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Abstract 
Purpose – In the present article, a new joint friction model is proposed, which can accurately model the real friction, 
especially in cases with sudden changes in the motion direction. The identification and sensor-less control algorithm 
are investigated to verify the validity of this model. 
Design/methodology/approach – The proposed friction model is nonlinear and it considers the angular displacement 
and angular velocity of the joint as a secondary compensation for identification. In the present study, we design a 
pipeline—including a manually designed excitation trajectory, a weighted least squares algorithm for identifying the 
dynamic parameters and a hand guiding controller for the arm’s direct teaching. 
Findings – Compared with the conventional joint friction model, the proposed method can effectively predict friction 
factors during the dynamic motion of the arm. Then friction parameters are quantitatively obtained and compared 
with the proposed friction model and the conventional friction model indirectly. It is found that the average Root 
Mean Square Error of predicted six joints in the proposed method decreases by more than 54%. The arm’s force 
control with the full torque employing the estimated dynamic parameters is qualitatively studied. It is concluded that 
a light-weight industrial robot can be dragged smoothly by the hand guiding. 
Practical implications – In the present study, a systematic pipeline is proposed for identifying and controlling an 
industrial arm. The whole procedure has been verified in a commercial 6 DOF industrial arm. Based on the conducted 
experiment, it is found that the proposed approach is more accurate in comparison with conventional methods. A 
hand-guiding demo also illustrates that the proposed approach can provide the industrial arm with the full torque 
compensation. This essential functionality is widely required in many industrial arms such as kinaesthetic teaching. 
Originality/Value – Firstly, a new friction model is proposed. Based on this model, identifying the dynamic 
parameter is carried out to obtain a set of model parameters of an industrial arm. Finally, a smooth hand guiding 
control is demonstrated based on the proposed dynamic model. 

Keywords–Industrial robot, Parameter identification, Friction model, Weighted least squares, Direct teaching.

1 Introduction 

As an important subject of the human-robot interaction, 
robot direct teaching is widely studied. Typical robot 
direct teaching methods require accurate robot dynamic 
parameters, such as the gravity compensation or force-
free control (Xiao et al., 2019; Xiao et al., 2018). 
Furthermore, the robot collision detection is widely 
used in tasks where robots interact with humans. This is 
typically implemented based on robot dynamic 
parameters (Sami et al., 2017). Moreover, accurate 
dynamic parameters allow robots to execute some tasks 

that require high precision and high dynamic responses 
(Wu et al., 2010). However, these applications require 
an accurate understanding of the robot's dynamic 
parameters. Unfortunately, manufacturers often do not 
provide or only partially provide dynamics information 
of the robot. Therefore, experimental identification or 
calibration is the only reliable way to obtain these types 
of information. 

For n-DOF series robots in the real environment, the 
friction directly affects the control accuracy and 
smoothness of the robot arm. Accordingly, it is of 



 

 

significant importance to investigate the impact of the 
friction on the robot performance. Reviewing the 
literature indicates that several review papers have been 
issued in this regard (Olsson et al.,1998; Bona et al., 
2005). They summarized the approaches for modelling 
the friction force in robots and discussed different 
associating factors e.g. displacement and relative 
velocity of the contact bodies, properties of the surface 
materials and the presence of lubrication. Moreover, 
Nevmerzhitskiy et al. (2019) studied the effect of 
temperature on the joint’s friction. Bittencourt et al. 
(2010) found that the load is an important factor in the 
friction model. Waiboer et al. (2005) demonstrated that 
the relative velocity is the most important factor in the 
joint friction model, which follows the conventional and 
simplified friction model. In this model, the friction is 
considered as the Coulomb friction, which is related to 
the motion direction and viscous friction, having a linear 
correlation with the velocity. To this end, a new friction 
model is proposed and nonlinear factors will be 
introduced in this regard. These factors are related to the 
velocity to improve the accuracy of the friction 
prediction. 

Most widely adopted methods for identifying 
dynamic parameters are the least square estimation (Jin 
et al., 2015) and maximum likelihood estimation 
(Swevers et al., 1997). Least square estimation is a more 
robust method so that it is more adopted. Reviewing the 
literature shows that diverse modifications have been 
conducted on this approach. More specifically, Kubus et 
al. (2008) proposed a non-line recursive total least 
squares estimation for arm’s inertial parameters. 
Meanwhile, Gautier et al. (2013) proposed a nonlinear 
least squares optimization approach to estimate model 
parameters of two DOF SCARA robot prototype. Since 
the least square approach is robust and it is widely used 
in industrial applications, this approach is adopted in the 
present study to estimate parameters of the link’s inertial 
and joint friction model. Because the output torques of 
joints in the majority of industrial arms are not the same, 
a weighted least square estimation method will be 
utilized rather than the classical one. 

The main contributions of this article can be 
summarized as the following: 

⚫ A new joint friction model is proposed, which 
can predict the friction more accurately in 
comparison with conventional models. 

⚫ The weighted least square method is adopted for 
identifying the robot dynamic model, and a more 
accurate result will be achieved. 

⚫ A hand guiding experiment is carried to evaluate 
the two aforementioned contributions. 

The contents of this article are organized as follows: 
The proposed friction model and the corresponding 
dynamic parameters are introduced in section 2. Then 

details of the excitation trajectory design are discussed 
in section 3. Furthermore, a robot hand guiding 
controller is designed based on the identified dynamic 
model for the arm in section 4. The proposed friction 
model and the identification accuracy compared to the 
conventional friction model is evaluated in section 5. A 
hand guiding experiment is also carried out to show the 
practicability of the whole parameter identification 
method. 

2 Identifying dynamic parameters  

2.1 Establishment of the robot dynamic model 
The robot parametric dynamic model can be obtained by 
either the Newton-Euler method or Lagrangian method 
in the form below (Craig., 2005): 

( ) ( , ) ( )
f

M q q C q q q G q = + + +    (1) 

where ( ) n n
M q R

  and n are the symmetric inertia 
matrix and the number of joints, respectively. Moreover, 

( , ) n n
C q q R

  and 1( ) n
G q R

  denote the Coriolis 
centrifugal force matrix and the vector of gravitational 
torques, respectively. Moreover, , ,q q q  are 1n
vectors that determine the angular displacement, 
angular velocity and angular acceleration of joints in the 
joint space. Meanwhile, 1n

R   and 1n

f R   are 
the driving torque of joints and the frictional torque in 
the conventional dynamics model, respectively. The 
linear structure of friction can be expressed in the form 
below:  

sgn( ) ( )f c vf q f q = +        (2) 

where c
f and v

f  are the Coulomb and viscous friction 
coefficients, respectively. However, studies show that 
this single linear model has a distinct difference with the 
real friction phenomena. In order to fit the negative 
slope phenomenon at low speed so that it can be 
combined with the Coulomb viscous model, a modified 
friction model is proposed as follows. 

 
/ sgn( )   

sgn( )+ ( )   

c

f

c v

q f q q

f q f q q

 



 =  

    (3) 

where is the threshold of joint velocity. The viscous 
friction model can be expressed as: 

 
3 2

3 2 1( )
v v v v

f q f q f q f q= + +      (4) 

where 1v
f , 2v

f and 3v
f are real coefficients. 



 

 

In the proposed model, the Coulomb friction 
performs in both positive and negative directions. When 
the robot joint moves in different directions, the 
gravitational force is applied to the joint in the opposite 
direction of the gravity. Accordingly, two Coulomb 
friction coefficients 1c

f  and 2c
f  are considered in 

equation (4). On the other hand, it is an enormous 
challenge to accurately define static friction and the 
friction at low speed. Compared with equation (2), the 
threshold in equation (3) is set to make the low-speed 
movement and the commutation movement of joints 
more smoothly. Furthermore, the velocity square and 
velocity cube of joints are considered in the calculations 
to guarantee the accuracy of the proposed friction model. 

2.2 Linearization of the robot dynamic model 
Swevers et al. (2007) demonstrated that the dynamic 
model in equation (1) can be rewritten into a linear form 
by a standard parameter linearization as follows: 

( , , )s sY q q q =            (5) 

where ( , , ) sn nN

s
Y q q q R

  is a regression matrix; s
  is 

the 1snN   vector of standard parameters; s
N  is the 

number of dynamic parameters in each joint. Equation 
(3) indicates that each joint contains 16 dynamic 
parameters. 
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, , ,

[ , , , , , , , ,

       , , , , , , , ]

T
n

s s s s

i i i i i

s i i i i xx xy xz yy

i i i i i i i T

yz zz i c c v v v

m mx my mz I I I I

I I J f f f f f

   



 =  
=  (6) 

where i

s
  contains the mass of joint i  called i

m . 

Moreover, i
mx , i

my  and imz  are the first-order inertia 

moments of joint i , and i

xx
I ,

i

xyI ,
i

xz
I ,

i

yyI ,
i

yzI ,
i

zz
I are the 

inertial tensors of joint i relative to the origin of the joint 
space coordinate system i ; i

J is the inertia moment of 

the robot and gear of the motor i  ;
1

i

c
f ,

2

i

c
f  denote the 

positive and negative direction coefficients of the 
Coulomb friction, respectively. Finally,

1

i

v
f ,

2

i

v
f ,

3

i

v
f are 

viscous friction coefficients. 
Combining equations (1) and (5) yields the 

following expression: 

( , , , ) s sf q q q Y  = =         (7) 

In order to simplify the model, while maintaining the 
model generality, the thj  (1 )sj N   dynamic 

parameter of the thi (1 )i n  link is set to 1 and the 
rest elements of i

s
 are set to 0. Applying the Newton-

Euler method to compute the vector, the thj column 
elements of the matrix s

Y   can be obtained from the 
following expression: 

( )1 2, ,
T

j ny   =          (8) 

It is worth noting that elements of other columns of 
the matrix s

Y can be obtained in the same way. When the 
robot operates under a random trajectory, multiple 
matrices s

Y can be obtained. Finally, all of matrices s
Y

are combined to form a matrix 
Mn nNsW R  ( M is the 

number of s
Y  matrices). It is necessary to normalize 

the matrix prior to the decomposition. 

 
sMn nNW QR =            (9) 

where 
Mn nNsW R   is the normalized matrix of the 

matrixW . When nonzero terms of the main diagonal 
elements of the matrix R   are moved forward, the 
matrix can be divided into two parts. 

  1 2
  R R R=  (10) 

The corresponding columns of the matrix 
sMn nNW 

are ordered in the same way as the matrix R . 

 1 2[   ]
sMn nNW W W =         (11) 

where the matrix 
1W  will be used to generate the 

excitation trajectory. Similarly, matrix 
' sMn nN

W R
  

can be obtained by running the robot under the 
excitation trajectory so that it can be decomposed as 

 
' ' '

1 2[ ]
Mn nNs

W W W


=        (12) 

Similarly, s
 can be divided into two parts. 

 
' "( )T

s s s
  =          (13) 
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s

s

W W




 

 =   
 

        (14) 



 

 

According to equations (10) and (11): 

 
' '

2 1W kW=            (15) 

where 1

2 1k R R
−=  . Subsequently,  can be rewritten in 

the form below: 

 
' "'

1 ( )
s s

W k  = +           (16) 

 ( , , )
b b

Y q q q =            (17) 

where '

1b
Y W=  and b  is the minimum parameters, 

which is defined as: 

 
' "

b s s
k  = +              (18) 

2.3 Weighted least squares estimation 

The maximum torques of robot joints highly differ from 
each other. Taking the ROKAE BX7 robot as an 
example, the first joint’s maximum torque (i.e. the 
output of reducer) is more than 80 Nm, but the sixth 
joint’s maximum torque is less than 8 Nm. Accordingly, 
estimation of the least squares cannot be an unsatisfying 
solution because each joint is treated equally (Matthias 
et al., 2015). 

Then the error expression e  is defined as: 

 ( , , )b be Y q q q  = −         (19) 

The weighted matrix is as follows: 

ê He=               (20) 

where
1

1
{ }

i
i n

M

H diag
=

=  is the weighted matrix and 

i

M  is the 2 -l norm  of M-dimension output torque 

vector of joint i . 

1
( )

2

T T

b
L e H He =       (21) 

( )
{ } 0T T T T Tb

b b b b

b

L
Y H H Y H HY

  



= − =


 (22) 

The weighted least square equation can be expressed 
as: 

1( )T T T T
b b b b

Y H HY Y H H −=     (22) 

It should be indicated that the accuracy of the 
identification result is evaluated through the root mean 
square error (RMSE) indicator, which is defined as: 

2

1

( )
M

i i

cal act

iRMSE
M

 
=

−
=


      (23) 

where M is the total number of samples. Moreover, i

cal


and i

act
 are the calculated and actual values of the thi

point, respectively. 

3 Designing the excitation trajectory 

Studies show that a well-designed excitation trajectory 
can not only reduce the adverse impact of measurement 
noise on the result but also improves the iterative speed 
of the target parameter and the identification accuracy 
(Shouyan et al., 2018). Designing the excitation 
trajectory generally consists of two steps, including the 
trajectory parameter selection and the parameter 
optimization. 

3.1 Trajectory parametrization 

The trajectory of each joint can be considered as the 
finite sum of the Nth harmonic sine and cosine functions. 
The position curve of the thi joint i

q , speed i
q , and the 

acceleration i
q  can be expressed as follows. 

0
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 
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 
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= − +
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





(24) 

where
f  is the fundamental frequency, and in the 

present study, it is set to 0.1 ( / )rad s . Moreover, 0i
q

denotes the offset of the joint position. In order to ensure 
the periodicity of the trajectory, it is assumed that all 
joints have the same fundamental frequency. Each track 
contains (2N+1) parameters (N is the terms of Fourier 
series) to generate the excitation reference trajectory. 
The parameters l

a and lb determine the magnitude of the 
cosine and sine functions and can be determined 
through the optimization. 

3.2 Trajectory optimization 

The problem of determining the excitation trajectory



 

 

*( )q t can be mathematically expressed as follows: 

 
*( ) arg min( )

J
q t O=        (25) 

Meanwhile, this expression is subjected to the following 
constraints and boundary conditions: 
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       (26) 

where J
O  is the objective function to be determined.

maxq , maxv  and maxa  are the position, velocity and 
acceleration of the maximum, respectively. Boundary 
conditions (e) and (f) limit the starting velocity and 
acceleration of the robot's excitation trajectory, 
respectively. 

Based on Hadamard's inequality. 
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Defining 2

1

nM
s

ij j

i

W W
=

= then equation (28) can be 

simplified to the form below: 
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j

W W W
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Then the objective function is defined as follows: 

 
2
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1
b
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O

W
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           (29) 

Where the matrix 1W in equation (11) will be used as W . 

Assuming 0
l

a  , 0lb   and 5N = , 66 excitation 
trajectory parameters of the 6-DOF robot can be 
obtained by the NLOPT optimization method. The 

period of excitation trajectory is 20 seconds. Figure 1 
presents the excitation trajectories of 6 joints. 

Figure 1 Position of the reference trajectory 

 

4 Sensor-less hand guiding of the industrial 
robot  

Sensor-less hand guiding of the industrial robot is one 
of the typical applications, which requires accurate 
dynamic parameters (Fan et al., 2019). Recently, a 
sensor-less force control method has been proposed 
based on the motor current for the direct drive robot 
(Sang et at., 2016). Furthermore, an effective technique 
was applied for the sensor-less estimation of the force, 
which is applied to the end-effector of a robot using the 
stiffness and relative displacement of each robot joint 
(Yuan et al., 2018). However, these approaches are only 
applicable to special robots equipped with joint torque 
sensors or direct drive motors. 

The core idea behind the sensor-less hand guiding is 
to accurately estimate the robot inertia, gravity and 
friction without joints’ torque sensors so that the 
programmer can compute a feedforward controller to 
compensate such items while the robot is moving. 
Finally, the robot movement can be directly guided with 
a small external force. Based on the foregoing 
discussions, it is an enormous challenge to calculate the 
friction in all cases. This is especially more pronounced 
when the joint state changes from moving to stationary, 
or slow movement. The most accurately identified 
parameters are the smaller external force required for 
the hand guiding. Therefore, the hand guiding is carried 
out in the present study to evaluate the accuracy of the 
identified parameters in practical applications. 

Based on the results of dynamic identification 
parameters, the real-time torque of each joint can be 
accurately calculated from the expression (31) (Sang et 
al., 2016). 



 

 

2 ˆ ˆˆ ˆ ( ) ( , ) ( )

ˆ     ( ) ( )

[ ]
d

f d d p d

J M q C q q q G q

K q q K q q

n q


 + + +

+ + − + −

=
   (30) 

where is the torque vector of joints,
p

K and
d

K are gain 

matrixes of PD controller. Moreover, Ĵ , ˆ ( )M q  ,
ˆ ( , )C q q  , ˆ ( )G q  and ˆ

f  are the estimated values for 

motor inertia moment, inertia matrix, Coriolis and 
centrifugal matrix, vector of gravitational torque and 
joint friction vector, respectively. Meanwhile, d

q , d
q

and d
q   are the desired position, velocity and 

acceleration of joints, respectively. It should be 
indicated that for the hand guiding, the proportional 
control term should be excluded from equation (31), 
otherwise the position control action will drive the robot 
to the desired position. Furthermore, the desired 
velocity and acceleration of each joint should be zero. 
For the sake of convenience, the influence of the inertia 
term is ignored in the present study. Figure 2 shows that 
since the inertia term is ignored, this strategy is suitable 
for low-speed and low-acceleration hand guiding, and 
the coefficient matrices or vectors can be calculated 
with robot dynamic parameters. 

{ ( , ) ( ) }f dC q q q G q K q = + + −    (31) 

Figure 2 Block diagram of the sensor-less hand guiding 

5 Calculation and verification of dynamic 
parameters 

5.1 Experiment Platform 

Figure 3 shows the robot experiment platform, which 
includes an industrial manipulator, a servo system to 
drive the motors, and a real-time main controller. In 
order to visualize the data, debug the system and modify 
the controller algorithm, an internally developed 
programming interface is used (Guanghui et al., 2019). 
Figure 4 shows the kinematic structure and parameters 
of the industrial manipulator. The weight and maximum 
payloads are approximately 47 kg and 7 kg, respectively. 
Moreover, the communication protocol between the 
controller and the motor driver is EtherCAT, and the 
frequency is 1kHz. 

In the robot, there is not a torque senor in every joint. 
The estimation value is computed according to joint’s 
current. The estimated torques are used for modelling 
the friction and estimating the dynamic parameters of 
the robot. 

Figure 3 Experiment platform 

 

Figure 4 ROKAE BX7 robot mechanism diagram 

 

5.2 Estimation of dynamic parameters 

According to section 2, the number of parameters that 
should be identified for each joint is 16 and the total 
number of parameters required for the 6-DOF robot is 
96. Figure 5 illustrates the identification process. 

Figure 5 Dynamic parameters identification diagram 

 

Robot

-

+
+

+ +

q

d
K

0 +

ˆ ( , )C q q ˆ ( )G q ˆ
f



dq

dt

q

m


ControllerProgramming

Interface

Motor DriveManipulator

Generate excitation 

trajectory

Weighted Least 

Squares

Generate random 

trajectory

 QR decomposition

Normalize

W

b


'

1
WW

1 2
[  ]W W



 

 

The whole pipeline of the identification is as the 
following. Firstly, joint position, velocity and 
acceleration are collected under the random trajectory 
(six sine curves are used in this paper) and the 
coefficient matrix W is obtained. After the matrix W

is normalized and the QR is decomposed, W  can be 
divided into 1W   and 2W  . The matrix 1W  is used to 
generate the excitation trajectory. 

Secondly, running the robot under the excitation 
trajectory and 20,000 data groups of position, velocity 
and acceleration of the joints are collected and twenty 
thousand matrixes ' 6 96

s
Y R

  can be obtained like 

equation (8). Concatenating s
Y  matrixes, the 

observation matrix ' 120000 96
W R

  is obtained. By 
extracting corresponding columns like equation (11), 
the matrix '

W  is divided into ' 120000 70

1W R
  and

' 120000 26

2W R
 . Where, 70 and 26 are the number of 

linearly independent and dependent vectors, 
respectively. 

Finally, b is calculated by the weighted least squares 
in equation (23). Multiple solutions exist for the vectors

'

s
 and ''

s
 in equation (18). One way to solve this linear 

system is to assign specific values to the elements of
''

s
 .In standard parameters set s

  , elements
ii m xm c  ,

ii m ym c  and
ii m zm c  contain i

m  . Therefore, if the 

eigenvector corresponding to i
m is not independent, i

m  
cannot be set to 0. Otherwise, the independency of 

ii m xm c , 
ii m ym c , and

ii m zm c cannot be judged. Then, in 

the mass item i
m  in ''

s
 , i

m  is set to 10, and the rest 

elements are set to 0. Using this method, a solution of 
equation (18) is obtained. Table I shows the 
identification parameters of the ROKAE BX7 robot. 

Table I shows that all mass items of six joints are 10, 
which indicates that the eigenvectors corresponding to 
these mass items are not independent, and they are 
manually set to 10. Moreover, the non-independent 
eigenvalues are set to 0 except for i

m that is set to 10. 
It should be indicated that the parameters set obtained 
in this way is the numerical solution. It may not be 
completely consistent with the actual physical 
parameters of the joints. However, the experimental 
results show that this set of parameters can be used for 
computing model items correctly. Some intuitive hints 
can be used to qualitatively understand these parameters. 
For example, in joint 1, the component of mass in three 
directions and the inertias are all 0 except in the z-
direction. This is because the joint 1 itself does not move 
except for rotation around the z-axis during the 
movement. 

Moreover, the parameters of the friction model are 
qualitatively evaluated. Table I shows that 1

i

v
f is higher 

than 2

i

v
f  and 3

i

v
f  . This is reasonable because the 

conventional friction model only considers the velocity 
of the joint. Moreover 2

i

v
f  and 3

i

v
f  are not zero, which 

means that the joint friction is correlated to 2
q and 3

q

as equation (4).The Coulomb friction parameters 1

i

c
f

and 2

i

c
f in the positive and negative directions of each 

joint are approximately equal, which is in line with the 
actual situation. However, they are different, which 
confirms that it is correct to consider the Coulomb 
friction in positive and negative directions separately.

Table I The estimated dynamic parameters of ROKAE BX7 

Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

( )
i

kgm  10 10 10 10 10 10 

( )
ii m x kg mm c   0.0000 -858.2752 -76.5142 -0.2413 0.0616 -1.5041 

( )
ii m y kg mm c   0.0000 -5.2483 -861.6599 -3.3241 3.8733 1.5720 

( )
ii m z kg mm c   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2
( )

i

xx
kg mI   0.0000 3.9782 -10.8293 0.0998 0.0595 -0.0227 

2
( )

i

xy kg mI   0.0000 0.3662 1.1390 -0.0073 -0.0048 0.0006 

2
( )

i

xz
kg mI   0.0000 0.5461 -0.2281 -0.0444 -0.0125 -0.0094 

2
( )

i

yy kg mI   0.0000 -7.3663 -0.0585 -0.0000 -0.0000 -0.0000 

2
( )

i

yz kg mI   0.0000 0.1911 -0.1043 0.0458 -0.0011 0.0098 

2
( )

i

zz
kg mI   -2.8121 -9.3237 -9.6584 0.0845 0.0884 -0.012 



 

 

2
( )

i
kg mJ   0.0000 0.0000 -2.8085 0.1407 -0.0429 -0.0411 

1( )/
i

v Nm s radf   33.6469 35.4598 20.6053 6.7420 4.2719 0.7638 

2 ( )/
i

v Nm s radf   1.6392 1.2254 2.5514 -0.0174 0.2154 0.0326 

3 ( )/
i

v Nm s radf   -4.5485 -5.5002 -10.4831 -0.3451 -0.5393 -0.0814 

1( )/
i

c Nm s radf   8.0499 13.8660 9.2687 3.9203 3.0459 0.9669 

2 ( )/
i

c Nm s radf   -10.9926 -13.3944 -8.8085 -3.8707 -3.2091 -0.9670 

5.3Validation and error analysis 

In this section, the proposed method is evaluated by 
comparing it with two different friction models and 
identification approaches as the following: 
⚫ The conventional friction model and least squares 

estimation method (TFLS). 
⚫ The modified friction model and least squares 

estimation method (MFLS). 

⚫ The modified friction model weighted least 
squares estimation method (MFWLS) proposed in 
this study. 

All of the approaches are tested on the same platform 
with the same test trajectory. Moreover, the actual 
torques of joints are compared with calculated torques. 
Figures 6,7and 8 show the obtained results. Table II lists 
the root mean square error (RMSE) values of these 
methods.

Figure 6 Dynamic model validation curves based on the TFLS 

 

Figure 7 Dynamic model validation curves based on MFLS 



 

 

 

Figure 8 Dynamic model validation curves based on the MFWLS 

 

 

Table II Root Mean Square Error of three methods 

Joint TFLS MFLS MFWLS 

1 1.1591 1.1229 0.4874 

2 16.1487 15.5289 14.9412 

3 23.6079 13.9014 4.0292 

4 1.5134 1.6229 0.2823 

5 1.0070 0.9462 0.3320 

6 0.9255 0.7810 0.2702 

Figures 6 and 7 show the comparison between the 
estimated and actual values obtained by employing the 
TFLS and the MFLS, respectively. In comparison to the 

TFLS, estimated errors of joints torque by the MFLS is 
effectively reduced, especially when the joints are 
switching directions, which demonstrates that the 
modified friction describes the robot joint friction more 
accurately. This is consistent with the results in Table II. 
Moreover, the RMSE of the MFLS method is lower than 
that of the TFLS method from joint 1 to 3. Furthermore, 
a modified friction model effectively reduces “jumping” 
of the estimated values when the torque is close to zero. 
However, it is observed that the RMSE of the last three 
joints is not significantly reduced comparing compared 
with the first three joints. This is mainly because the 
least square estimation method does not consider the 
difference in the output torque of different joints as 



 

 

analyzed in section 2.3. Figure 8 and Table II show that 
the estimated accuracies of all joints are improved by 
the MFWLS method proposed in this paper compared 
with the TFLS method. Moreover, the average of six 
joints RMSE decreases more than 54%, which proves 
the validity of the MFWLS method proposed in this 
study. 

5.4 Hand guiding experiment and analysis 

In this section, robot hand guiding is used to verify the 
practicability of the identified parameters in this study, 
and to confirm the advantage of the modified friction 
model over the conventional friction model in practice. 
Figure 9 shows that there are some marks on the carton, 
and the experimenter drags the robot with one hand to 
move to each marked point. The torque command of the 
robot consists of a full torque compensation calculated 
by the part in curly braces of equation (32) and the 
output of the velocity controller. 

Figure 9 Robot hand guiding experiment 

 

 

Figure 10 shows the hand guiding the analysis of the 
industrial robot. In Figure 10 (a), the “Compensation 
torque / TFLS” curve is the full compensation torque 
calculated by the part in Curly braces of equation (32) 
with the TFLS method in the process of dragging robot, 

and while the “Compensation torque / MFWLS” curve 
is based on the MFWLS method, correspondingly. The 
last curve is output torque of motor 3. It should be 
indicated that only the result with the data of joint 3 is 
demonstrated due to the limited space. Obtained results 
from the other joints are similar. It is observed that at the 
initial moment, the robot is stationary, and the output 
torque of the motor is negative to overcome the gravity 
of the arm. Moreover, the compensation torque 
calculated based on the MFWLS method is basically the 
same as the motor output, while the compensation 
torque calculated based on the TFLS method is higher. 
From 2.5 seconds onwards, an external force is applied 
to the robot, and the robot starts to move. According to 
the principle of the force-balance, the external torque of 
the joint 3 can be calculated by subtracting the output 
torque of the motor from the compensation torque. In 
Figure 10 (b), the “External torque / TFLS” curve and 
the “External torque / MFWLS” curve show the 
required external torque to the joint when dragging the 
robot using the TFLS method and the MFWLS method, 
respectively. Moreover, the “Velocity of joint 3” curve 
is the velocity of the joint 3 in the process of dragging, 
whose units are shown on the right scale of figure 10(b). 
According to the parameters identified by the TFLS 
method, the required external torque at low joint speed 
(|velocity|   0.01 rad/s) is higher than the result of 
MFWLS method, and the external torque curve is not 
smooth enough. In comparison, the MFWLS-based 
method requires less external torque for the robot, 
whether it is stationary, at low or high speed (|velocity|> 
0.01 rad/s). More specifically, the external torque 
required by the robot from being motionless to having 
motion will be smoother, which verifies the 
practicability of the parameters identified using the 
MFWLS method and the advantage of the modified 
friction model over the previous model. 

Figure 10 Hand guiding analysis of the industrial robot 



 

 

6 Conclusion 

In the present study, a modified friction model is 
proposed to accurately describe the robot friction model. 
Moreover, a weighted least squares scheme and an 
efficient solution to the dynamic equation are 
introduced. Experimental results demonstrate that the 
abovementioned improvements effectively improve the 
accuracy of dynamic parameter estimation. Furthermore, 
a hand guiding experiment is carried out using the 
estimated dynamic parameters. It provides an applicable 
sensor-less hand guiding scheme for the industrial robot 
and validates the availability of the dynamic parameter 
identification method in this study. In the future, we will 
attempt to establish an accurate friction model to 
describe the conversion of dynamic and static friction. 
In addition, we will study the interactive control based 
on the identified dynamic parameters. 
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