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A New Kalman-Filter-Based Framework for Fast
and Accurate Visual Tracking of Rigid Objects

Youngrock Yoon, Member, IEEE, Akio Kosaka, Member, IEEE, and Avinash C. Kak

Abstract—The best of Kalman-filter-based frameworks reported
in the literature for rigid object tracking work well only if the ob-
ject motions are smooth (which allows for tight uncertainty bounds
to be used for where to look for the object features to be tracked).
In this contribution, we present a new Kalman-filter-based frame-
work that carries out fast and accurate rigid object tracking even
when the object motions are large and jerky. The new framework
has several novel features, the most significant of which is as fol-
lows: the traditional backtracking consists of undoing one-at-a-
time the model-to-scene matchings as the pose-acceptance crite-
rion is violated. In our new framework, once a violation of the
pose-acceptance criterion is detected, we seek the best largest sub-
set of the candidate scene features that fulfill the criterion, and
then continue the search until all the model features have been
paired up with their scene correspondents (while, of course, allow-
ing for nil-mapping for some of the model features). With the new
backtracking framework, our Kalman filter is able to update on a
real-time basis the pose of a typical industrial 3-D object moving at
the rate of approximately 5 cm/s (typical for automobile assembly
lines) using off-the-shelf PC hardware. Pose updating occurs at the
rate of 7 frames per second and is immune to large jerks intro-
duced manually as the object is in motion. The objects are tracked
with an average translational accuracy of 4.8 mm and the average
rotational accuracy of 0.27◦.

Index Terms—3-D pose estimation, extended Kalman Filter
(EKF), object tracking, visual servoing.

I. INTRODUCTION

O
BJECT tracking has numerous applications such as traffic

surveillance [1]–[4], augmented reality [5], mobile robot

navigation [6], robotic assembly on a moving line [7], etc. For

many of these applications involving 3-D objects, it is not suf-

ficient to just do 2-D tracking; the tracking algorithm must also

provide the 3-D pose of the object. For example, for the case

of robotic assembly on a moving line in a modern factory, it is

essential that the 3-D pose of the object being tracked—such

as a car engine cover—be fully known at all times so that the

robot end-effector can interact with the object in meaningful
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ways. Since the 3-D pose of a rigid object involves 6 DOF,

three for translation and three for rotation, the tracking algo-

rithm for such applications must yield all six parameters of the

pose. These parameters must obviously be estimated despite

occlusions, background clutter, varying illumination, etc.

The contributions that have been made in the past on tracking

that allow for the estimation of the 3-D pose of an object fall into

two categories depending on whether or not backtracking is used

in matching model and scene features. In the first category, we

have approaches that use point features. The matching strategies

used in this category are usually one-shot, meaning the scene

features are paired up with the best possible candidates from

the model (but this is done only once), and iterative in pose

space, meaning a gradient-based approach is used to find the

best possible 3-D pose that minimizes some error functional

between the model and the scene. This synopsis applies to the

work reported in [8]–[10].

With such a one-shot correspondence search strategy, the pose

estimate often drifts away from the true pose, especially when

the target object moves nonsmoothly, and the predicted pose

for each frame has large discrepancy from the true pose. In or-

der to alleviate this problem, some approaches employ a robust

estimator, such as the M-estimator [9], for minimizing the er-

ror function, or a voting-based strategy, such as the generalized

Hough transform in the pose space [1]. Marchand et al. [11]

estimate a rough location of the target in the scene by calcu-

lating the 2-D affine transformation between each consecutive

frame, and then, applying multiresolution generalized Hough

transform to estimate the finer pose. Vacchetti et al. [12] use an

appearance-based offline registration method to get around the

drift problem associated with the one-shot approaches to pose

estimation. Recently, there have been attempts to get around

the need for explicit matches between the model and the scene

by directly estimating the location of model contours in the

scene [4].

These approaches are not suitable for accurate estimation of

3-D pose on a continuing basis as an object is tracked against

cluttered backgrounds. The main source of difficulty with these

approaches appears to be a lack of a backtracking-based search

framework for matching model features with scene features. A

backtracking-based solution to the problem must of necessity

include some sort of an uncertainty model for locational and

other properties of scene features. We believe that the problems

that can be caused by the lack of backtracking also apply to the

recent work of Lippiello et al. [13].

The second category of approaches for tracking while the

3-D pose is constantly updated combines a backtracking-based

strategy for matching with pose-uncertainty modeling in order

1552-3098/$25.00 © 2008 IEEE
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to achieve greater robustness in matching [2], [6], [14], [15].

The contribution by Lowe [14] uses the Gauss–Newton method

for minimizing the error between the predicted pose and the true

pose. Koller et al. [2] and Tonko and Nagel [15] use the extended

Kalman filter (EKF) for updating the positional uncertainties

associated with the model features. Although these approaches

are similar to ours in using EKF for estimating the target object

pose, the feature-correspondence-seeking strategies in these ap-

proaches are not as elaborate as needed to accommodate jerky

motions of the sort we address in this paper. The backtracking

strategy used in [2] is similar to that described in [6]. Such one-

feature-at-a-time backtracking often fails when the motion is too

jerky, as we will argue in the rest of this section. And the EKF

implementation described in [15] does not even use any back-

tracking. So, it too cannot be expected to deal with sudden large

changes in object pose during tracking. As we will explain in this

paper, backtracking is necessary for coping with large sudden

variations in object pose, but the strategy used for backtracking

must allow the system to completely abandon a pose hypothesis

as opposed to merely undoing a previous model-to-scene match

for a single feature.

Of the approaches listed above, the prior contribution by

Kosaka and Kak [6] is particularly relevant to the new research

reported here. Although this Kalman-filter-based formalism was

originally developed for vision-based mobile robot navigation,

it was later shown to be useful for 3-D object tracking also [16].

The work reported in both [6] and [16] is based on an incremen-

tal pose-update scheme in a prediction–verification framework.

In this framework, the pose of an object in each input scene is

predicted with uncertainty. As the features in the model of the

object are sequentially matched with the features in the input

scene, an EKF is used to reduce the pose uncertainty by observ-

ing the error between the matched features. As more and more

features are matched, the estimation of the target pose becomes

increasingly accurate.

The goal in this paper is to use the work reported in [6] as a

starting point for developing a fast and accurate 3-D tracker that

also continuously yields the 3-D pose of the object being tracked

even when the object motions are large and jerky. Our research

here goes beyond what was reported in [6] in the following

important ways.

1) When a target object moves with a large variation in its

motion, the predicted statistics of the object pose for each

image frame tend to deviate significantly from the true

pose. To solve this problem, a large amount of motion

uncertainty has to be assigned to the predicted pose. As

our experiments have shown, large uncertainty in the pre-

dicted pose causes the maximum likelihood frameworks

for feature correspondence estimation, such as the one

in [6], to break down. To understand what we mean by

“break down,” note that all that a Kalman filter does is

to update the pose mean and covariance. The uncertainty

associated with such updates will always be smaller with

each iteration even when we use inappropriate matchings

between the model features and the scene features. In-

appropriate pairings between the model and the scene

features are more likely to take place in the presence of

large motion uncertainties. To get around this problem

in the research reported here, after we have updated the

pose, we reexamine the model-to-scene feature pairings

that went into the update calculations. If the new pose

(and the new bounds on the uncertainties) does not sup-

port these pairings, they are undone in their entirety (as

opposed to one-at-a-time in traditional implementation

of the backtracking step in EKF [6]) and new pairings

sought. This process is repeated until the updated pose

and the set of matched model-to-scene features support

each other fully and reciprocally. Detailed description of

the hypothesis generation and verification scheme is pre-

sented in Sections III-F and III-G.

2) While more robust, being iterative, the framework men-

tioned earlier can extract a performance penalty unless

care is taken in the initial selection of model-to-scene fea-

ture matchings. To minimize this potential performance

penalty, our system first rank orders the model features

on the basis of a number of criteria. At each iteration,

scene features are sought for only the top-ranked model

features. Experiments have shown that this significantly

reduces the number of backtrackings needed in our frame-

work. Rank ordering of the model features is described in

Section III-F.

In the next section, we present an overview of our tracking

system. In Sections III, IV and V, we present detailed description

of our pose estimation algorithm that is used iteratively in the

tracking system. In Section VI, we present pose estimation and

tracking results with a few target objects. Finally, we conclude

in Section VII.

II. TRACKING ALGORITHM

A. Workspace Description and Definition of Pose

We use three coordinate frames to represent features in our

workspace: the world coordinate frame, the camera coordinate

frame, and the target object coordinate frame. The world coor-

dinate frame, which we denote as W , is the reference coordinate

frame for points in the workspace. This frame is usually attached

to a fixed reference in the workspace. The camera coordinate

frame C is the camera-centered coordinate frame whose x and

y axes are aligned with horizontal and vertical directions of the

camera image plane, respectively, and z axis is aligned perpen-

dicular to the image plane. The target coordinate frame T is a

coordinate frame that all model feature points of a target object

are defined with respect to. Fig. 1 shows these coordinate frames

and how they are related to each other.

The transformation of the feature vectors from T to C has

6 DOF: three for translation and three for rotation. We de-

fine the pose of an object as the 6-D random vector p =
(tx , ty , tz , φx , φy , φz )

T , where tx , ty , tz are the translational

components and φx , φy , φz are the rotational components of the

transformation from T to C. The three rotational components

represent the Euler-III-type angles of rotation about the three

axes x, y, z of C, respectively, as defined in [17]. The use of

boldface font for p signifies that p is a random vector. We as-

sume p has Gaussian distribution with mean p̄ and covariance
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Fig. 1. Tracking workspace definition.

Fig. 2. Example of rigid objects and their wireframe models. (a) A wood
block. (b) A train station object.

matrix Σp . Alternatively (and more usefully), the pose vector

p is represented in the form of a homogeneous transformation

matrix from T to C and denoted as C HT using the Denavit–

Hartenberg notation [18]. When we want to show that the ele-

ments of this matrix are directly related to the pose vector, we

write the matrix as C HT (p).
Although we formulate our pose estimation algorithm for the

relative pose of T with respect to C, the algorithm can be easily

adapted to estimate the pose with respect to W by replacing
C HT (p) in (1) in the next section with C HW

W HT (p), where
W HT (p) represents the pose of the target with respect to W .
C HW is given by camera calibration.

B. Modeling Target Objects

The model features extracted from the wireframe model,

meaning the actual straight-line edges on the boundary surface

of the object, are represented by the Cartesian coordinates of the

two extremities in T . That is, a model feature m is represented

by two 3-D vectors mk = (xk , yk , zk )T , k = 1, 2 that are the

3-D Cartesian coordinates of the two extremities of m in the

coordinate frame T . The superscript k of each vector denotes

the extremity that it represents.

Fig. 2(a) shows a simple mostly polyhedral object at the top

and its wireframe model. Fig. 2(b) shows a more complex object

at the top and its wireframe model at the bottom. We refer to

the latter object as the train station object. This object will be

used to illustrate the various steps of our tracking algorithm in

the rest of this paper.

Fig. 3. Overview of our visual tracking algorithm.

C. Tracking System Overview

Tracking in our system is executed by applying a model-

based pose estimation algorithm to each consecutive frame in

the input image sequence. An overview of our tracking system is

depicted in Fig. 3. As shown in this figure, our tracking system

consists of three modules: the feature extraction module, the

pose estimation module, and the pose prediction module.

The feature extraction module extracts straight-line feature

descriptors from the input scene image along with the associ-

ated measurement uncertainties. This module is presented in

Section IV.

The pose estimation module searches for the best match be-

tween the features received from the feature extraction module

and the model features projected into the camera image by

the pose prediction module. The pose estimation module uses

an EKF to estimate the pose in such a way as to minimize

the error in the image space between the object as perceived

through the extracted features and the object model as projected

into the camera image. Details of this module are presented in

Section III.

The pose prediction module predicts the pose of the target for

the next image frame using a linear extrapolation method based

on motion estimates of the target. Such a predicted pose of the

target is used to project the object model into the camera image

for constructing the expected view of the object. The initial

value of the target object pose in the beginning of the tracking

sequence is assumed to be given.1 Details of this module are

presented in Section V.

1For the visual servoing experiment that is described in Section VI-D, the
initial pose of the target is provided by a coarse-control object tracking mod-
ule in our distributed control architecture. Detailed descriptions of our control
architecture and the trackers are presented in [19]. For non-robotic tracking ex-
periments, such as when tracking a hand-held object with a stationary or moving
camera, the initial pose is assumed to be given by human users. This can easily
be done with an appropriate GUI that allows a human to translate and rotate the
projected image of the model object until it coincides with the actual camera
image of the object.
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III. POSE ESTIMATION MODULE

Although feature extraction is the first step that a camera

image is subjected to, we will go ahead and explain how we

carry out pose estimation in our system. The discussion on

pose estimation will permit us to explain the overall uncertainty

calculus used by our system, which will subsequently result in

a more efficient explanation for the feature extraction module.

Representing and manipulating scene and model uncertainties

are key aspects of our pose estimation algorithm.

Overall, our system is aware of two different kinds of uncer-

tainties and it keeps track of them separately: the feature extrac-

tion module associates a measurement uncertainty with each

straight-line feature. The measurement uncertainty depends on

what it takes to group together a series of edge fragments into

a single straight-line feature. The other kind of uncertainty—

the kind that is the focus of this section—is due to the dis-

crepancy between the true pose of the model object and its

currently known pose as the object is in motion. This is the

uncertainty that must be associated with the model features

that are projected into the camera image by the pose prediction

module. We will refer to this uncertainty as the pose prediction

uncertainty.

For describing our pose estimation algorithm in detail, we

start with presenting the definition of the image error between

the projected model features and their corresponding scene fea-

tures in the following section.

A. Constraint Equation for Pose Error in Image Space

Previously, we talked about a model object as being defined

in an object-centered coordinate frame denoted as T . As an

object moves in space, this coordinate frame moves with the

object. In other words, the pose of a moving target object in its

own coordinate frame T never changes. Our goal in tracking

is to constantly update the pose vector p, which is equivalent

to updating the transformation matrix C HT (p). The pose of

an object is estimated by predicting the current value and un-

certainty of the C HT (p) matrix from its previous value and

the motion uncertainty parameters currently in effect, and then,

using this predicted matrix to project the relevant model fea-

tures into the camera frame C. For obvious reasons, we can

refer to these projected model features in the camera frame as

the expectation map. A difference between the expectation map

and what the camera sees at the current moment, the difference

being caused by the pose error, is then used for updating the

p vector, the uncertainties, and the various motion parameters.

Since C HT (p) is random, the locations of the projected model

features are denoted by their means and covariances that can be

derived from the mean and covariance of p at the time of the

projection.

The expectation map for a given value of p is constructed

by applying C HT (p) to the vectors representing the end points

of the straight-line model features. For such a projection, we

use a perspective projection model that is widely used for such

purposes [20]. Using the perspective projection model, the pro-

jection of the two end points mk
i , k = 1, 2 of a model feature

mi is described by the following equation:







uk
m i

w

vk
m i

w

w






=





αu 0 u0 0
0 αv v0 0
0 0 1 0





C HT (p)











xk
i

yk
i

zk
i

1











(1)

where uk
m i

, vk
m i

are the image coordinates, w the scaling param-

eter, and (xk
i , yk

i , zk
i ) the actual coordinates in the coordinate

frame T for the end points mk
i . αu , αv , u0 , v0 are the intrinsic

camera parameters that are given by the camera calibration, for

which we use the algorithm presented in [21].2 Using this equa-

tion, we denote the projection of a model feature mi for a given

value of p as a 4-D vector gm i ,p as follows:

gm i ,p = [u1
m i

, v1
m i

, u2
m i

, v2
m i

]T . (2)

For a given distribution of p with mean p̄ and covariance

matrix Σp , the mean of gm i ,p , which we denote as ḡm i ,p , is

calculated by replacing C HT (p) with C HT (p̄) in (1). The un-

certainty of gm i ,p , which we denote as Σgm i , p
, is approximated

using Σp as follows:

Σgm i , p
= J(gm i ,p ,p)ΣpJ(gm i ,p ,p)T (3)

where J(gm i ,p ,p) is the Jacobian matrix of the pixel coordi-

nates of gm i ,p with respect to p. For estimating the pose of the

object, the projected model features in the expectation map must

be matched with the straight-line features that are extracted from

the edge map of the input scene. Let zj be the scene feature that

is selected for matching with the camera projection of the model

feature mi . We denote this scene feature as a 4-D vector with

the image coordinates of its two end points as follows:

zj = [u1
zj

, v1
zj

, u2
zj

, v2
zj

]T . (4)

Because of the various uncertainties that are involved in edge

detection and straight-line extraction, zj is also a random vector.

We assume that this vector can also be characterized by a Gaus-

sian distribution. Details on estimating the mean and covariance

for zj are presented later in Section IV when we describe our

algorithm for extracting such scene features from input images.

The vector gm i ,p gives us the predicted locations of the end

points of the model straight-line feature mi . On the other hand,

the vector zj corresponds to the actual measured locations of

such end points in the image space. If the predicted pose corre-

sponds exactly to the current pose of the target, then obviously,

gm i ,p−zj will be zero. So, when that is not the case, any dif-

ferences between the two must be minimized. Therefore, the

following constraint equation must be satisfied by any pose up-

date mechanism:

f(p,mi , zj ) = gm i ,p − zj = 0. (5)

2For this projection equation, we assume that the input image is free of any
lens distortion effect. We use the lens distortion parameters that are estimated
by the algorithm in [21] to remove the distortion from the input images. The
software routines used for such distortion removal were drawn from the OpenCV

library [22].
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B. EKF-Based Recursive Pose Update Framework

We use a recursive framework that is similar to the frame-

work used in [6] for updating the pose of the target given the

error between the model features and the corresponding scene

features. For each model and scene feature pair in a given set

of feature correspondences, our framework uses an EKF [23]

to transform the pose parameters to presumably more accurate

pose parameters that optimally minimize the error between the

corresponding features. The updated pose parameters serve as

the initial state for the next pose update with another feature

correspondence. The fact that the updated pose parameters are

used as the initial state for the next update explains why we call

our framework recursive.

Let C = {(m1 , zj1
), . . . , (mNC

, zjN C
)} be a set of model and

scene feature correspondences where (mi , zji
), i = 1, . . . , NC

denotes that the model feature mi is matched with the scene

feature zji
. NC is the cardinality of C. We also denote the pose

vector after pose update using the match (mi , zji
) as pi and its

corresponding mean and covariance as p̄i and Σp i
, respectively.

Our pose update equations transform pi−1 into pi while min-

imizing the error between zji
and gm i ,p i−1

. With regard to the

pose update processing for each new image frame, the statistics

of the initial pose p0 are given by the pose prediction module

using the estimated pose from the previous image frame as de-

scribed in Section V. Let ẑji
represent the actual measured zji

.

We assume that the feature measurement error is additive white

Gaussian and we denote this error as ξji
with error covariance

Vji
. By linearizing and rearranging (5) in the vicinity of p̄i−1

and ẑji
using the Taylor’s series expansion, we get the following

equation:

yi = Mip + eji
(6)

where

yi = −f(p̄i−1 ,mi , ẑji
) +

∂f(p,mi , zji
)

∂p
p̄i−1

Mi =
∂f(p,mi , zji

)

∂p

eji
=

∂f(p,mi , zji
)

∂zji

(zji
− ẑji

). (7)

We denote the covariance matrix of eji
as Eji

, which can be

easily calculated from the covariance matrix Vji
of ξji

.

Using the EKF theory, the minimization of the constraint in

(5) via the linearizations in (6) through (7) is achieved if the

statistics of the state vector pi are updated by the following

equations:

p̄i = p̄i−1 − Kif(p̄i−1 ,mi , ẑji
)

Ki = Σp i−1
MT

i (Eji
+ MiΣp i−1

MT
i )−1

Σp i
= (I − KiMi)Σp i−1

. (8)

C. Building the Expectation Map

For constructing the expectation map, we identify two groups

of model straight-line features that should not be projected onto

the camera image plane. The first is the group of model features

Fig. 4. For the pose of the object shown, the expectation map as derived from
the 3-D object model consists of the thick black lines in the figure. The thin
black lines shown in the figure constitute the scene features extracted from the
image.

that are self-occluded by other parts of the object for a given

pose matrix. For identifying this type of model features, we

use the binary space partitioning (BSP) tree representation of a

polyhedral model [24].

The second group is the group of model straight-line features

that are parallel to the optic axis of the camera. Although such a

group of line segments is expected to be visible in the expecta-

tion map, it is viewed as a group of very short line segments or

points. It is obviously undesirable to match these kinds of model

features to the scene. Currently, we exclude the line segments

whose direction is within 20◦ of the optic axis of the camera.

Fig. 4 shows an example of an expectation map constructed for

the target object of Fig. 2(b). This map is superimposed on the

scene edges extracted from an image frame. The expectation

map consists of thick black lines.

D. Selecting Match Candidates for Projected Model Features

The locations of the projected model features in the image

space possess uncertainty owing to the uncertainty associated

with the predicted pose of the target. This positional uncertainty

for the projected model features defines regions in the image

space in which the system should search for the scene feature

candidates to be matched with the projected model features.

For each projected model edge gm i ,p0
, the covariance ma-

trices for the positions of its two end points are the 2 × 2 sub-

matrices in the diagonal of Σgm i , p 0
that is calculated by (3).

These covariance matrices define elliptical regions around the

end points of gm i ,p0
in the image space. We define an approx-

imate convex hull that encloses these elliptical regions and use

this convex hull as the search region for match candidates. Fig. 5

shows an example of defining the search region for a projected

model feature in the image space. Note that our convex hull is

approximate in the sense that it is polygonal, which allows for

efficient computations.
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Fig. 5. Search region for candidate scene features.

For the search region defined around gm i ,p0
, the extracted

scene edges that are inside this region are tested for match

candidacy. Let ẑj be a scene feature inside the search region of

gm i ,p0
. We evaluate the Mahalanobis distance measure for the

image error between ẑj and gm i ,p0
as defined by the following

equation:

df (p̄0 ,m i ,ẑj ) = f(p̄0 ,mi , ẑj )
T Σ−1

f (p0 ,m i ,zj )f(p̄0 ,mi , ẑj ) (9)

where Σf (p0 ,m i ,zj ) is the covariance matrix of f(p0 ,mi , ẑj ),
which is calculated by the first-order approximation as follows:

Σf (p0 ,m i ,zj ) =
∂f(p0 ,mi , zj )

∂p0

T

Σp0

∂f(p0 ,mi , zj )

∂p0

+ Vj .

(10)

Assuming f(p̄0 ,mi , ẑj ) is locally Gaussian in the vicinity of

p̄0 and ẑj , the distance measure df (p̄0 ,m i ,ẑj ) has Chi-squared

distribution with 4 DOF, since f(p̄0 ,mi , ẑj ) is defined to be

a 4-D vector. With confidence level of 0.5, we choose zj as a

match candidate for gm i ,p0
if df (p̄0 ,m i ,ẑj ) is less than χ4,0.50 ,

which is 3.357.

The match candidates for each projected model feature in

the expectation map constitute a set of model and scene feature

correspondences. For convenience of notation, we denote such

a set by C0 in the rest of this paper.

E. Estimating Model and Scene Feature Correspondence Using

Hypothesis Generation and Verification Scheme

After the set of model and scene feature correspondences is

constructed, we determine the true correspondences, these being

correspondences that satisfy certain criteria that we will present

in the following subsections. A matching hypothesis, which we

denote as CH for convenience of notation, is a subset of the

initial feature correspondence set C0 . For selecting CH , we

use a priority selection scheme that uses a certain weight mea-

sure for each feature correspondence pair in C0 . The weight

measure is calculated with three heuristic rules that are described

in the next subsection. While selecting feature correspondences

for CH , the feature pair that has a higher weight measure is

Fig. 6. Overview of the hypothesis generation and verification scheme.

given higher priority. Each time a feature correspondence pair

is selected for a match hypothesis, the predicted pose p0 is up-

dated with the feature pair. Hence, such updated pose, which

we denote as pH , represents the best estimate of the object pose

for the feature correspondences that are currently selected for

CH . The feature correspondence selection procedure continues

until the pose uncertainty associated with pH is reduced below

a certain threshold.

After CH is constructed, it is verified with the two criteria

that are described in Section III-G. If CH is rejected, then the

system regenerates CH based on the criterion violated. Such

regeneration procedures are also described in Section III-G.

The hypothesis generation and verification process iterates until

the two verification criteria are all satisfied, or no more model

and scene feature pairs are available for generating hypotheses.

In Fig. 6, the overall control flow of the hypothesis genera-

tion and verification scheme is shown. In the next subsection,

we describe the details of how the matching hypothesis CH is

generated.

F. Hypothesis Generation

Regarding the number of feature correspondences needed

for the hypothesis, one widely accepted strategy, such as the

one with the random sample consensus (RANSAC) approach

[25], is to use only the minimum required number of feature

correspondences that guarantee a certain level of confidence in

the estimated pose, and then, to verify the hypothesized feature

correspondences with the estimated pose. The pose uncertainty

associated with the estimated pose translates directly into the

confidence level. Since we estimate the pose by minimizing the

error between the projection of the model and the corresponding

scene edges in the image space, we must also calculate the pose

uncertainty in the image space. This requires that we project the

6 DOF uncertainty into the image plane.

In our EKF-based pose update framework, the extent to which

each pose update reduces the uncertainty associated with the
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pose is controlled by the Kalman gain that is subject to the

measurement uncertainty for the scene features, as shown in

(8). Since the measurement uncertainty for scene features is

subject to the image noise and the errors in the straight-edge

detection process, it cannot be predicted in advance as to how

much uncertainty would be reduced by a single iteration of pose

update. We therefore update the pose incrementally for each

matched pair of model and scene edge. At the same time, we

compute the new uncertainty associated with the updated pose

and project the uncertainty into the image plane. This iterative

process stops either when we run out of all model edges, or when

the updated pose uncertainty drops below a certain threshold,

whichever comes first. The threshold for the projected pose

uncertainty is chosen considering the level of pose estimation

accuracy required for our application.

For selecting the model and scene feature correspondences

for the hypothesized correspondence set CH , if we can give

higher priority to the feature pairs that have higher chance to be

correct matches, we can minimize the number of hypotheses that

should be generated and verified until we get the correct feature

correspondences. For such priority assignment, we calculate a

weight measure for each model and scene feature correspon-

dences using three heuristic rules. The heuristic rules are:

1) Give high priority to a model feature that has a small

number of matching candidates.

2) Give high priority to a model feature and scene feature

pair if the Mahalanobis distance measure between these

two features is small.

3) Give high priority to a model feature that is distant from

its neighboring model features in the expectation map.

The first heuristic rule is to give a higher weight to a model

and scene feature pair if the model feature of the pair has fewer

scene candidates than the other model features. Obviously, if a

certain projected model feature has many matching candidates,

then it is confusing to decide which of the candidates the model

feature must be matched with. Hence, the model features with

smaller number of candidates have higher chance to be correctly

matched.

The second heuristic rule is to give a higher weight to a feature

pair mi , zj if it has a smaller value for the distance measure

df (p̄0 ,m i ,ẑj ) that is presented in (9). Although the predicted

pose p0 is likely to contain errors, as we mentioned previously,

it remains that p0 is our current best estimate the object pose.

For this reason, we assume that any feature pair that has a small

image error with regard to the current best estimate of the object

pose has a higher chance to be a correct match.

The third heuristic rule is chosen based on the observation

that a model feature whose projection in the expectation map is

geometrically distant—both in location and in direction—to the

other projected model features is less likely to be mismatched.

If two model features are located close to each other in the im-

age space, significant parts of their search regions may overlap.

Hence, the chance of two different similarly shaped candidate

scene features to be in both search regions would be high, mak-

ing it more difficult to choose correct matches for the two model

features. For example, as shown in Fig. 7, there is significant

overlap between the search regions of the two projected model

Fig. 7. Search regions for two different model lines overlapping significantly.
Note that the search region for a model line is the convex hull of the two
projected uncertainty regions for the two line extremities.

features labeled MF1 and MF2. Note here that there exist mul-

tiple scene features that have similar lengths and orientations in

both search regions.

There have been previous approaches, including the one by

Tonko and Nagel [15], that disregard model features that are

geometrically close to each other in generating the expectation

map. Our approach is different from those approaches in the

sense that such geometrically close model features are included

in the expectation map with low priority instead of being com-

pletely disregarded. With this strategy, the matches for the low-

priority features are sought when the higher priority features fail

to match, hence increasing the level of fault tolerance.

In order to use the third heuristic rule for calculating the

matching weight, we define for each projected model feature

gm i ,p0
the distance measure dς (gm i ,p0

) that describes how dis-

tant gm i ,p0
is to other projected model features in the expecta-

tion map. The definition of dς (gm i ,p0
) is as follows:

dς (gm i ,p0
) = min

∀gm q , p 0
∈G

gT
ς Σ−1

ς gς (11)

where G is the set of projected model features in the expectation

map, gς = gm i ,p0
− gm q ,p0

, and Σς = Σgm i , p 0
+ Σgm q , p 0

.

With the three heuristic rules listed earlier, we calculate the

weight measure W (p0 ,mi , ẑj ) for each model feature and scene

feature pair (mi , zj ) as follows:

W (p0 ,mi , ẑj ) =
dς (gm i ,p0

)

df (p0 ,m i ,ẑj )ncand(gm i ,p0
)

(12)

where df (p0 ,m i ,ẑj ) is the Mahalanobis distance of the image er-

ror between gm i ,p0
and zj as defined in (9) and ncand(gm i ,p0

)
is the number of match candidates for gm i ,p0

. For all mem-

bers of C, we evaluate this weight measure before we start

selecting the correspondence pairs for CH . We then sequen-

tially choose the feature pairs from C as sorted by the values of
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the composite weight W (p0 ,mi , ẑj ). Then, as we mentioned

earlier, the current best estimate of pose pH with regards to the

current hypothesis set CH is recursively updated with the newly

added feature pair. This selection procedure iterates until the

uncertainty associated with the updated pose pH falls below a

certain threshold.

G. Verifying Hypotheses

In the following two sections, we describe the details of the

two criteria we use for verifying the hypothesis set CH and how

we backtrack over this set (by examining its subsets) when the

criteria are violated.

1) Hypothesis Verification and Modification With the Match-

ing Consensus Criterion: When a hypothesized feature cor-

respondence set CH is generated from the scene image, we

evaluate the sum of the squared image plane errors between the

model features and the scene features in the set CH as follows:

dCH ,pH
=

|CH |
∑

i=1

df (pH ,mH i
,ẑj H i

) (13)

where the term df (pH ,mH i
,ẑj H i

) is the image error between a

particular model feature mH i
and its corresponding scene fea-

ture zjH i
, as defined in (9) for the case of initial pose. |CH |

denotes the cardinality of CH . As we have previously men-

tioned, df (pH ,mH i
,ẑj H i

) has a Chi-squared distribution with 4

DOF. Hence, dCH ,pH
also has a Chi-squared distribution with

DOFs equal to four times the cardinality of CH . With the con-

fidence level of 95%, we reject the hypothesis CH if dCH ,pH
is

greater than χ4|CH |,0.95 .

In order to explain why this criterion is used for verifying CH ,

we use the notion of the matching consensus. If the feature cor-

respondence pairs in CH are true matches, then all the matching

pairs must be consistent with a certain estimate of the object

pose. In other words, the scene features of the correspondence

pairs in CH must have reasonably small image errors with the

corresponding model features projected with the true estimate

of the object pose. In that sense, for the hypothesized feature

correspondence set CH to be accepted, the feature correspon-

dence pairs in CH should form a consensus set with regard to

the updated pose pH . For this reason, we call this criterion as

the matching consensus criterion.

When the matching consensus test fails for a hypothesis CH ,

there are one or more feature correspondence pairs in CH that

are not consistent with the pose hypothesis pH ; these result in

large image errors.

In order to remove these inconsistent correspondences from

the hypothesis CH , we use the following “leave one out” ap-

proach to detect the model-scene feature pairing that is most

inconsistent with the rest of the pairings. This is done by apply-

ing the matching consensus criterion to each of the subsets of

CH in the following manner.3

3It would seem that, in the worst case, this would require computations that
depend exponentially on the size of CH . But note that it takes a small number
of features, of the order of unity, to estimate the pose of a rigid object. So, CH

will contain only a small number of feature pairings, typically five or six.

1) For each model and scene feature pair (mH i
, zjH i

) in CH ,

we make a subset CH i
, which is defined as follows:

CH i
= CH − {(mH i

, zjH i
)}. (14)

2) For each subset CH i
, we update the predicted pose p0 .

Obviously, this pose calculation only uses the model-scene

feature pairings in CH i
. That is, the new updated pose

would not include the feature pair (mH i
, zjH i

). The new

updated pose is called pH i
.

3) We evaluate the matching consensus criterion for each

subset CH i
with pH i

. Let CHm in
be the subset with the

minimum matching consensus criterion value. The feature

pair (mHm in
, zjH m in

) that corresponds to CHm in
is chosen

as an inconsistent correspondence pair. CHm in
constitutes

the modified hypothesis after removing the inconsistent

feature pair from CH .

This approach is based on the assumption that the inconsistent

correspondences do not form a consensus set by themselves.

Hence, if an inconsistent correspondence is removed from the

hypothesis set CH , the updated pose with the new hypothesis set

is closer to the pose for the consensus subset in the hypothesis.

If CH includes more than one inconsistent correspondence

pair, the new hypothesis set CHm in
may not satisfy the matching

consensus criterion. In this case, we execute again the inconsis-

tent pair detection procedure described earlier until the modified

hypothesis subset satisfies the matching consensus criterion.

After we find the subset of CH that satisfies the matching

consensus criterion, the system uses the hypothesis generation

algorithm that was described in Section III-F to add more feature

correspondences to CH , and verifies the modified hypothesis set

again with the matching consensus criterion.

2) Assigning Nil-Mappings and Verifying the Hypothesis

Based on the Number of Nil-Maps: If CH satisfies the matching

consensus criterion, the model features that are not included in

CH are projected into the image with pose pH , and the matching

candidates for such projected model features are sought.

Since an accepted CH guarantees a certain bound on the

projected uncertainty in the image plane, the remaining model

features projected with pH have small search regions. For exam-

ple, Fig. 8(b) shows the search regions for the remaining model

features when projected into the camera image with the pose up-

dated with an accepted CH . Fig. 8(a) displays the model-scene

feature pairings in an accepted CH . Ordinarily, on account of the

tight bounds on the uncertainties associated with the projected

model features at this point, there will exist at most a single

candidate scene feature within the uncertainty region associ-

ated with any remaining model feature. If that is the case, that

scene feature is chosen for matching with the model feature. If

multiple scene features are found in this uncertainty region, the

system selects the closest scene feature. And, if no scene feature

is inside the uncertainty region, the model feature is assigned a

nil-map.

We place a constraint on how many nil-maps are allowed for a

given set of model features. It is entirely possible that a CH was

accepted for reasons of accidental alignment between a partial

region of the model with a partial region of the scene without
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Fig. 8. Search regions for the projected model features before and after the
pose update using a hypothesized feature correspondence set. (a) Search regions
for the model lines using the hypothesized correspondence set before the pose
update. Each search region is a convex hull of the projected uncertainties for
the line extremities. (b) Search regions for the model lines after a pose update.
These regions so closely enclose the model lines that they are indistinguishable
from the model lines.

the object and its image being in true global alignment. So, if the

number of nil-maps exceeds a threshold, we reject the entire CH

and regenerate another CH . When a CH is rejected on account

of too many nil-maps, the model-to-scene correspondence in

the rejected CH is not allowed to occur again. For that reason,

a rejected CH is guaranteed not to appear again.

IV. SCENE FEATURE EXTRACTION MODULE AND FEATURE

MEASUREMENT UNCERTAINTY

A. Extracting Straight-Line Edges

For extracting straight-line edges from the input scenes, we

first calculate a gradient edge map with the Canny operator

[26]. Straight-line edges are then extracted by grouping the

edge fragments in the gradient edge map using the grouping

algorithm presented in [27].

Fig. 9. Scene edge measurement uncertainty.

This grouping algorithm runs much faster than the popular

Hough transform algorithm. Also, the algorithm directly pro-

duces the 2-D Cartesian coordinates of the straight-edge ex-

tremities unlike the Hough transform algorithm, which needs

postprocessing for calculating the image coordinates of the end

points.

B. Calculating the Measurement Uncertainty

Let ẑ be the measured version of a straight-line scene fea-

ture z. We denote the noise uncertainty associated with such

measurement as a 4 × 4 matrix V . Assuming that the location

measurements of the two end points of z are independent of

each other, we denote V as follows:

V =

(

V 1 0
0 V 2

)

(15)

where V k , k = 1, 2, are 2 × 2 covariance matrices that corre-

spond to the image coordinates of the two end points of z. Since

we assume each end point of z is a 2-D Gaussian variable, V k

is represented with two uncertainty spans denoted as σ⊥ and σ‖,

as shown in Fig. 9. σ⊥ and σ‖ represent the uncertainties associ-

ated with the measurement noise in perpendicular direction and

parallel direction to ẑ, respectively.

If we know the estimated value for σ‖ and σ⊥, V k is calculated

as follows [28]:

V 1=V 2 =





σ2
‖ cos2θ + σ2

⊥sin2θ
(

σ2
‖ − σ2

⊥

)

cos θ sin θ
(

σ2
‖ − σ2

⊥

)

cos θ sin θ σ2
‖ sin

2θ + σ2
⊥cos2θ



.

(16)

1) Calculating σ⊥: σ⊥ for each straight line is calculated in

a bottom-up fashion as follows.

For extracting straight line segments, edge pixels are first

grouped into edge clusters that are consecutively aligned in

horizontal or vertical directions. Such clusters of edge pixels

are called “linear-primitives.” When we group edge pixels into

linear-primitives, the locational uncertainties for the end points

of each linear-primitive are assigned values proportional to the

variance associated with Canny edge detection. Later, when

we group linear-primitives into a straight-line, we identify the

linear-primitive end point, labeled as pf in Fig. 10(a), that is

farthest from the straight line fitted to the linear-primitives. σ⊥

for the straight line is calculated as the sum of the distance from
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Fig. 10. Estimating edge measurement noise uncertainty. (a) Estimating σ⊥

(b) Estimating σ‖.

pf to the straight line and the locational uncertainty assigned

for pf .

2) Calculating σ‖: σ‖ is calculated using the following

equation:

σ‖ = σfrag + σlocation (17)

where σfrag is the uncertainty associated with the measurement

noise induced by edge fragmentation, and σlocation is the lo-

cational uncertainty associated with the two end points of ẑ.

σlocation is the end point location uncertainty assigned to the

linear-primitive to which the end point corresponds. As already

stated, this uncertainty is made proportional to the variance as-

sociated with Canny edge detection. The problem is that it is

difficult, if not impossible, to analytically estimate σfrag by lo-

cally observing the scene features. However, as we will show

later, empirical estimates of σfrag can be generated if we have

available to us the expected length of the true edge in the scene.

Fortunately, this expected length is available to us in two out of

three situations where we need σfrag . In the remaining case, we

must make do by assuming a reasonable constant value for the

expected length.

The three usage situations where σfrag is needed are as

follows:

1) Evaluating the Mahalanobis distance df (p̄0 ,m i ,ẑ ) in (9)

when we search for the matching candidates for a projected

model feature.

2) Updating the pose with a given correspondence between

a projected model feature gm i ,pH
and the corresponding

scene feature ẑ.

3) Evaluating the matching consensus criterion in (13) with

given hypothesized correspondences between the pro-

jected model features gm i ,pH
and the scene features ẑ.

For the first situation, the expected length of the true edge

cannot be calculated. In this case, we use a constant value that is

chosen empirically. For the second and third situations, we can

assume the expected length of the true edge z to be the length of

the corresponding projected model edge gm i ,pH
. In this case, as

shown in Fig. 10(b), an end point of the true edge zk is expected

to be on the extended line emanating from measured end point

ẑk within the range of the difference of the lengths of gm i ,pH

and ẑ. Assuming the probability of the end points zk , k = 1, 2
to be located in this range is uniformly distributed, the expected

value of the fragmentation error is (|gm i ,pH
| − |ẑ|)/2, where

|gm i ,pH
| denotes the length of the projected model line and |ẑ|

the length of the scene line. We use this value as the estimate of

σfrag .

V. POSE PREDICTION MODULE

For each image frame, the initial statistics of the pose of the

target object are predicted using the history of the estimates of

the object pose for the previous frames.

Let pk be the pose estimate at time tk with k being the time

index. We denote the mean and covariance of pk with p̄k and

Σpk , respectively. Then, the initial pose for the next time stamp

tk+1 , which we denote pk+1 , is given by

pk+1 =

(

1 +
δtk+1

δtk

)

pk −
δtk+1

δtk
pk−1 + ζk+1 (18)

where δtk = tk − tk−1 and where ζk+1 denotes the prediction

noise with zero mean and covariance equal to Σζ k + 1 .

Assuming the prediction noise ζk+1 is independent of the

pose estimates, the predicted covariance of pk+1 is calculated

as follows.4

Σpk + 1 =

(

1 +
δtk+1

δtk

)2

Σpk

+

(

δtk+1

δtk

)2

Σpk−1 + Σζ k + 1 . (19)

With our pose prediction model, the magnitude of the prediction

error depends on the magnitude of the motion jitter of the target

object. When the motion jitter is bounded—for example, when

the target object is hanging on a gantry and the motion jitter

mainly comes from the inertial forces—we estimate Σζ k + 1 from

an image sequence captured for a certain time interval. However,

if the motion jitter does not have a bound—for example, if a

human user shakes the target object at his/her will—then, it is

impossible to correctly estimate Σζ k + 1 . In this case, we assume

an arbitrarily large value for Σζ k + 1 .

VI. EXPERIMENTAL RESULTS

If the reader would be willing to indulge us, to best experience

our experimental results, he/she is asked to point his/her browser

to the web site http://cobweb.ecn.purdue.edu/RVL/Projects/

ModelBasedTracking/index.htm.

There, the reader will see a human shaking an object as it is

being tracked in real time. Another demonstration at that site

shows successful tracking even when the object is significantly

occluded by a human waving his hand between the camera and

the object.5

In all of the experiments we present in this section, we must

provide the tracker with the initial pose of the target object.

How this initial pose information is supplied is different for

different types of experiments. For the visual-servoing-based

assembly-on-the-fly experiments, the initial pose is provided

by the “coarse module” as described in [19]. The coarse mod-

ule uses a ceiling-mounted camera for rough estimation of the

4With the Markovian assumption, the previous two estimates pk and pk−1

are not independent. We ignore the correlation term of pk and pk−1 for cal-
culating the predicted covariance, because the uncertainty associated with these
estimates is very small after pose estimation with the Kalman filter.

5Movies that demonstrate the experiments described in this section are also
available for download at http://ieeexplore.ieee.org.
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location of the target. When the target moves into the servo

range of the robot end-effector-mounted camera, the control is

automatically handed over to the “fine control” module that is

also described in [19]. The “fine control” module is based on

the tracking algorithms described in this paper. For the track-

ing of handheld objects in real time, we have developed a GUI

that gives the user control over translations and rotations of the

wireframe model as projected onto a terminal screen. The user

can manually bring the model into correspondence with the first

camera image and thus initialize the pose. A similar GUI-based

approach is used for pose initialization when tracking an object

in video sequences offline.

In the rest of this section, we will first present quantitative

results on the accuracy of tracking for two different objects. For

each object, we analyzed two video sequences for estimating

tracking accuracy. Subsequently, we will show qualitative re-

sults on these two objects and two additional objects possessing

complex shapes.

A. Quantitative Analysis of Pose Estimation Errors

As stated in the preamble to this section, we report our track-

ing accuracy results with the help of two video sequences of two

different objects, the train-station object and a truck object. We

will refer to the two video sequences of the train-station object

as Station-Smooth and Station-Nonsmooth. Similarly, we will

refer to the two video sequences of the truck object as Truck-

Smooth and Truck-Nonsmooth. The “smooth” and “nonsmooth”

qualifiers in the names reflect the nature of the motion of the

object with respect to the camera. In particular, the motion for

the “nonsmooth” case is very jerky as should be evident to those

visiting the URL mentioned at the beginning of this section.

For the “nonsmooth” case, the results shown later also include

plots of the translational and rotational parameters as functions

of time to give the reader an idea of the jerkiness of the motions.

The overall size of the train station object is 175× 100× 58 and

that of the truck 410× 250× 200, all in millimeters.

For calculating the ground truth pose for these image se-

quences, we mount the camera on a high-performance robotic

arm, and we move the robotic arm while keeping the target ob-

ject stationary. Since the calculation of the pose of the object

is always relative to the coordinate frame of the cameras, mov-

ing the cameras while the object is stationary is equivalent to

tracking a moving object with a stationary camera. With this

approach, the ground truth pose is calculated from the robot

kinematics and the relative pose of the camera with respect to

the robot end-effector, which is given by hand–eye calibration.

For the Station-Smooth and Truck-Smooth experiments, the

camera mounted on the robot end-effector moved along a des-

ignated path. The average distance from the camera to the tar-

get object was 350 mm for the Station-Smooth sequence and

700 mm for the Truck-Smooth sequence. Each video sequence

contained 100 images. A frame from each of the two sequences

is shown in the composite in Fig. 11. Shown below the images

are two sets of numbers. The first set is the true pose of the

object in the camera coordinate frame and the second set is

the estimated pose. The average rms error for Station-Smooth

Fig. 11. Accuracy analysis results for the train-station object and the truck
object. For each image, the first six numbers denote the pose values of the ground
truth and the second six numbers denote the corresponding pose estimates.

sequence is 3.3 mm in translation and 0.27◦ in rotation, and for

Truck-Smooth sequence it is 6.2 mm in translation and 0.20◦ in

rotation.

For the other two image sequences, Station-Nonsmooth

and Truck-Nonsmooth, the robot end-effector with the cam-

era mounted on it was made to execute sudden large random

changes in its direction. In order to give the reader a sense of

the magnitude of the motion jerkiness thus induced between

the camera and the objects, Fig. 12 shows the translation and

rotation values of the ground truth pose (solid line with circular

markers) and the corresponding estimates for the tracked pose

(dashed line with cross markers) for the two sequences. The

horizontal axis in all the plots shown is the time in the video

sequences.

To give the reader an even better sense of the extent of mo-

tion jerkiness injected manually into the two Nonsmooth exper-

iments, Fig. 13 shows a frame from each video sequence. For

each frame, we show the object as it appears to the camera, its

superimposed predicted pose with gray line segments, and its

estimated pose with dark line segments.

As shown in Table I, the average rms error for the Station-

Nonsmooth sequence is 4.8 mm in translation and 0.36◦ in rota-

tion, and 9.2 mm and 0.67◦ for the Truck-Nonsmooth sequence.

The table also includes entries for the average rms error for the

case of smooth motions.

B. Pose Estimation Performance Analysis

While the previous section reported quantitative results on

the tracking accuracy, we will now address the issue of tracking

performance, meaning the speed with which the objects can be

tracked. The performance numbers will be presented for the

same four video sequences used in the previous section. The

computer hardware used in those tracking experiments was a

Pentium-4 3.6 GHz processor with 512 Mb of system memory.

Obviously, the time it takes to update the object pose depends

on the number of features in the model for the target object.

The number of physical edges used for the train station model

was 148 and for the truck model 67. A significant portion of

the processing time is spent on low-level image processing such

as smoothing, edge detection, and straight-edge extraction. The

mean of the scene feature extraction time was 153 ms for the
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Fig. 12. (a) Vertical axis in the top panel represents the magnitude of the true
translational displacement and its estimated value for the case of nonsmooth
motion for the station object. The vertical axis in the lower panel is magnitude
of the true rotational displacement and its estimate for the same object. The
horizontal axis is in seconds. (b) Same as in (a) but for the truck object.

Fig. 13. Accuracy analysis results for Station-Nonsmooth and Truck-

Nonsmooth sequences.

train station object and 151 ms for the truck object. The pose

estimation time obviously depends on the number of EKF iter-

ations to achieve convergence in the matching of scene features

and model features. The average number of EKF iterations is

seven for the Station sequences and six for the Truck sequences.

The mean of the pose estimation time was only 53 ms for the

TABLE I
POSE ESTIMATION ERROR AND PROCESSING TIME

FE: feature extraction; PE: pose estimation

train station object and 10 ms for the truck object for the four

image sequences used in the previous section. Processing time

for each of the four image sequences is listed in Table I.

C. Some Further Tracking Experiments in the Presence of

Occlusion and Cluttered Background

We will now present some additional experimental results

to demonstrate how robust our tracking method is to occlusion

and cluttered backgrounds. Since each of these phenomena is

difficult to quantify for nontrivial experimental conditions, our

results in the rest of the paper are only qualitative. That is, we

will show some example frames from experimental data taken

under conditions that represent the phenomena. With overlays,

these example frames will demonstrate that our system is able

to track a target object despite the presence of highly adverse

circumstances. But, for obvious reasons, it is difficult to convey

the full sense of the capabilities of our approach using just

static images. An interested reader is therefore urged to visit

the Web site whose URL was mentioned at the beginning of

Section VI.

For each of the two objects used in the previous section, the

train-station object and the truck object, we captured one im-

age sequence with highly cluttered background, named Station-

Clutter for the train-station object and Truck-Clutter for the

truck object, and one image sequence in the presence of se-

vere occlusion, named Station-Occlusion and Truck-Occlusion,

respectively.

A frame from each of the two video sequences Station-Clutter

and Truck-Clutter, presented in Fig. 14, qualitatively demon-

strates the robustness of our technique when the background is

highly cluttered. Superimposed on each frame is projection of

the model into the camera image using the calculated pose of

the object.

Along the same lines, a frame for each of the two video

sequences, Station-Occlusion and Truck-Occlusion, in Fig. 15

demonstrates the robustness of the system with regard to heavy

occlusion. The superimposed wireframe (thick black line seg-

ments) in each image shows that the object is being tracked

correctly despite the fact that a significant portion of the object

is occluded.

We also tested our algorithm for tracking two visually chal-

lenging objects. A jeep object, shown in the left panel of Fig. 16,

has a complicated shape making the feature matching process

confusing. The other object is a digital camera, shown in the

right panel of Fig. 16, which has metallic and dark surfaces

that make it difficult to extract scene features under normal
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Fig. 14. Sample frames of Station-Clutter and Truck-Clutter sequences.

Fig. 15. Sample frames of Station-Occlusion and Truck-Occlusion sequences.

Fig. 16. Sample frames of jeep and camera sequences.

lighting conditions. Experiments show that the system success-

fully tracks these two objects. Complete tracking sequences for

these objects are also posted at the URL mentioned earlier.

D. Visual Servoing Experiment

Finally, we will present an experiment in real-time visual

servoing using the object tracking algorithm presented in this

paper. The goal of this experiment is to carry out peg-in-hole

assembly while the “hole” is undergoing large and nonsmooth

motions. Fig. 17(a) shows an engine-cover object that hangs

from a gantry mounted on the ceiling. The object contains

a “hole” into which the robot must insert a “peg.” In a

typical experiment, the engine-cover object moves along a

linear slide with an average speed of 43.5 mm/s. A couple

of strings are attached to the engine cover so that a human

can pull them differentially to induce large jerkiness in the

motion of the “hole” as the robot end-effector tries to insert

the peg into it. Fig. 17(a) shows an example of successful

peg insertion, and a screen shot of the camera images be-

fore and after feature extraction for successful insertion is

shown in Fig. 17(b). Further details regarding these visual

servoing experiments for the purpose of robotic assembly

are presented in [19]. The servoing results can also be seen

Fig. 17. Our real-time visual servoing system. Note that the stereo camera
shown in (a) is used by another visual tracking module that is a part of a
multiple-vision-loop architecture. Detailed description of the architecture is
presented in [19].

at http://cobweb.ecn.purdue.edu/RVL/movies/LineTracking/

ICRA06.wmv.

VII. CONCLUSION

In this paper, we presented a model-based visual tracking

system that gives 3-D pose estimates of a rigid object as it is

tracked with a single camera. Our system can accurately estimate

the pose of a moving object while showing robustness in the

presence of severe occlusion, highly cluttered background, and

nonsmooth motion of the object.

Our research employed straight-line object features exclu-

sively for the purpose of object tracking. But our core track-

ing framework could be used with any set of object features

provided they can be extracted reliably and without excessive

computational delays.
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