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Abstract In two previous papers we presented the LARES
2 space experiment aimed at a very accurate test of frame-
dragging and at other tests of fundamental physics and mea-
surements of space geodesy and geodynamics. We presented
the error sources of the LARES 2 experiment, its error budget
and Monte Carlo simulations and covariance analyses con-
firming an accuracy of a few parts in one thousand in the test
of frame-dragging. Here we discuss the impact of the orbital
perturbation known as the de Sitter effect, or geodetic pre-
cession, in the error budget of the LARES 2 frame-dragging
experiment. We show that the uncertainty in the de Sitter
effect has a negligible impact in the final error budget because
of the very accurate results now available for the test of the
de Sitter precession and because of its very nature. The total
error budget in the LARES 2 test of frame-dragging remains
at a level of the order of 0.2%, as determined in the first two
papers of this series.

1 LARES 2 and an introduction to the de Sitter effect

The LARES 2-LAGEOS space experiment is designed to
achieve a new, accurate measurement of the General Rela-
tivistic frame-dragging due to the rotation of the Earth. Ana-
lytical estimates, covariance studies, and Monte Carlo sim-
ulations concur that the expected error level in this effect is
of order 0.2%, as shown in Refs. [1,2].

The two LAGEOS (Laser GEOdynamics Satellite) and
the two LARES (Laser RElativity Satellite) are laser-ranged
satellites. Satellite Laser Ranging (SLR) is the most accurate
technique for measuring distances to the Moon [3] and to arti-
ficial satellites such as the LAGEOS and LARES satellites
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[4–6]. Short-duration laser pulses are emitted, with differ-
ent elevations, from lasers on the Earth towards a satellite
and then reflected back to the emitting laser-ranging sta-
tions by the retro-reflectors on the satellite. The tracking
data collected by the SLR network are analysed, organized
and distributed by the International Laser Ranging Service
(ILRS) [7]. By measuring the total round-trip travel time we
are today able to determine the instantaneous distance of a
retro-reflector on the LAGEOS and LARES satellites with a
precision of a few millimetres [8]. Then, using orbital esti-
mators, such as GEODYN, EPOSOC and UTOPIA, the orbit
of the satellite is reconstructed and its six Keplerian orbital
elements are determined with extremely high accuracy. For
example the longitude of the ascending node can be deter-
mined with an uncertainty of a fraction of milliarcsecond
that, over a long period of time, allows for extremely high
accuracy in the measurement of the total nodal precession of
a laser-ranged satellite. The LAGEOS satellites (LAGEOS
and LAGEOS 2) [4] are spherical, made of heavy brass and
aluminium, with a radius of 300 mm and about 406 kg in
weight, completely passive and covered with retro-reflectors.
LAGEOS and LAGEOS 2 have an essentially identical struc-
ture but they have different orbits. The semimajor axis of
LAGEOS is a = 12270 km, the eccentricity e = 0.004 and
the inclination I = 109.9◦. The semimajor axis of LAGEOS
2 is aI I = 12163 km, the eccentricity eI I = 0.014 and the
inclination II I = 52.65◦. The LARES satellite [5], launched
in 2012 by the Italian Space Agency (ASI) and ESA with
the VEGA launch vehicle of ASI, ESA, AVIO and ELV, is
spherical with a radius of 182 mm and a total mass of 386.8
kg. It is a single spherical piece of a very dense tungsten
alloy and it is covered with 92 retro-reflectors. The LARES
orbital elements are semimajor axis aLARES = 7820 km,

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5339-y&domain=pdf
http://orcid.org/0000-0001-9166-7916
mailto:ignazio.ciufolini@gmail.com


819 Page 2 of 6 Eur. Phys. J. C (2017) 77 :819

orbital eccentricity eLARES = 0.0008, and orbital inclina-
tion IL ARES = 69.5◦.

The LARES 2 satellite is planned for launch in 2019 with
the new VEGA C launch vehicle of ASI, ESA, AVIO and
ELV. It will be spherical with a radius of about 200 mm and
a total mass of about 300 kg. Its orbital elements will be
semimajor axis aLARES 2 = 12270 km, orbital inclination
IL ARES 2 = 70.16◦ (supplementary to that of LAGEOS) and
approximately null orbital eccentricity.

In addition to the frame-dragging, gravitomagnetic effect,
whose test is the main objective of the LARES 2-LAGEOS
space experiment, there is another general relativistic per-
turbation of an orbiting gyroscope, relative to an asymptotic
inertial frame: the de Sitter or geodetic (or geodesic) preces-
sion [9] (see also [10]). This precession is due to the coupling
between the velocity of a gyroscope orbiting a central body
and the static part of the field (Schwarzschild metric) gener-
ated by the central mass.

The de Sitter precession can be derived by Fermi–Walker
[11] transport along the worldline of a test-gyroscope. We
first consider a spacelike spin four-vector Sα at each point of
a timelike curve xα(s) with tangent vector uα . We thus have
Sα uα = 0. According to special relativistic kinematics and
to the medium strong equivalence principle (all the laws of
physics are the laws of special relativity in a local inertial
frame [12–14,21]), the spin vector Sα obeys Fermi–Walker
transport along the curve:

Sα ;β uβ = uα (aβ Sβ) ≡ uα (uβ ;γ uγ Sβ), (1)

where aβ ≡ uβ ;γ uγ is the four-acceleration of the test-
gyroscope and the semicolon denotes the covariant deriva-
tive. Suppose the timelike curve is a geodesic [12–15]. (Any
test particle in the gravitational field of a massive body fol-
lows a timelike geodesic of the spacetime; a timelike geodesic
path – world line – in spacetime’s Lorentzian geometry is
one that locally maximizes proper time, in analogy with the
length-minimizing property of Euclidean straight lines. This
is the case for a small body in free fall, affected only by grav-
itational forces.) Since a geodesic has zero four-acceleration:
uβ ;γ uγ = 0, we then have Sα ;β uβ = 0. In this case the
Fermi–Walker transport is just the parallel transport along
the geodesic.

Therefore, in General Relativity, the orbital angular
momentum of a test particle orbiting around a central body,
assuming that both the test particle and the body follow
geodesic motion, is parallel-propagated in the spacetime.
Since geodesic motion is at the foundations of General Rel-
ativity, the generation of the best possible approximation to
the free motion of a test particle, a spacetime geodesic, is a
fundamental objective for experiments dedicated to the study
of the spacetime geometry in the vicinities of a body and to

high-precision tests of General Relativity and constraints on
alternative gravitational theories.

A relevant problem is then the approximation to a geodesic
that is provided by the motion of an extended body. In Gen-
eral Relativity [12–14], the problem of an extended body
is profound, due not only to the non-linearity of the equa-
tions of motion, but also to the need to deal with the inter-
nal structure of the compact body, constructed of continuous
media, where kinetic variables and thermodynamic potentials
are involved. Furthermore, there may be intrinsic non-local
effects arising from the internal structure of the extended
body, such as tidal influences. Moreover, there are problems
concerning the approximations that need to be made in order
to describe a given extended body as a test particle moving
along a geodesic. These problems are related to the fact that
many of the common Newtonian gravitational concepts such
as the centre of mass, total mass or size of an extended mate-
rial body do not have well-defined counterparts in General
Relativity [16].

The Ehlers–Geroch theorem [17] (generalizing the result
in [18]) attributes a geodesic to the trajectory of an extended
body with a small enough own gravitational field, if for a
Lorentzian metric the Einstein tensor satisfies the so-called
dominant energy condition [19], this tensor being non-zero
in some neighbourhood of the geodesic and vanishing at its
boundaries. This theorem affirms that small massive bodies
move on near-geodesics and thus achieves a rigorous bridge
from General Relativity to space experiments with small
massive satellites, suggesting a high level of suppression of
self-gravitational effects from the satellites own small gravi-
tational field. This enables us to consider the motion of such
small and massive satellite to be nearly geodesic and hence to
provide a testing ground for general relativistic phenomena
[20].

Indeed, given the extreme weakness of the gravitational
interaction with respect to the other interactions of nature, the
space environment is the ideal laboratory to test gravitational
and fundamental physics. However, in order to test gravita-
tional physics, a satellite must behave as nearly as possible
as a test particle and must be as little as possible affected
by non-gravitational perturbations, such as radiation pres-
sure and atmospheric drag. In addition, its position must be
determined with extreme accuracy. In space, a test particle
can be realised in two ways: a small drag-free satellite or a
small passive spacecraft with high density and an extremely
small cross-sectional area to mass ratio. The best realisation
of an orbiting test particle, with no drag-free system, is so far
LARES [5].

For a passive satellite (with no drag-free system), the key
characteristic that determines the level of attenuation of the
non-gravitational perturbations is its density, reflected by the
ratio between its cross-sectional area and its mass. Until the
launch of LARES, the two LAGEOS satellites had the small-
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est ratio of cross-sectional area to mass of any other artificial
satellite [5] and were the best available test particles around
the Earth. The ratio of cross-sectional area to mass is approx-
imately 0.0007 m2/kg for both satellites. LARES has a cross-
sectional area to mass ratio that is about 2.6 times smaller than
that of LAGEOS. LARES 2 will have a cross-sectional area
to mass ratio of approximately 0.0004 m2/kg larger only than
that of LARES but will be orbiting at a much higher altitude
with extremely small atmospheric drag perturbations. The
extremely small cross-sectional area to mass ratio of the two
LARES satellite, which is smaller than that of any other arti-
ficial satellite, and their special structure, a solid sphere with
high thermal conductivity, ensure that the unmodelled non-
gravitational orbital perturbations are smaller than for any
other satellite. This behaviour was experimentally confirmed
using the first few months of laser-ranging observations [5].

Let us now study the general relativistic perturbations of
a satellite such as LARES 2, the other non-gravitational per-
turbations, such as those due to radiation pressure and atmo-
spheric drag, have been analysed in [1,2]. Furthermore, in
order to study the de Sitter effect, we will only consider the
spacetime metric generated in metric theories of gravitation
by a static, non-rotating, mass. The accurate test of the gen-
eral relativistic phenomena due to a stationary spacetime met-
ric generated by a current of mass-energy, e.g., by a rotating
mass, are the objective of the LARES 2 space experiment.

The spacetime metric generated by a matter distribution
with rest-mass density ρ, but with a null mass-energy cur-
rent density vector j (thus neglecting the dragging of inertial
frames [21]), can be written, in a weak gravitational field,
at the order of approximation beyond Newtonian theory (the
post-Newtonian order) in terms of the standard Newtonian
potential U , solution of ΔU = −4 π ρ. In isotropic coor-
dinates, we have [14,22]

ds2 = −(1 − 2U + 2βU 2)dt2 + (1 + 2γU )δikdxidxk (2)

where β and γ are the two main post-Newtonian parameters,
both equal to 1 in General Relativity, representing, respec-
tively, the non-linearity in the superposition law for gravity
of the gravitational interaction (interpretation valid in the so-
called standard PPN gauge) and the amount of space curva-
ture produced by a mass [14,22]. For simplicity, in Eq. (2), we
have set equal to zero the other PPN parameters characteristic
of preferred-frame, preferred-location and non-conservative
theories. For β and γ equal to 1, in standard non-isotropic
coordinates, the metric is just the post-Newtonian approxi-
mation of the Schwarzschild metric [13,14]. To analyse the
motion of a gyroscope, such as the orbital angular momentum
of a test particle around the Earth, in the gravitational field of
the Sun, we use the metric (2) where U is the standard grav-
itational potential of the Sun. In the following treatment, we

also include a non-gravitational acceleration a of the gyro-
scope.

To analyse the behaviour of the orientation of the spin
of a test-gyroscope with respect to an asymptotic inertial
frame [13], i.e. with respect to the distant stars (assuming
that the universe is not rotating [14]), we introduce, at each
point along the timelike world-line of the test-gyroscope, a
local orthonormal frame [23]: λ(μ): gαβλα

(ν) λ
β

(μ) = ηνμ. The
index between parentheses, με ( 0, 1, 2, 3 ), is the label of
each vector of the local tetrad, or local vierbein (the indices
between parentheses can be raised and lowered using ηαβ

and ηαβ , i.e. the Minkowski metric, and as usual the standard
indices using gαβ and gαβ .) By construction the timelike vec-
tor of this tetrad is the four-velocity of the test-gyroscope:
λα

(0) ≡ uα and, by construction, the spatial axes of the
tetrad are non-rotating with respect to an asymptotic frame
where gαβ → ηαβ . In other words the spatial axes are non-
rotating with respect to a local orthonormal tetrad at rest
in the asymptotically flat coordinate system of the metric
(2). Therefore, the spatial axes of the tetrad are not Fermi–
Walker transported along the timelike world line of the test-
gyroscope, but they are obtained at each point with pure
Lorentz boosts–with no spatial rotations–between a local
frame at rest in the coordinate system of the asymptotically
flat, post-Newtonian, metric (2) and an observer moving with
the test-gyroscope along the curve xα(s) with four-velocity
uα . The spatial axes λ (i) of this local frame may be thought
of as physically realized by three orthonormal telescopes,
always pointing towards the same distant stars fixed with
respect to the asymptotic inertial frame where gαβ −→ ηαβ

(neglecting aberration, which produces periodic variations in
the pointing direction, but which averages out over one orbit).
The vector Sα may be thought of as physically realized by the
spacelike angular momentum vector of a spinning particle or
test-gyroscope. Since Sα is a spacelike vector, Sα uα = 0, in
the local frame λ(α) we get :S(0) = 0. After some calculations,
we finally get, at the post-Newtonian order,

dS(i)

ds
= ε(i)( j)(k)̇( j)S(k)

̇( j) = ε( j)(l)(m)

(
− 1

2
vlam +

(
1

2
+ γ

)
vlU,m

)
(3)

where ε(i) ( j) (k) is the Levi-Civita pseudotensor and the
comma ,m denotes the standard partial derivative with respect
to xm and in standard vector notation

dS
ds

≡ �̇ × S

�̇ = −1

2
v × a +

(
1

2
+ γ

)
v × ∇U (4)

where S ≡
(
Sα λ α

(i)

)
and ∇ is the standard gradient opera-

tor.
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This is the precession of a gyroscope with respect to an
asymptotic inertial frame in the spacetime metric generated
by a static distribution of matter. The first term of (4) is the
Thomas precession, due to the non-commutativity of non-
aligned Lorentz transformations and to the non-gravitational
acceleration a. The second term is the de Sitter or geode-
tic precession [9] (see also [10]), which may be interpreted
[13,14,22] as due to a part (contributing with 1

2 ) analogous to
the Thomas precession, arising from the non-commutativity
of non-aligned Lorentz transformations of special relativ-
ity and to the gravitational acceleration ∇ U , that is, due
to Fermi–Walker transport and to the gravitational acceler-
ation (which might be derived even in the flat spacetime of
special relativity), plus a part (contributing with γ ) due to
Fermi–Walker transport and to the space curvature of Gen-
eral Relativity measured by the γ parameter. In other words
the de Sitter precession is the sum of two parts. One part,
with factor 1

2 , is due to the time-time component of the met-
ric tensor: g00 (in standard post-Newtonian coordinates). If
one writes g00 � − 1 + 2U − 2 β U 2, this effect is due
to the second term in g00. The other part, parametrized by γ

(equal to 1 in General Relativity), is due to the spatial cur-
vature measured by γ in the space-space components of the
metric gi j � ( 1 + 2 γ U ) δi j . This effect was discovered
in 1916 by de Sitter [9] (see also [10])

Thus, in the weak field, slow motion limit, the de Sitter
precession of a gyroscope orbiting a central mass M , where
U = M/r is given by:

�̇
de Sitter = −

(
1

2
+ γ

)
v × r

M

r3

∼= (− 19.2 milliarcsec/year) n̂ (5)

where v is the velocity of the orbiting gyroscope, r the dis-
tance from the central mass to the gyroscope and M the mass
of the central body as measured in the weak field region. For
an Earth–satellite gyroscope orbiting the Sun, this precession
is about an axis perpendicular to the ecliptic plane defined
by the unit vector n̂. The orbital plane of a satellite orbiting
the Earth, such as LARES 2, LAGEOS or the Moon, may be
thought of as a huge gyroscope orbiting the Sun and is thus
affected by the solar de Sitter precession. Thus the solar de
Sitter precession changes the nodal longitude of any satellite
orbiting the Earth, measured relative to an asymptotic inertial
frame, by:

19.2 milliarcsec/year × cos 23.5◦ ∼= 17.6 milliarsec/year

(6)

where 23.5◦ is the obliquity of the ecliptic.
The de Sitter effect on a gyroscope due to the mass of

the Sun has been accurately measured on the Moon–Earth
“gyroscope” by Lunar Laser Ranging (see next section). The

de Sitter effect on a gyroscope orbiting the Earth, due to the
mass of the Earth, was measured by the Gravity Probe B
experiment, but the Earth’s de Sitter effect does not directly
affect the LAGEOS–LARES 2 observation.

2 Nature of the de Sitter effect and its impact in the
accuracy of the LARES 2 experiment

The de Sitter precession is a simple consequence of the grav-
itational field generated by a static, non-rotating, mass and
has been measured, in weak field, by a huge number of highly
accurate experiments (see, e.g. [14,22,24–26]). On the other
hand, the frame-dragging effect is a consequence of the grav-
itational field of a rotating mass (such as a spinning black hole
or the spinning Earth). For a discussion of the interpretation
of the Lunar Laser Ranging observation of frame-dragging,
see, e.g. [27]. The only tests of the spacetime solution of
Einstein’s General Relativity generated by a rotating mass
(which has a key role to play in a number of astrophysical
processes such as the emission of gravitational waves by a
system of two coalescing spinning black holes) have been
the LAGEOS plus LAGEOS 2, GP-B, and LARES tests,
which have moderate accuracy. The LARES test is so far the
most accurate test of frame-dragging with an uncertainty of
about 5%, and is aimed to reach an uncertainty of about 2%.
The LARES 2 experiment will improve the tests of frame-
dragging to reduce the total error to a few parts in a thousand.

The de Sitter precession adds to the frame-dragging, but,
as shown below, there exists no viable theory of gravitation
that is both in agreement with all the existing tests of grav-
itational physics, and that predicts a solar system violation
of the de Sitter precession at a level larger than 8.7 × 10−6

(about 9 parts per million) of the value predicted by General
Relativity, negligible at the level of the frame-dragging test
accuracy.

The frame-dragging is independent of the de Sitter pre-
cession: there are indeed viable gravitational theories (such
as the Chern–Simons theory and other f (R) theories ([28])
which agree with all the gravitational tests except frame-
dragging. The Chern–Simons gravitational theory is equiva-
lent to heterotic string theories of type II with relevant impli-
cations for the explanation of one of the biggest riddles of
physics today, the nature of dark-energy and quintessence,
a mysterious form of energy calculated to constitute 70%
of our universe. These theories predict a different outcome
than General Relativity for frame-dragging around a rotating
body, such as the Earth or a spinning black hole [28].

In the slow motion weak field situation appropriate for
satellite motion near the Earth, both the Earth’s dimension-
less gravitational potential and the Sun’s are small, of order
10−8 or less. Then the post Newtonian approximation holds
for that satellite motion and the de Sitter precession, as
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derived in the previous section, can be written as the simple
expression Eq. (5). As discussed in Sect. 1, the first term 1

2 in
Eq. (5) can be interpreted as the Thomas precession, an essen-
tially Special Relativity effect under the central gravitational
acceleration toward the mass M . The second term is propor-
tional to the post Newtonian parameter γ which describes
the spatial curvature generated by the non-rotating central
mass. Thus the de Sitter precession is a simple consequence
of Special Relativity, of the extremely well tested equiva-
lence principle (freely falling test particles follow timelike
geodesics) and of the space curvature generated by a static
mass, as parametrized by γ .

In the solar system, γ has been measured by a large num-
ber of experiments. The most accurate determination of γ

so far is its measurement by the CASSINI spacecraft in the
gravitational field of the Sun [29], with an accuracy of about
2.3 × 10−5 (for a discussion of the CASSINI test of γ see
[30]); we emphasize that the orbital plane of the LARES 2
satellite will be affected by the de Sitter precession due to the
mass of the Sun. From Eq. (5) this implies fractional error in
the de Sitter precession of 2

3 the fractional error in γ , yielding
a fractional error about 1.53 × 10−5 in the value of the de
Sitter precession in the field of the Sun. The de Sitter preces-
sion perturbs the node of the LAGEOS satellite with a shift
of 17.6 milliarcsec/year (see the previous section and [31]).
Therefore the uncertainty in the de Sitter precession on the
LAGEOS node is about 1.53×10−5 ×17.6 milliarcsec/year
= 2.7 × 10−4 milliarcsec/year. The total frame-dragging
effect on the node of LAGEOS is about 31 milliarcsec/year
(as first calculated in [32,33]), giving a fractional error in the
frame-dragging at a level of (2.7×10−4 milliarcsec/year)/(31
milliarcsec/year) = 8.7 × 10−6, which is negligible in the
LARES 2-LAGEOS measurement of frame-dragging.

3 Direct tests of the de sitter effect

Instead of considering the tests of the space curvature param-
eter γ one could consider only experiments directly mea-
suring the de Sitter precession. The solar de Sitter preces-
sion was directly measured by the Lunar Laser Ranging
(LLR) experiment, with an accuracy of about 5 × 10−3 [26].
Translated to frame-dragging, this error by itself amounts

to (5 × 10−3 × 17.6 milliarcsec/year)/(31 milliarcsec/year)
= 0.28% error. Another test of the de Sitter precession was
obtained by comparison of the Barycentric Celestial Ref-
erence System (BCRS) and Geocentric Celestial Reference
System (GCRS) (see, e.g., [25], p. 699). Nevertheless, the
group of the Leibniz Universität Hannover has recently pub-
lished [34,35] a reanalyses of the LLR data yielding a value
of the lunar geodetic precession measured to an accuracy of
1 × 10−3 . This gives a 0.06% contribution to the LARES 2
frame-dragging determination, still keeping the total (RSS)
error budget at the level of about 0.2%.

In conclusion, the results summarized in Table 1 show that
the error due to the uncertainty in the de Sitter effect is negli-
gible in the measurement of frame-dragging with LARES 2.

4 Summary and conclusions

To summarize the situation with respect to the error in knowl-
edge of the de Sitter precession: (a) if we consider the solar
system tests of General Relativity, mainly testing the grav-
itational field generated by the static, non-rotating, mass of
the Sun, then the test of the space curvature parameter γ

(known with an uncertainty of about 2.3 × 10−5) implies a
fractional uncertainty of about 8.7×10−6 in the test of frame-
dragging by the LARES 2 experiment; (b) if one insists on
considering only the direct tests of the de Sitter precession on
Earth satellites by the Sun, then the recent results of reanal-
ysis of the LLR data have an uncertainty of 1 × 10−3 in
the measurement of the de Sitter precession which implies a
fractional uncertainty of about 0.06% in the test of frame-
dragging by the LARES 2 experiment. In both cases, as
summarized in Table 1, the error introduced by the uncer-
tainty in de Sitter precession is negligible in the measure-
ment of frame-dragging with LARES 2 and the total error
budget in the LARES 2 test of frame-dragging remains at
the level of about 0.2%, as found in earlier papers in this
series.
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Table 1 The error introduced by the de Sitter precession in the test of frame-dragging using LARES 2 and its impact in the total error budget

Error in the LARES 2 test of frame-dragging due
to the uncertainty in the de Sitter precession
only

Total error budget in the LARES 2
test of frame-dragging

(a) Assuming the tests of space curvature due to the Sun
static mass (γ accuracy by CASSINI: 2.3 × 10−5 [29])

8.7 × 10−6 error in the LARES 2 test of
frame-dragging

≈ 0.2% total error budget

(b) Assuming only the tests of the de Sitter precession
on the Moon with accuracy 1 × 10−3 [34,35]

0.06% error in the LARES 2 test of
frame-dragging

≈ 0.2% total error budget
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