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Abstract

We present a new learning algorithm for Mean Field Boltzmann Machines
based on the contrastive divergence optimization criterion. In addition to mini-
mizing the divergence between the data distribution and the equilibrium dis-
tribution that the network believes in, we maximize the divergence between
one-step reconstructions of the data and the equilibrium distribution. This
eliminates the need to estimate equilibrium statistics, so we do not need to ap-
proximate the multimodal probablility distribution of the free network with
the unimodal mean field distribution. We test the learning algorithm on the
classification of digits.
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1 Boltzmann Machines

The stochastic Boltzmann machine (BM) is a probabilistic neural network of symmetrically
connected binary units taking values f0; 1g (Ackley, Hinton & Sejnowski, 1985). The variant
used for unsupervised learning consists of a set of visible units v, which are clamped to the
data v1:N , and a set of hidden units h, which allow the modelling of higher order statistics of
the data. We may define the energy E of the system at a particular state fv;hg to be,

E(v;h) = �(
1

2
v
T
Vv +

1

2
h
T
Wh+ v

T
Jh) (1)

where we have added one unit with value always 1, whose weights to all other units represent
the biases. In terms of the energy, the probability distribution of the system can be written as,

P (v;h) =
e
�E(v;h)

Z

(2)

where Z denotes the normalization constant1 (or“partition function” in physics),

Z =
X
v;h

e

�E(v;h) (3)

A natural measure to minimize during learning is the Kullback-Liebler divergence between
the data distribution P0(v) and the model distribution for the data P

1
(v). The notation will

become apparent later, but can be understood by imagining running a Markov chain, starting
at the data distribution (t = 0) until equilibrium (t = 1). This KL-divergence can be rewritten
as follows,

KL[P0(v)jjP1(v)] = F0 � F
1

(4)

where F0 denotes the free energy of the system when we clamp the data distribution on the
visible units, while F

1
= � log(Z) denotes the free energy of the system when we use the

model distribution (i.e. at equilibrium). The free energy can be conveniently expressed in
terms of the energy and entropy of the system as follows,

F0 = hEi0 � S0 (5)

F
1

= hEi
1
� S

1
(6)

where h:i0 denotes taking the average with respect to the joint P (hjv)P0(v) while S0 is the en-
tropy of that distribution, and h:i

1
denotes taking the average with respect to the equilibrium

distribution P (v;h) while S
1

is its entropy.
1We will set the “temperature” of the system to T = 1.
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Learning in the BM consists of adjusting the weights such that the probability of the data
under the model increases. It is straightforward to take derivatives with respect to the weights
and apply gradient descent learning,

�W / hhhT i0 � hhhT i
1

(7)

�V / hvvT i0 � hvvT i
1

(8)

�J / hvhT i0 � hvhT i
1

(9)

In practice, we substitute the empirical distribution P̂0(v;v1:N ) for P0(v), and adjust the learn-
ing rules accordingly.

Although appealing in theory, these learning rules are not particularly practical, since the
number of states we need to sum over in order to compute the averages scales exponentially
with the number of units. One solution is to apply Gibbs sampling, which samples one unit
(or set of units) according to its posterior distribution, given the current values of all the other
units2. This strategy can also become computationally demanding since at every iteration of
learning, Gibbs sampling must be performed for every datapoint in the “wake” phase (with
the visible units clamped) and once more in the sleep phase. Moreover, at every run, we have
to wait until the Markov chain has reached equilibrium, and many independent samples are
produced.

2 Mean Field Boltzmann Machines

An alternative to the slow Gibbs sampling is to approximate the averages using a fully factor-
ized, mean field (MF) distribution (Peterson & Anderson, 1987).

Q(s) =
Y
i

m

si
i (1�mi)

1�si (10)

where the product is taken over all units si. This MF distribution has one free parameter per
unit, mi, describing the probability that this unit will be “on”. These parameters will be chosen
such that the approximating distribution, Q, is as close as possible to the true distribution, P ,
in the sense of the KL-divergence measure,

m
� = argmin

m
KL [Q(s)jjP (s)] (11)

This approximation is applied to P (h;v = vn) for all datapoints separately in the wake phase,
and once more to P (h;v) in the sleep phase. We have therefore replaced the stochastic Gibbs
sampling by a deterministic minimization, which is much faster albeit not as accurate3. Using
the emprical distribution P̂0, and equating the derivatives with respect tomn to zero results in
the simple fixed point equations for the wake phase,

mh;n = �(Wmh;n + J
T
vn) (12)

where � denotes the sigmoid function. Similarly in the sleep phase we have,

mh = �(Wmh + J
T
mv) (13)

mv = �(Vmv + Jmh) (14)
2Also known as Glauber-dynamics.
3Note that due to the log(Z) term, this variational technique does not result in an upper bound to the total free

energy.
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The solutions of these fixed point equations4 may then be used to approximate the correlations
in the learning rule,

�W /

"
1

N

X
n=1:N

mh;nm
T
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#
(15)

�V /
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N
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#
(16)

�J /

"
1

N

X
n=1:N

vnm
T
h;n �mvm

T
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#
(17)

It was shown by Hinton (1989) that these learning rules perform gradient descent on the cost
funtion,

F

MF = F

MF
0 � F

MF
1

(18)

(apart from rare discontinuities) if we choose the stepsizes small enough. Mean field free
energies are defined as,

F

MF
Q = hEiQ � S(Q) (19)

Extensions of MFBM learning rules have been put forward, such as linear response correc-
tions (Kappen & Rodriquez, 1998) and TAP corrections (Galland, 1993). These extensions
improve on the simple independence assumption of the MF distribution, and capture some
of the higher order statistics in estimating the correlations. However, they fail to adress the
main drawback of the MFBM, which is that in the sleep phase it uses a unimodal distribution
to approximate a distribution with many modes, since there is no data clamped on any of
the units. Instead of trying to use better, multimodal approximating distributions in the sleep
phase (which will be very difficult), it may prove more fruitful to change the learning rule,
such that we only have to deal with inferring posterior distributions, conditioned on data (or
reconstructions of data). This is precisely what contrastive divergence learning accomplishes.

3 Contrastive Divergence Learning

In Contrastive Divergence (CD) learning (Hinton, 2000), we replace the correlations computed
in the sleep phase of BM learning with the correlations conditioned on one-step reconstruc-
tions of the data.

We start by recalling that the KL-divergence between the data distribution and the model
distribution can be written as a difference between two free energies,

KL[P0(v)jjP1(v)] = F0 � F
1
� 0 (20)

To get samples from the equilibrium distribution we imagine running a Markov chain, starting
at the data distribution P0 and eventually reaching equilibrium at t = 1. With hidden units,
we would first sample the hidden units, given the data, then sample reconstructions of the
data, given the sampled hidden units, etc. It is not hard to show that at every step of Gibbs
sampling the free energy has decreased,

F0 � Fi � F
1

8i (21)

Moreover, it must therefore be true that if the free energy hasn’t changed after i steps of Gibbs
sampling (for any i), either P0 = P

1
or the Markov chain does not mix (which we must

4To avoid oscillations one may need to “damp” the fixed point equations according to mnew = �mold + (1 �

�)�(:), � 2 [0; 1)
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therefore avoid). The above suggests that we could use the following contrastive free energy,

CFi = F0 � Fi = + KL [P0(v;h)jjP (v;h)]

� KL [Pi(v;h)jjP (v;h)]

� 0 (22)

as an objective to minimize5. The big advantage is that we do not have to wait for the chain
to reach equilibrium. Also, at equilibrium, the distribution has forgotten everything about
the data and is therefore expected to be highly multimodal, which is hard to model. In the
following we will set i = 1.

Learning proceeds by taking derivatives with respect to the parameters and performing
gradient descent on CF . The derivative is given by,

@CF

@�

=

�
@E

@�

�
0

�

�
@E

@�

�
1

�
@F1

@P1

@P1

@�

(23)

The last term is hard to evaluate, but small compared with the other two. Hinton (2000) shows
that this ackward term can be safely ignored. For the BM, this results in the following learning
rules,

�W / hhhT i0 � hhhT i1 (24)
�V / hvvT i0 � hvvT i1 (25)

�J / hvhT i0 � hvhT i1 (26)

Although some progress has been been made, the new learning objective does not avoid
having to run full Gibbs runs on the hidden units given the data, and vice versa for every
data point. There is a special type of BM, the restricted BM (RBM), in which there are no
hidden-to-hidden or visible-to-visible connections. In a RBM, the hidden units are therefore
independent given the visible units and vice versa, so the above learning rules are highly
efficient. Unfortunately, for fully-connected BMs this is not the case, and we have to make
approximations to make further progress.

4 Contrastive Divergence Mean Field Learning

In this section we formulate the deterministic mean field variant of the contrastive divergence
learning strategy.

We will first consider one datapoint vn, and later generalize toN datapoints. The empirical
data distribution for this one point is simply P̂0;n = Æ(v�vn). Next, recall the definition of the
mean field free energy,

F

MF = hEiQ � S(Q) (27)

where Q represents the fully factorized mean field distribution (10). It is not difficult to see
that the MF free energy at the data distribution is always larger than at equilibrium,

F

MF
0 � F

MF
1

(28)

We can imagine a deterministic version of the Markov chain from the previous section, where
we start at the data distribution and perform coordinate descent (which alternates between the
coordinates mh and mv), until we reach the minimum of the free energy, FMF

1
(for the time

5We could omit the argument h in (22) since P0(v;h), Pi(v;h) and P (v;h) have the same posterior P (hjv),
which therefore drops out of the KL-divergence. This is the convention used by Hinton (2000). We include depen-
dence on h, since it is then symmetric with the mean field expression (30)
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being we will assume that there are no intermediate local minima). Most importantly, this has
the property that at intermediate stages of the minimization the following holds,

F

MF
0 � F

MF
i � F

MF
1

(29)

By analogy to the derivation for the stochastic BM, we now define the contrastive free energy,

CF

MF
i = F

MF
0 � F

MF
i = + KL[Q0(v;h)jjP (v;h)]

� KL[Qi(v;h)jjP (v;h)]

� 0 (30)

which is always positive and vanishes when F
MF
0 = F

MF
1

(or at some intermediate local min-
imum). This is therefore a sensible cost function to minimize. The most important advantage
is that we use Q to approximate P only in the first stages of Gibbs sampling where P is ex-
pected to be unimodal (given enough data), in contrast to the equilibrium distribution which
has forgotten all about the particular data vector used to initialize the Markov chain.

From (30) we see that the mean field minimization, which replaces the Gibbs sampling,
tries to match Q(v;h) with P (v;h). During learning the parameters are adjusted, such that
the initial distribution, Q(hjv)P0(v) gets closer to the true (equilibrium) distribution P (h;v).
When no more improvement is possible, which does not necessarily imply that Q0 is a perfect
match to P , training stops.

In practice, a local minimum may obstruct the path from F
MF
0 to FMF

1
. But notice that this

is not a problem at the intermediate stages of learning, since we are guaranteed that the initial
MF distribution has higher free energy than the intermediate MF distribution, so adjusting the
weights will improve CF

MF , provided the ackward term in (23) is indeed negligible. If all
derivatives vanish, while FMF

0 is not equal to the lowest free energy state we have landed in
a local minimum. Annealing schedules may be used to soften this problem.

It is important to stress that the first minimization over mh, which is randomly initialized,
has to be run until convergence in order to compute the initial free energy F

MF
0 . The next

minimization over mv, given mh must be initialized at the data, but does not need to be run
until convergence. A few steps in the direction of the negative gradient are guaranteed to
lower the free energy, which is all we need. Equivalently, the subsequent minimation overmh

given the reconstructions of the data mv, is initialized at the previous attained value of mh

and may be run for only a few steps in the direction of the negative gradient.
The above is easily generalized to N datapoints. We consider the empirical data distribu-

tion P̂0 = 1
N

P
n=1:N Æ(v�vn). We now have N MF distributionsQn, with separate parameters

fmh;n;mv;ng to minimize. But since all data are independent, all minimizations would ideally
end up in the same global minimum F

MF
1

(ignoring local minima temporarily). We therefore
still have,

1

N

X
n=1:N

F

MF
0;n �

1

N

X
n=1:N

F

MF
i;n � F

MF
1

(31)

which allows us to define the contrastive free energy,

CF

MF
i =

1

N

X
n=1:N

�
F

MF
0;n � F

MF
i;n

�
� 0 (32)

Again, local minima may obstruct the paths to the global minimum. But by the same argument
as above, during learning we are always guaranteed to improve CFMF , since the intermediate
free energy is always lower than the initial one. However, we are not protected against landing
in a local minimum, where all derivatives vanish and learning stops.

To find the learning rules we compute the following derivatives (setting i = 1),

@CF
MF

@�

=

�
@E

@�

�
Q0

�

�
@E

@�

�
Q1

�
@F1

@Q1

@Q1

@�

(33)
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The last term is again small compared to the others and will be ignored. This results in the
simple learning rules,

�W /
1

N

X
n=1:N

�
mh;nm

T
h;n � ~mh;n ~m

T
h;n

�
(34)

�V /
1

N

X
n=1:N

�
vnv

T
n �mv;nm

T
v;n

�
(35)

�J /
1

N

X
n=1:N

�
vnm

T
h;n �mv;n ~mT

h;n

�
(36)

where vn is a data vector,mh;n are the parameters of Q(v = vn;h) after optimization, mv;n are
the parameters of Q(v;h =mh;n) after optimization, and ~mh;n are the parameters of Q(h;v =

mv;n) after optimization. In practice one may want to perform updates on mini-batches when
confronted with large redundant datasets. The fixed point equations for the minimization of
the free energy are computed by taking derivatives with respect to parameters fmv;n;mh;ng
and equating to zero,

mh;n = �(Wmh;n + J
T
vn) (37)

mv;n = �(Vmv;n + Jmh;n) (38)
~mh;n = �(W ~mh;n + J

T
mv;n) (39)

These equations must be run sequentialy. The last argument in the sigmoid is fixed and acts as
a bias term. Also, damping may be necessary to avoid oscillations.

In rare cases discontinuities can occur in the mean field free energy of a MFBM as a func-
tion of the parameters. In those cases, small steps in the negative gradient direction are not
guaranteed to lower the objective function.

5 Supervised Learning

The above exposition has focussed on unsupervised learning, but is by no means limited to
it. For supervised learning, the visible units are divided into input units i and output units o.
The simplest way in which to extend the general framework is to reconstruct both inputs and
outputs to the network, which would not require any change in the learning algorithm (just
put v = fi;og). When the network is queried with a new input i, it then has to minimize the
free energy with respect to hidden units and the output units fm;og jointly. The values of the
output units are then returned. This is a case of pattern completion.

The downside of this approach is that the algorithm has to spend resources on modelling
the input distribution, while we are really only interested in the output distribution given the
input. As an alternative, one may therefore decide to only reconstruct the outputs, i.e. the
hidden units and output units are free to be updated, but the inputs stay clamped to the data,
throughout the one-step minimization of the free energy.

6 Extensions

The MF approximation is limited in the sense that it treats all units as independent during “in-
ference”. Extensions to the MFBM have been proposed in the literature to include correlation
between the units, using linear response theory (Kappen, 1998) or TAP corrections (Galland,
1993). These improvements can be readily applied to the framework presented in this paper,
though it is not yet clear how much they will help.
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Table 1: Confusion matrix for digit classification task. Each row shows the classification result
for a particular digit out of 400 test cases. For instance, 5 out of 400 “8s” from the test set were
classified as a “2s”. The last column shows the total number of misclassifications for each digit,
while the overall classification error can be found in the lower right corner (99), corresponding
to 2:5%.

1 2 3 4 5 6 7 8 9 0
1 396 0 0 1 1 1 0 1 0 0 4
2 0 387 2 1 0 1 3 4 0 2 13
3 0 2 390 0 5 0 0 1 1 1 10
4 0 2 0 389 0 2 0 3 4 0 11
5 1 0 7 0 389 0 0 2 0 1 11
6 0 2 0 1 2 392 0 1 0 2 8
7 0 1 1 0 0 0 394 1 3 0 6
8 3 5 2 2 1 2 0 381 3 1 19
9 0 0 0 4 1 0 6 3 386 0 14
0 0 1 0 0 0 1 0 1 0 397 3
ERROR 99

The MFBM does not hinge on a probabilistic interpretation and can be regarded as a de-
terministic neural net. This idea was taken one step further in (Movellan, 1991) where the en-
tropy term in the free energy was defined for a general (bounded, monotonic, differentiable)
nonlinearity,

S =
X
i

Z mi

a

f

�1
i (mi)dmi (40)

where a = f(0). Chosing f(:) to be a sigmoid would give the usual expression for the entropy.
Interestingly, the learning algorithm can still be used with this more general nonlinearity. The
CD learning algorithm can be directly applied to this case as well.

Finally, we are interested in extending the framework to hybrid deterministic and stochas-
tic learning. The restricted BM (RBM) is an example where sampling is fast and exact, but no
connections between hidden units or between visible units are allowed (Hinton, 2000). Inter-
mediate types of BM are possible where intra visible connections, or intra hidden units are
allowed. Using a combination of Gibbs sampling and MF updates may be a fruitful way to
proceed.

7 Experiments

In the experiments described below we have used 16 � 16 real valued digits from the “br”
set on the CEDAR cdrom # 1. There are 11000 digits available equally divided into 10 classes.
The first 7000 were used for training, while we cycled through the last 4000, using 3000 as a
validation set and testing on the remaining 1000 digits. The final test-error was averaged over
the 4 test-runs. All digits were separately scaled (linearly) between 0 and 1, before presentation
to the algorithm.

7.1 Unsupervised Learning of Digit Models

Separate models were trained6 for each digit, using 700 training examples. Each model was
a fully connected MFBM consisting of 50 hidden units. We performed 10 weight updates for

6Although the classification task is clearly supervised in the sense that the class labels are assumed known, the
digit models are trained to model their input distribution (as oppsosed to an input-output mapping). Hence the
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Figure 1: Illustrative example of pairwise classification task on “2” versus “3”. For all data,
the free energy F

MF
0 is computed on both models. The values act as features and are plotted

as points in a two dimensional space (“�” for “3”, “�” for “2”). We then fit a logistic regression
model on the training and validation data (top), which is used for classification on the test
data (bottom). In this example, 2 digits “3” are classified as “2” (circles) and 2 digits “2” are
classified as “3” (squares) on the test data.
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Figure 2: All visible to visible connections for the digit “8”. Every patch corresponds to the
visible weights for one visible unit at the corresponding location in the image (i.e. the top
left patch corresponds to the top left pixel). The visible weights decorrelate the image (using
only first and second order statistics). The solution roughly corresponds to ZCA-filtering (see
below)

Figure 3: Basis Functions of the ZCA whitening filter, which scales all eigenvalues of the data
covariance to one.
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Figure 4: Typical features found by the algorithm on the unsupervised learning task. Every
row depicts the weights from 10 randomly chosen hidden units to all visible units for one
particular digit-model. The features are global and edge-like. They can be interpreted as small
deformations of a digit.

each mini-batch of 100 data vectors, and cycled through those batches 200 times. The updates
included a small weight-decay term and a momentum term.

When training was completed, we computed the free energy F
MF
0 for all data on all mod-

els (including validation and test data). Since we do not compute the term F
MF
1

= � log(Z)

(which is much harder), we have no direct access to the log-likelihood. Instead, we fit a multi-
nomial logistic regression model to the training data plus the validation data, using the 10 free
energies FMF

0 for each model as “features”. The prediction of this logistic regression model
on the test data is finally compared with ground truth, from which a confusion matrix is cal-
culated (table 1). As an example we show in figure (1) the decision boundary computed with
binomial logistic regression on the free energies of the digit “2” versus the digit “3”.

The total averaged classification error is 2:5% on this data set, which is a significant im-
provement over simple classifiers such as a 1-nearest-neighbour (5:5%) and multinomial lo-
gistic regression (6:4%).

Figure (2) shows the visible-to-visible weights (see figure caption for explanation) for the
digit “8”. By comparison with the basis functions of a ZCA-filter (figure (3)), we may inter-
pret the visible layer as a whitening filter, removing first and second order statistics from the
data. The higher order statistics are modelled by the hidden units, whose “projective fields”
(hidden-to-visible weights) are depicted in figure (4). These features contain edge-like ele-
ments and are rather global. From a generative perspective, they can be interpreted as small
deformations of one digit into another, just like edges are generators of small translations.
From a recognition perspective, these features are sensitive to the boundaries of a digit (or
parts of a digit).

name “unsupervised”.
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Figure 5: Features (weights from one hidden to all input units) for supervised learning task.
From left to right the data consisted of the following two digits: f(3; 8); (7; 9); (0; 1); (6; 9)g.
Notice that the features are discriminative.

7.2 Supervised Learning

To test whether the new algorithm can be used in supervised learning settings, we trained
models on pairs of digits, providing it with the true class label. Learning involved the re-
construction of this one bit of information, while the input pattern (image of the digit) was
clamped to the visible units at all times. Since we are not reconstructing the original image, no
resources are spent on modelling the input distribution. As expected, the algorithm focusses
on discovering features which are good for discrimination (as opposed to representation). In
figure (5) we see 4 examples of features (weights from one hidden unit to all input units)
which focus on discriminating two digit classes. For instance, the first feature will be “on” in
case of a 3 and “off” in case of an 8. However, the supervised version of the MFBM does not
significantly outperform standard logistic regression on pairwise discrimination.

8 Discussion

In this paper we have shown that efficient contrastive divergence learning is not limited to struc-
tures like the RBM, where the hidden units are independent given the visible units and vice
versa. Although exact sampling is no longer feasible in more general structures, approximate
mean field methods can be employed instead. The resulting learning rules are analoguous to
the standard MFBM learning rules. The sleep phase has however been replaced with a “one-
step-reconstruction” phase, for which the unimodal mean field approximation is expected to
be much more appropriate.

The new learning algorithm can be interpreted as a deterministic neural network architec-
ture, without making reference to the underlying stochastic version. However, it is precisely
this relationship which highlights the limitations of the MFBM. For instance, the deterministic
algorithm assigns real values between 0 and 1 to the units, while the stochastic version uses
binary values. This implies that it can transmit much more information between units than
just 1 bit per unit, a potential danger for overfitting. Instead of passing around real values,
one could sample from the binary hidden units, given the mean field parameters, and use that
for reconstructing the data. This limits the information that can be conveyed by the hidden
states.

Another limitation is the independence assumption of the units when approximated by the
mean field distribution. More involved approximate variational distributions could alleviate
this problem at least partially.

The main purpose of this paper was to show that the new learning algorithm works, and
can be used for classification problems. A more thorough comparison on well documented
datasets (like MNIST) has yet to be performed to assess the real merit of mean field CD learn-
ing.
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