algorithm has
been adopted in seismic exploration, mechanical fault di-
agnosis, and other engineering fields widely. Similar to
EMD, LMD is another adaptive decomposition algorithm
proposed by Smith [11]. Its essence is to multiply two sets of
functions (frequency modulation signals and the envelope
signals) separated from given complex signals to get a series
of physically meaningful product functions (PFs). However,
both algorithms have different degree of defects. For ex-
ample, EMD has the disadvantages of mode aliasing and
unreliable theoretical basis. Like EMD, LMD still has some
disadvantages such as mode aliasing and endpoint effect.
Different from EMD and LMD, VMD proposed by Drag-
omiretskiy et al. [12] achieves mode decomposition through
seeking the optimal solutions in variational model, which
overcomes the shortcomings of mode aliasing and has a solid
theoretical basis. VMD is widely applied to related engi-
neering fields [13–16] due to its separation characteristics
and noise robustness.

Although the classical denoising methods proposed
above have been widely used in the engineering fields, they
all have different degree of defects. Recently, more and more
experimental results show that hybrid denoising algorithms
have better performance than single denoising methods
[17–24]. Due to the good denoising characteristics of wavelet
threshold, it is usually used in combination with EMD to
denoise ECG signals and diagnosemechanical faults [22, 23].

With the introduction of VMD, this algorithm not only
overcomes the inherent shortcomings of EMD and LMD
such as mode aliasing and endpoint effect but also has many
merits such as good noise robustness and solid theoretical
foundation, so it has been widely used since it was proposed.
Lahmiri et al. compared the denoising effect of the com-
bination of VMD and wavelet threshold and the denoising
effect of EMD and wavelet threshold on the ECG signal and
concluded that the denoising method combined with VMD
and wavelet threshold is more effective [20]. In these similar
joint denoising methods, VMD is often used for signal
decomposition. Although VMD algorithm has good de-
composition effect, it also has the problem of over-de-
composition. In addition, the wavelet threshold is used to
denoise the whole signal or denoise each mode function
obtained by the VMD, and then the final denoising signal is
obtained by signal reconstruction. However, this often leads
to signal distortion in the denoising process. Moreover, PE
was proposed by Bandt and Pompe [25], which is adopted to
measure the degree of random and dynamic mutation of
time series or complex signals. It is characterized by simple
calculation, good detection effect, and strong antinoise
ability. In recent years, many scholars have combined PE
with other algorithms to analyze nonstationary signals
[26–29].

In this article, in order to remove noises to enhance the
accuracy of the accelerometer, VMD is combined with the
wavelet threshold; in addition, PE is introduced as the
judgment criterion, finally forming the VMD-PE-wavelet
threshold combined denoising method. 3e principle of this
joint denoising method is as follows: firstly, a series of IMFs
are obtained through using VMD to decompose the HGMA
output signals. 3en, these IMF components can be divided
into noise IMF components, mixed IMF components, and
useful IMF components by PE. 3e noise IMF component
can be discarded directly, and then the mixed IMF com-
ponents can be denoised by wavelet threshold to obtain the
noiseless IMF components; in addition, the useful IMF
components need to be retained. Finally, the final denoising
signal can be obtained by reconstructing the IMF compo-
nents which have been denoised by the wavelet threshold
and useful IMF components retained before denoising. 3e
innovation of this joint denoising method lies in the in-
troduction of permutation entropy to classify the mode
functions obtained after the signal decomposition. 3e
combination of PE and VMD not only can avoid mode
aliasing but also has good recognition ability, making the
denoising more targeted. Compared with the denoising
methods which only use EMD or wavelet threshold, the
proposed method achieves a balance between denoising
effect and signal fidelity.

In addition, we have improved the original experimental
analysis method.3e output signal of HGMA can be divided
into two parts: static phase and dynamic phase. As the
amplitude and frequency characteristics of these two phases
are different, it is not appropriate to carry out denoising
analysis on the whole signal. Better results can be obtained
by dividing the output signal into static phase and dynamic
phase and denoising them, respectively. 3e dynamic part
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can be subdivided into the shock stage and the vibration stage,
and the static part is also called the preparation stage.3is article
compares the performance of different denoising methods in
these three stages from two aspects: time domain and frequency
domain. 3e experimental results prove that the combined
denoising algorithm introduced in this article has a good
balance between denoising effect and signal retention.3e static
part is analyzed by Allan deviation, and the denoising signal
noise is reduced by 99.97%.Different denoising algorithms have
the largest difference in the denoising effect in the dynamic part.
Compared with the severe amplitude attenuation in the time-
frequency domain caused by EMDor wavelet denoising, VMD-
PE-wavelet threshold not only has a good denoising effect (the
SNR of the dynamic part is raised to 18.56) but also can
maintain a good signal fidelity (the error of shock peak am-
plitude is 3.4%, the error of vibration peak amplitude is 0.4%,
and the correlation coefficient between the denoising signal and
the dynamic part is as high as 0.982).

In order to eliminate the noises in the accelerometer
output signals to enhance the calibration accuracy, this
paper proposes a combined denoising algorithm (VMD-PE-
wavelet threshold) based on VMD and wavelet threshold
and introduces permutation entropy (PE) as the judgment
criterion. 3e experimental results prove that the combined
denoising method has a good balance between denoising
effect and signal fidelity.3e specific content arrangement of
this article is as follows. In Section 2, the VMD-PE-wavelet
threshold algorithm is described in detail. Relevant structure
and parameters of the accelerometer are described in Section
3. 3e experimental results and comparative analysis of
different denoising algorithms are given in Section 4. Section
5 gives the conclusion.

2. Algorithm

2.1. 'e Introduction of Variational Mode Decomposition
(VMD). Similar to EMD, VMD also decomposes the
complex signals into intrinsic mode functions to implement
signal decomposition. Different from the way that EMD
obtains IMF components through cyclic screening, VMD
obtains IMF components through iteratively seeking for the
optimal solutions of the variational models. VMD can
overcome some inherent defects of existing decomposition
models (EMD and LMD), such as sensitivity to noise and
sampling, mode aliasing, and endpoint effect. VMD can
extract modes simultaneously by constructing a non-
recursive variational mode decomposition model, which
makes it have good performance. For a given complex input
signal, its constraint variational model can be constructed as
[12]

min
uk{ } ωk{ }
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uk � y(t),

(1)

where {uk}� {u1,. . ., uk} is a series of intrinsic mode func-
tions (IMFs) obtained by the decomposition of signa y (t),

{wk}� {w1, . . . , wk} is a set of central frequencies which
belong to each intrinsic mode function, ‖•‖22is the Euclid
norm, δ is the Dirac distribution, and ∗ is the convolution
operator.

3e augmented Lagrangian expressions can be obtained
after inserting the quadratic penalty term factor α and the
Lagrange multiplication operator λ (t), which is
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+ 〈λ(t), y(t) −∑
k

uk(t)〉.
(2)

3e saddle point of the augmented Lagrangian function
is sought iteratively by the alternating direction multiplier
method (ADMM), that is, the above constrained variational
model’s optimal solution has been found, and all the in-
trinsic mode functions uk are

ûn+1k (ω) �
ŷ(ω) −∑i>kûi(ω) +(λ̂(ω)t/2)

1 + 2α ω − ωk( )2 . (3)

3e iteration process of wk and λ (t) are described as
formulas (4) and (5), respectively:

ω̂n+1k �
∫∞
0
ω ûk(ω)
∣∣∣∣ ∣∣∣∣2dω

∫∞
0
ûk(ω)
∣∣∣∣ ∣∣∣∣2dω , (4)

λ̂
n+1
(ω) � λ̂

n
(ω) + τ ŷ(ω)t − n∑

k

ûn+1k (ω) , (5)

where the symbol̂ represents the value update of the variable
and τ is the update parameter.

3e detailed steps of the variational modal decompo-
sition method are shown in Figure 1.

2.2. 'e Introduction of Permutation Entropy (PE). PE is an
algorithm commonly adopted to measure the degree of ran-
dom and dynamicmutation of time series, which was proposed
by Bandt and Pompe [25]. 3e unique advantages of this al-
gorithm are as follows: first, the calculation is simple and the
antinoise ability is strong; second, the algorithm is sensitive to
time and can get higher resolution; and third, the output result
of the algorithm has a better recognition of mutation infor-
mation intuitively. When VMD is performed on the sensor
output signals, a series of intrinsic mode functions (IMFs) are
obtained. In order to achieve a balance between denoising effect
and signal fidelity, in this article, PE is combined with VMD,
and IMF components obtained after VMD can be classified by
PE. 3e algorithm steps are [30] as follows.

2.2.1. Phase Space Reconstruction. 3rough phase space
reconstruction, the original time series {Y (i), i� 1, 2, 3, . . .,
n} is reconstructed into matrix S:
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S �

s(1)

⋮
s(j)

⋮
s(k)




�

y(1) y(1 + τ) · · · y(1 +(m − 1)τ)

⋮ ⋮ ⋮
y(j) y(j + τ) · · · y(j +(m − 1)τ)

⋮ ⋮ ⋮
y(k) y(k + τ) · · · y(k +(m − 1)τ)




,

(6)
where m and τ are, respectively, two parameters of PE:
embedded dimension and time delay, and each S (j) is a
reconstructed sequence.

2.2.2. Extraction of Symbol Sequence. Rearrange each vector
in the reconstructionmatrix numerically from small to large, and
a new sequence can be obtained by rearranging the Jth com-
ponent S (j)� {y (j), y (j+ τ),. . ., y (j+ (m-1) τ)} in the matrix S:

y j + i1 − 1( )τ( )≤y j + i2 − 1( )τ( )≤y j + i3 − 1( )τ( )≤ · · ·
≤y j + im−1 − 1( )τ( )≤y j + im − 1( )τ( ),

(7)
where i1, i2, . . ., im represent the position of each element in
this new sequence.

If there are equal values in the reconstructed component,
which is

y j − ip − 1( )τ( ) � y j − iq − 1( )τ( ), (8)

then, follow ip with iq, that is to say, if ip< iq, then
y j − ip − 1( )τ( )≤y j − iq − 1( )τ( ). (9)

For any reconstructed sequence S (j)�(i1, i2, i3,. . ., im),
j� 1, 2, . . ., k, since each sequence S (j) hasm index symbols
(i1, i2, i3,. . ., im), there are m! symbol sequences, and the
sequence S (j) is just one of them, so k ≤m!.

2.2.3. Calculation and Normalization of the Permutation
Entropy. Each symbol sequence appears with certain
probability. 3e probabilities corresponding to each symbol
sequence can be denoted as P1, P2,. . ., Pk. For any signal
series {Y (j), i� 1, 2, 3,. . ., n}, k reconstruction vectors are
obtained after the above two operations. 3e permutation
entropy can be obtained by the form of Shannon entropy,
which is

PE(m) � −∑j
j�1

pj lnpj. (10)

When pj � 1/m!, then PE (m) achieves its maximum ln
m!. For the sake of convenience, PE (m) can be normalized
by ln m!:

PE �
PE(m)

lnm!
. (11)

After normalization, the value range of permutation
entropy is limited to [0, 1]. 3e value of PE reveals the
complexity and the degree of random of the signals: the
greater the permutation entropy, the more random the
signals, and vice versa.

In addition, there are three key parameters in this al-
gorithm: the length of signal N, the time delay factor τ, and
the embedded dimension m. For the embedded dimension
m, PE algorithm effect will be affected when the value is too
large, and when the value is too small, those reconstructed
sequences could lose the original information. 3e value
range of m should be between 3–7, which was suggested by
Bandt et al. [25, 31]. By analyzing the results obtained by
using different m values, this paper sets m at 5. Compared
with the embedded dimension, the factor τ has little effect on
the performance of PE algorithm. In this paper, τ is set at 1.
In addition, when the data length exceeds 1024, a stable
calculation value can be obtained.

2.3. 'e Introduction of Wavelet 'reshold Denoising.
Wavelet threshold denoising is based on wavelet transform.
After the wavelet decomposition, the wavelet coefficient
generated by the signal is larger than that generated by the
noise. According to this principle, a threshold value is in-
troduced to process those wavelet coefficients, and then the
final denoising signals can be obtained through recon-
structing the processed wavelet coefficients. So, the wavelet
threshold denoising is adopted to denoise the mixed IMF
components in this article. 3e steps of the algorithm can be
summarized as follows [32, 33].

2.3.1. Wavelet Decomposition. Before the wavelet decom-
position, it is necessary to find the suitable wavelet base and
decomposition layer for the decomposition signal, and
different choices can get different denoising effects.

2.3.2. 'resholding of Wavelet Coefficients. 3e wavelet
coefficients are classified by a given threshold value: those
wavelet coefficients whose amplitude are greater than the

Initialize

Update uk and ωk, respectively, according
to formulas (4) and (5) 

The output

Y

N

{u ⌃1 
k} {ω ⌃1 

k} λ ⌃1 n

∑‖u ⌃k
n + 1 – u ⌃k

n‖2 
2 /‖u ⌃k

n‖2 
2 < ε

k

λ ⌃n + 1←λ ⌃n(ω) + τ[f ⌃n(ω) – ∑ u ⌃k
n + 1(ω)]

k

Figure 1: Specific steps of VMD algorithm.
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given threshold value will be considered to be created by
useful signals and need to be retained or shrunk appropriately.
On the contrary, the wavelet coefficients will be considered to
be created by the noises and need to be set to zero.

2.3.3. Wavelet Reconstruction. 3e final denoising signals
can be gained through reconstructing those processed
wavelet coefficients by inverse wavelet transform.

Different from noise, the signals have a certain conti-
nuity in the time domain, which is also reflected in the
wavelet domain, that the amplitude of the wavelet coeffi-
cients of useful signals is greater than that of those wavelet
coefficients generated by noises, so the noises and useful
signals can be separated by the wavelet transform. 3en, a
threshold value should be determined when using the
wavelet threshold denoising algorithm. When different
threshold estimation and threshold function are selected, the
effect of wavelet threshold denoising is also different [34],
and there are many judgment criteria. 3reshold selection
methods are mainly divided into heuristic estimation
(heursure), fixed threshold estimation (sqtwolog), extreme
threshold estimation (minimaxi), unbiased likelihood esti-
mation (rigsure), etc. Generally speaking, the first two
threshold estimation methods (heursure and sqtwolog) are
more decisive and easy to eliminate useful signals such as
noise when denoising. However, the last threshold esti-
mation method (rigsure) is relatively conservative and can
keep the amplitude of the signal well, so this paper chooses
the unbiased likelihood estimation method. 3e specific
steps are as follows:

(1) Take the absolute value of each element in signal y (j),
reorder them in ascending order according to their
absolute values, and then a new signal sequence s (j)
can be obtained:

s(i) �(sort(|y|))2, (i � 0, 1, . . . , N − 1). (12)

(2) If the square root of the Jth element of s (j) is chosen
as the threshold value (th), then the risk generated by
this threshold is denoted as rish (j):

th �
����
s(j)

√
, (j � 0, 1, ..., N − 1),

risk(j) �
N − 2j +∑ji�1 s(i)+(N − j)s(N − j)

N
.

(13)

(3) 3eminimum risk point is found in the obtained risk
curve rish (j). 3e subscript of the element corre-
sponding to the minimum risk point is jmin, so the
rigsure threshold is denoted as

th �
������
s jmin( )√

. (14)

After determining the threshold, the next step is to
choose the appropriate threshold function to filter the
wavelet coefficients which contain the noise coefficients. Soft
and hard threshold functions are two commonly used
threshold functions.3e similarity between the twomethods
is that when the wavelet coefficients are smaller than a given
threshold value, these wavelet coefficients should be set to
zero as noise coefficients. Differently, when the wavelet
coefficients are larger than the given threshold value, hard
threshold function will keep them unchanged, while the soft
threshold function subtracts the threshold value from the
wavelet coefficients, which makes the overall continuity of
wavelet coefficients better, so this article chooses soft
threshold function.

3e hard threshold functions can be separately described
as

η(w, th ) �
w, |w|≥ th,
0, |w|< th.

{ (15)

3e soft threshold function can be described as

η(w, th ) �
sign(w )( |w| − th ), w≥ th,
0, |w|< th,

{ (16)

where w and th are wavelet coefficients and thresholds,
respectively. λ � σ ×

�����
2lgN

√
, and the noise standard value is

σ � Median|w|/0.6745, of which Medi an|w| is the median
of wavelet coefficients.

2.4. Introduction of VMD-PE-Wavelet 'reshold. For the
output signal of the accelerometer, the noise will often
drown the useful signal. We hope to keep the useful signal to
the maximum extent while removing the noise. With the
development of nonlinear stationary signal denoising
methods based on modal decomposition, signal denoising
algorithms such as EMD and LMD emerge. 3e original
signals can be decomposed into some mode functions from
high to low frequency by these algorithms, and these al-
gorithms achieve the purpose of denoising by directly dis-
carding the high frequency components and reconstructing
the remaining components. Although these methods have
good noise reduction effect, they often lose useful signals. In
order to achieve a balance between denoising effect and
signal fidelity, in this article, VMD is combined with the
wavelet threshold denoising and PE is introduced to classify
the IMF components, which makes the wavelet threshold
denoising more targeted. 3e steps of VMD-PE-wavelet
threshold denoising algorithm are as follows.

2.4.1. Decomposing the Output Signals of Accelerometer with
VMD. After the decomposition of the accelerometer output
signal, a series of IMF components which contain useful
component and noise component are obtained; therefore,
these IMF components cannot be simply discarded as noise
or retained as pure signal. So, PE is introduced here to
distinguish these IMF components.
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2.4.2. Classifying the IMF Components Using PE. In this
article, PE algorithm is introduced to improve the problem
in distinguishing IMF components obtained after decom-
position. Compared with the noise, the useful signal is more
regular in time and the corresponding PE value is relatively
small. In the VMD-PE-wavelet threshold denoising method,
the IMF components are calculated to obtain their PE values,
and then the IMF components are reordered according to
their PE values.3e IMF component with a small PE value is
considered as the useful IMF component, the IMF com-
ponent with a moderate PE value is considered as the mixed
IMF component, which is composed of noise and useful
signals, and the IMF component with a large PE value is
considered as the noise IMF component.

2.4.3. Denoising Processing. 3e IMFs can be divided into
noise IMF components, mixed IMF components, and useful
IMF components by PE. 3e noise IMF components can be
discarded directly, and then the mixed IMF components can
be denoised by wavelet threshold to obtain the noiseless IMF
components; in addition, the useful IMF components need
to be retained.

2.4.4. Reconstruction of the Signal. In this article, the essence
of signal reconstruction is discarding the noise IMF com-
ponents and then reconstructing the mixed IMF compo-
nents which have been denoised by the wavelet threshold
with useful IMF components to obtain the final denoising
signals.

3e specific steps of VMD-PE-wavelet threshold are
given in Figure 2.

3. High-G MEMS Accelerometer

3e signals to be analyzed in this article come from a newly
designed and manufactured HGMA. 3e accelerometer is
known for its high impact survival rate and wide mea-
surement ranges. HGMA conducts correlation measure-
ment through piezoresistive effect, and the detection signal is
output in the form of voltage.

3.1. Structure Description of the HGMA. As shown in Fig-
ure 3, on the structure of HGMA, the four-beam island
structure is adopted. To facilitate processing, the structures
of the HGMA, such as the frame, the four beams, and the
central mass, are made into rectangular shapes. Specific
structural parameters are also given in Figure 3.

A coordinate system can be determined by using the
cross section of the HGMA as a reference, where the Z-axis is
the direction along the central dividing line of cross section;
in addition, its positive direction is downwards. X-axis is the
direction along the other middle line, and the positive di-
rection is to the right. 3e beam has three shape parameters:
length, width, and thickness, which can be denoted as a1, b1,
and c1, respectively. Moreover, the shape parameters of the
mass can be denoted as a2, b2, and c2, and the sizes of these
shape parameters are given in Table 1.

Four main resonance modes of the accelerometer are
simulated by ANSYS soft. 3e simulation analysis of these
four resonant modes of the accelerometer is, respectively,
given in Figure 4. 3e accelerometer operates in its first
mode, where the mass moves along Z-axis. 3e second and
third mode masses rotate along the X-axis and Y-axis, re-
spectively. In addition, for the fourth resonant mode of the
accelerometer, both the mass and frame move along Z-axis.
3eir resonant frequencies are given in Table 2, indicating
that the resonant frequency of the working mode (the first
resonant mode) is 408 kHz, and the frequencies of the
remaining three resonant modes are 667 kHz, 671 kHz, and
1119 kHz, respectively. In particular, there is a gap of
260 kHz between the second and first order modes, which
indicates that there is a small coupling motion between the
two resonant modes, which is conducive to the linearization
of the HGMA. In addition, in Figure 5, the SEM and
confocal microscope photos of HGMA structure are given.

4. Experiment and Analysis

4.1. Experiment. 3e experimental device is shown in Fig-
ure 6. From left to right, there are recycling box, deformable
instrument, computer, Hopkinson bar, and compressed air,
which together constitute the Hopkinson bar calibration
system. In addition, the power supply provides a+ 5V
voltage for HGMA, the temperature is kept at 25°C (room
temperature), and the sampling points are 19243.

In detail, the schematic diagram and experimental ap-
paratus for the dynamic linear incremental impact system,
which adopts the developed dual-warhead Hopkinson bar,
are given in Figure 6. As shown in Figure 6(a), the entire test
system includes an accelerometer measurement part, a
launch and impact part, the pressure control, and data
acquisition parts. In addition, Figures 6(c) and 6(d) show the
details of the launch tube and the measured accelerometer,
respectively.

In Figure 6, the accelerometer is installed at the bottom
of the base to detect the acceleration produced by the bullet
hitting the Hopkinson bar, which ranges from 1.5×105 g to
2.0×105 g. 3e grating is placed near the base to detect the
Doppler shift caused by the acceleration. Pressure chambers
1 and 2 are used to generate pressures up to 1MPa. In the
experiment of inside bullet or outside bullet, the bullet hits
Hopkinson bar and generates the longitudinal elastic
compression wave on the other side of Hopkinson bar. 3e
accelerometer installed on the side of the rod will fly out
immediately under the action of a quasi-half-sine acceler-
ation pulse from the compression wave. 3e Doppler shift
can be measured by the grating which, installed on the base,
measures according to the acceleration measured by the
accelerometer. 3en, the measured signals are converted
into voltage signals and input into the OP amplifier, and
finally the voltage signals are analyzed by the data acquisition
part.

4.2. Analysis. 3e collected output signals in the experiment
are shown in Figure 7. Generally speaking, the signal can be
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divided into two parts: static signal (preparing stage) and
dynamic signal. When there is no external interference, the
accelerometer output is a static signal. In general, static
signal contains a wealth of random noise. 3e statistical
characteristics of noise in HGMA signal can be obtained
from the static output signal. Moreover, the dynamic signal
caused by external impact consists of two phases: the shock
phase and the vibration phase. For this calibration experi-
ment, the shock stage is the main part, and the vibration
stage contains the vibration information which can reflect
the dynamic characteristics of HGMA. Since the amplitude
and frequency characteristics of the output signals in the
static stage and the dynamic stage are different, the direct
denoising output signal will affect the denoising effect.
3erefore, this paper analyzes the static stage and the dy-
namic stage, respectively, and obtains a better denoising
effect. Since the dynamic output signal of HGMA contains a
large amount of vibration information, this paper mainly

analyzes and demonstrates the denoising effects of different
algorithms in the dynamic stage.

According to the VMD-PE-wavelet threshold denoising
algorithm steps, firstly, the output signal is decomposed by
VMD. Different from EMD, LMD, and other decomposition
algorithms, before the VMD, relevant parameters need to be
determined, such as the number of decomposition layers K
and quadratic penalty factor α, among which, the deter-
mination of K has the greatest impact on the decomposition
effect. In this article, K is determined according to the
principle of center frequency proximity, that is, initial K
value is set first, then K value is increased successively, VMD
is conducted, and the center frequency of each mode is
obtained. When two center frequencies are similar, it is
judged to be over-decomposition, then the previous K value
is taken as the mode number, and the default value of the
remaining parameters is adopted in this paper. With dif-
ferent k values selected, the center frequency of each mode

Table 1: Structure parameters of the accelerometer’s beam and mass.

3e beam 3e mass

Shape parameters Length (a1) Width (b1) Height (c1) Length (a2) Width (b2) Height (c1)

Size (μm) 350 800 80 800 800 200
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Figure 2: 3e steps of VMD-PE-wavelet threshold algorithm.
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Figure 3: 3e structure schematic and size of HGMA.
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after VMD is shown in Table 3; when the number of
decomposed layers is set to 8, the center frequencies of the
fifth and sixth mode functions are, respectively, 536.6 kHz
and 554 kHz, which are close to each other, and mode
aliasing may occur.3erefore, it is appropriate to choose 7 as
the number of decomposition patterns.

To visually highlight the advantages of the VMD,
VMD and EMD are compared here; Figures 8 and 9 are
the decomposition results of dynamic signals obtained by
using VMD and EMD, respectively. 3e results show that
VMD can overcome the phenomenon of mode mixing
and pseudocomponents caused by EMD. So, in this ar-
ticle, the VMD is adopted to decompose the dynamic
signals.

3e results are given in Figure 8; S (t) is a dynamic signal
which needs to be decomposed, and S (t) is decomposed into

IMF components of 7 different modes. According to the
second step of the VMD-PE-wavelet denoising algorithm,
calculate the PE value of the acquired IMF components and
then classify them into noise components, mixed compo-
nents, and useful components according to the similarity. As
shown in Figure 10, the range of PE values is [0.2, 0.8]. IMF
components (IMF1, IMF3, and IMF4) with PE values be-
tween 0.2 and 0.4 are determined as useful components, and
these IMFs are directly reserved to participate in subsequent
signal reconstruction. However, IMFs (IMF2, IMF5, and
IMF6) between 0.4 and 0.6 are considered as mixed com-
ponents, which need to be denoised by wavelet threshold
before signal reconstruction. IMF (IMF7) with PE value over
0.6 is directly discarded as a noise component. Before signal
reconstruction, we need to use the wavelet threshold to
denoise the mixed components. 3rough a lot of compar-
ative analysis, in this paper, wavelet basis function finally
adopts the “db4” wavelet, and then the decomposition scale
is set to 4. In addition, the soft threshold function is used for
dealing with those wavelet coefficients. Finally, the final
denoising signal can be obtained by reconstructing the IMF

1548.8 Max

1394.5

1225.1

1045.8

671.53

697.23

577.92

343.61

174.91

0 Min
0 0.001 0.002 (m)

0.0005 0.00015

(a)

2070.1 Max

1840.1

1610.1

1580.1

1150

920.04

690.03

460.02

290.01

0 Min
0 0.001 0.002 (m)

0.0005 0.00015

(b)

2052.4 Max

1624.4

1596.3

1140.2

1968.3

912.19

684.14

456.1

228.05

0 Min
0 0.001 0.002 (m)

0.0005 0.00015

(c)

1085.4 Max

944.74

844.17

723.57

602.98

482.98

341.79

241.19

120.6

0 Min
0 0.001 0.002 (m)

0.0005 0.00015

(d)

Figure 4: Simulation analysis of the four resonant modes of the accelerometer.

Table 2: 3e frequencies of the accelerometer’s resonant modes.

Resonant mode 1 2 3 4

Resonant frequency (kHz) 408 667 671 1119
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Figure 5: Overall picture, CCD picture, and SEM picture of the accelerometer.
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Figure 6: Hopkinson bar calibration device.
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components which have been denoised by the wavelet
threshold and useful IMF components.

To verify the reliability of this new algorithm, we
compared this new algorithm with EMD and wavelet
threshold. 3e performances of different denoising methods
are, respectively, discussed in both time and frequency
domains. Next, the performance of different denoising al-
gorithms will be analyzed from the preparation stage, the
shock stage, and the vibration stage, respectively.

4.2.1. Preparation Stage. When there is no external inter-
ference, the output of the accelerometer is static signal. 3is
stage contains a large number of random noises and bias
characteristics of the accelerometer. It can be seen from
Figure 11 that the noises in this stage are large (peak-peak is
around 0.054 v), and the signals denoised by VMD-PE-
wavelet, wavelet, EMD, and VMD, respectively, are basically

overlapped. In this stage, these denoising methods all have
good denoising effects.

Allan variance is a time-domain analysis technique,
which is often used for random error analysis of data col-
lected by gyroscope under static conditions. Here, the Allan
variance curve is used to analyze whether the noise level is
reduced in the static stage (preparation stage). In Figure 12,
the values of static output signals and the signals denoised by
VMD-PE-wavelet threshold in 2.5 ∗ 10−8 s are 102mV/h
and 0.65mV/h, respectively. When using VMD-PE-wavelet
threshold algorithm, the noises in the original signals can be
reduced by 99.97%, indicating that using the VMD-PE-
wavelet method can significantly remove the random noise
of the signals.

4.2.2. Shock Stage. For this calibration experiment, the stage
is the main part, and its peak value is about −1.754 v, and its
impact pulse width is about 6.5 us. As shown in Figure 13, at
this stage, the original signals, VMD-PE-wavelet threshold,
and EMD denoising signals almost overlap, which indicates
that these two methods can maintain useful information
while removing noise. However, after the wavelet threshold
denoising and VMD denoising, the signal amplitudes are
only −1.5 v and −1.04 v respectively, which loses a consid-
erable part of useful signals, and the errors are more than
14% and 40% compared to the original signals, respectively;
due to serious signal distortion, wavelet threshold denoising
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Figure 7: 3e output signal of the accelerometer.

Table 3: Center frequencies of different decomposition layers.

3e value
of K

Center frequency (kHz)

5 60.4 124.7 227 536.6 10000 — — —
6 60.4 124.7 227 536.6 10000 10550 — —
7 60.4 124.7 234 370 536.6 10000 12860 —
8 60.4 124.7 234 370 536.6 554 10000 12860
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and VMD algorithms are not suitable for accelerometer
denoising.

4.2.3. Vibration Stage. 3is stage mainly contains the vi-
bration information of the signal output by the acceler-
ometer, and this stage reflects the dynamic characteristics of
the accelerometer. 3e performance of different denoising
algorithms at this stage is shown in Figure 13; at this stage,
only VMD-PE-wavelet threshold can inherit the features of
the original signal while denoising. Meanwhile, wavelet
threshold denoising and VMD result in certain signal dis-
tortions, with the maximum error exceeding 17% and 25%,
respectively. 3e EMD denoising method almost loses the
characteristics of the original signal; only the VMD-wavelet
denoising method is applicable in the vibration phase, and
the other three methods will cause serious signal distortion.

After analyzing the denoising effects of these denoising
methods in time domain, we continue to discuss the fre-
quency features of the signals after denoising with different
denoising algorithms. 3e frequency characteristics of these

signals are given in Figure 14, and the specific comparison
results are summarized in Table 4.

4.2.4. Frequency Domain Analysis of the Shock Stage. At this
stage, the frequency peak is around 33.2 kHz. In Figure 14,
the amplitude of the signal denoised by the VMD-PE-
wavelet threshold denoising method has the same amplitude
as the original signal at the peak point (both at 0.088V). In
addition, the peak value of the signal denoised by wavelet
threshold is 0.066V, the peak value of the signal denoised by
EMD denoising is 0.045V, and the peak value of the signal
denoised by VMD denoising is 0.060V; the errors are 25%,
48.8%, and 31.8%, respectively, compared with the original
signal. 3is means that only the VMD-PE-wavelet threshold
denoising method can retain the original frequency char-
acteristics and the actual amplitude while denoising.

4.2.5. Frequency Domain Analysis of the Vibration Stage.
In the frequency domain, the frequency peak of this stage is
at 536.3 kHz. In addition, the accelerometer vibrates around

4

3

2

1

0

–1

–2

–3

D
if

fe
re

n
t 

d
en

o
is

in
g 

si
gn

al
s

0 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045 0.0005

0.00025 0.000393 0.000394 0.000395 0.000396 0.000397 0.000398 0.000399 0.0004 0.000401 0.0004020.0002450.000240.0002350.000230.0002250.000220.0002150.00021

0.5

0

–0.5

–1

–1.5

–2

Time (s)

Time (s)

Time (s)

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

X: 0.000264

Y: –1.754

X: 0.0002366

Y: –1.09

X: 0.0002364

Y: –1.5

6.5us

Original dynamic signal

Wavelet threshold

VMD-PE-wavelet threshold

EMD

VMD

Figure 13: 3e denoising effect of different methods in dynamic stage.

Shock and Vibration 13



the Z-axis, so just the working mode is activated. As
mentioned above, the vibration frequency of the first mode
of the accelerometer is 408 kHz. Due to machining errors
and other factors, the actual value is deviated by about
128 kHz. As shown in Figure 14, the amplitude of the signal
denoised by VMD-PE-wavelet denoising at the peak point is
the same as that of the original signal (both at 0.249V). In
addition, the peak value of the signal denoised by wavelet
threshold denoising is 0.186 v, the peak value of the signal
denoised by EMD denoising is 0.013 v, and the peak value of

the signal denoised by VMD denoising is 0.213 v. Compared
with the original signal, the errors are 25.3%, 94.7%, and
14.4%, respectively. 3ese three methods lose the frequency
characteristics of the original signal seriously, so only the
VMD-PE-wavelet threshold denoising method can be used
for accelerometer calibration denoising.

As can be seen from the above comparative analysis,
VMD-PE-wavelet threshold algorithm can maintain a good
signal fidelity when denoising; compared with EMD, VMD,
and wavelet threshold, the signal distortion caused by
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Table 4: Performance evaluation of different denoising algorithms in dynamic processing.

Methods Original signal VMD-PE-wavelet EMD Wavelet VMD

Shock stage
Value (V) 0.088 0.085 0.066 0.045 0.060
Errors (%) — 3.4 25 48.8 31.8

Vibration stage
Value (V) 0.249 0.248 0.186 0.013 0.213
Errors (%) — 0.4 25.3 94.7 14.4
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VMD-PE-wavelet threshold algorithm is small. To compare
the denoising effects of these three denoising algorithms,
the correlation coefficient and signal-to-noise ratio (SNR)
are introduced to quantitatively verify the superiority of
this algorithm; the results are given in Table 5; the cor-
relation coefficient and signal-to-noise ratio are defined as
follows:

ρs1s2 �
Cov S1, S2( )������

D S1( )√
∗

������
D S2( )√ , (17)

where the original signal and the denoising signal are
denoised as S1 and S2, Cov (S1, S2) is the covariance of S1 and
S2, and the variance of S1 and S2 is denoised as D (S1) and D
(S2), respectively.

SNR � 10lg
Ps
Pn

( ), (18)

where the effective power of the signal and noise is denoised
as Ps and Pn, respectively.

Table 5 shows the comparison results of signals denoised
by different denoising methods; the signal after VMD-PE-
wavelet threshold denoising has the highest SNR (18.56), and
its correlation coefficient is as high as 0.982, indicating that
this denoising method can maintain good signal fidelity.
Compared with the other three methods, this method not
only improves the SNR the most but also reduces the signal
distortion.

5. Conclusions

In order to eliminate the noises in the accelerometer output
signals to achieve the purpose of calibration denoising, this
article proposes a joint denoising algorithm which combines
the wavelet threshold with the VMD and PE algorithms.
Compared with the current decomposition algorithm
(EMD, LMD, etc.), VMD-PE has the advantages of antimode
aliasing and good mode recognition ability. 3e core idea of
this method is firstly, the output signals are decomposed and
classified by VMD-PE, and then the mixed component is
processed by the wavelet threshold, which avoids the signal
distortion caused by the direct use of wavelet threshold
denoising. 3is combined denoising method combines the
decomposition ability of VMD, the recognition ability of PE,
and the denoising ability of wavelet threshold, which can
achieve a balance between denoising effect and signal fi-
delity.3e experiment shows that this method not only has a
good denoising effect (the noises in the static part can be
eliminated by 99.97% and the SNR of the dynamic part is
raised to 18.56) but also can maintain a good signal fidelity

(the error of shock peak amplitude is 3.4%, the error of
vibration peak amplitude is 0.4%, and the correlation co-
efficient between the denoising signal and the dynamic part
is as high as 0.982). 3erefore, the combined denoising
algorithm (VMD-PE-wavelet threshold) proposed in this
article has good denoising effect and is suitable for accel-
erometer calibration.
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