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Abstract

In this note a new high performance least squares parameter estimator is proposed. The main features of the estimator
are: (i) global exponential convergence is guaranteed for all identifiable linear regression equations; (ii) it incorporates
a forgetting factor allowing it to preserve alertness to time-varying parameters; (iii) thanks to the addition of a mixing
step it relies on a set of scalar regression equations ensuring a superior transient performance; (iv) it is applicable to
nonlinearly parameterized regressions verifying a monotonicity condition and to a class of systems with switched time-
varying parameters; (v) it is shown that it is bounded-input-bounded-state stable with respect to additive disturbances;
(vi) continuous and discrete-time versions of the estimator are given. The superior performance of the proposed estimator
is illustrated with a series of examples reported in the literature.

Keywords: Parameter estimation, Least Squares, Least squares identification algorithm Nonlinear regression model,
Exponentially convergent identification.

1. Introduction

We have witnessed in the last few years an increas-
ing interest in the analysis and design of new parameter
estimators for linearly paramterized regression equations
(LPRE) of the form y(t) = ϕ⊤(t)θ, with y(t) ∈ R, ϕ(t) ∈
Rq measurable signals and θ ∈ Rq a constant vector of
unknown parameters.1 The main motivation of this re-
search is to relax the highly restrictive assumption of per-
sistent excitation (PE) imposed to guarantee global expo-
nential convergence of classical gradient, least squares (LS)
or Kalman-Bucy algorithms [16, 48, 52]. A second impor-
tant motivation is to provide guaranteed good transient
performance behavior since the one of the aforementioned
schemes is highly unpredictable and only a weak mono-
tonicity property of the norm of the vector of estimation
errors can be insured.

1.1. Review of recent literature on LS estimators

It has recently been shown [3, 43] that global asymp-
totic convergence—but not exponential—of the error equa-
tion for standard continous-time (CT) gradient estimators
is ensured under a strictly weaker condition of generalized
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1We consider the case of scalar y(t) to simplify the notation—as
will be seen below all results can be directly extended for the case of
vector y(t).

PE—see [3, 55] for its definition and [13] for some robust-
ness properties of the algorithm. Unfortunately, this con-
dition is still extremely restrictive to be of practical use.
In [7] it is shown that the classical discrete-time (DT) LS
algorithm is asymptotically convergent if and only if the
regressor ϕ(t) satisfies a new excitation property, called
weak PE, that is strictly weaker than PE. This result is
of limited interest because, on one hand, the definition is
extremely technical and difficult to verify in applications.
On the other hand, and more importantly, the analysis is
limited to standard LS, without forgetting factor or co-
variance resetting that, as is well-known [16, 48], has a
decreasing adaptation gain, loosing its alertness to track
parameter variations, which is the main motivation for re-
cursive algorithms. In [29] the underexcited scenario where
the Gram matrix of the regressor has a q0-dimensional ker-
nel, with q0 ≤ q, is considered. It is shown that incorporat-
ing into a CT LS (or gradient) estimator the information
of a basis expanding this kernel—the columns of the ma-
trix N ∈ Rq0×q in equation (14) or (24) whose columns
vi ∈ Rq, i = 1, . . . q0 satisfy equation (4)—it is possible
to guarantee consistent estimation to its complementary
space. Clearly, if the regressor is PE the dimension q0 of
the aforementioned kernel is zero and convergence of all
the parameters is guaranteed, confirming the well-known
result of the PE case. This result is related to the partial
convergence property of [48, Theorem 2.7.4] where a sim-
ilar fact is proven in the context of systems identification
in underexcited situations. Although of theoretical inter-
est, the result has little practical relevance because of the
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impossibilty to compute on-line the matrix N mentioned
above. In [10] a slight modification of the DT LS algo-
rithm is proposed to deal with parameter variations in the
LPRE, however the main convergence (to a compact set)
results still rely on PE assumptions. In [22], an LS ver-
sion of the well-known I&I estimator [2] is proposed while
in [28] a variation of LS that defines a passive operator is
proposed.

In [49] an interesting generalization of the classical CT
LS with forgetting factor is introduced, where the latter is
allowed to be a time varying matrix. See [50] for a simi-
lar result in DT. The convergence analysis in both papers
still relies on the PE assumption. In the very recent paper
[5] a general structure to design and analyze DT LS-like
recursive estimators parameterized in terms of some free
functions is proposed—see equation (7). A new definition
of excitation, called t⋆-excitation, is given in [5, Definition
1]. Interestingly, this definition involves not only the re-
gressor but also two of the aforementioned functions. A
particular choice of these functions yields the classical LS
estimator and t⋆-excitation is equivalent to PE. However,
other choices of these free parameters may yield weaker ex-
citation conditions, for instance the choice given in (27).
However, this selection has again the problem of driving
the adaptation gain to zero, loosing the estimator alertness
and it is not clear if there are other choices that do not
suffer from this drawback. Another novelty of [5] is that
it incorporates a very interesting analysis of robustness
to additive disturbances in the LPRE, encrypted in the
input-to-state-stability property. The interested reader is
referred to [5, 49, 50] for a review of the extensive literature
on LS with forgetting factors.

1.2. Relaxing the PE condition

A major breakthrough in the design of recurrent esti-
mators is the proof that it is possible to establish global
convergence under the extremely weak assumption of in-
terval excitation2 (IE) [20]—called initial excitation in [41]
and excitation over a finite interval in [52]. To the best of
the authors’ knowledge the first estimators where such a
result was established are the concurrent and the compos-
ite learning schemes reported in [9] and [40], respectively;
see [34] for a recent survey on new estimators. These al-
gorithms, which incorporate the monitoring of past data
to build a stack of suitable regressor vectors, are closer
in spirit to off-line estimators. See also [19, 31] for two
early references where a similar idea is explored. As is
well-known, the main drawback of off-line estimators is
their inability to track parameter variations, which is very
often the main objective in applications. This situation
motivates the interest to develop bona-fide on-line estima-
tors that relax the PE condition preserving the scheme’s
alertness [26].

2It should be pointed out that IE is strictly weaker than the gen-
eralized PE of [55], the weak excitation PE property of [7] and the
t⋆-excitation of [5].

New on-line estimators relying on the use of the dy-
namic regressor extension and mixing (DREM) technique
with weaker excitation requirements have been recently
proposed. DREM was first proposed in [1] for CT and
in [4] for DT systems. In Appendix A it is recalled that
the main step in the derivation of DREM estimators is the
construction of a new extended LPRE Y (t) = Φ(t)θ, with
Y (t) ∈ Rq and Φ(t) ∈ Rq×q a new square matrix regressor.
Two procedures to construct the extended LPRE, reported
in [21] and [24], respectively, were originally considered—
for the sake of completeness both constructions are re-
viewed in Appendix A. The final—and critical—mixing
step consists of the multiplication of this extended LPRE
by the adjugate of Φ(t).3 Clearly, this operation creates a
new scalar LPRE of the form Yi(t) = ∆(t)θi, i ∈ q̄, with
Y(t) := adj{Φ(t)}Y (t) and ∆(t) := det{Φ(t)} a scalar re-
gressor, which is the essential feature of the approach.4

DREM estimators have been successfully applied in a va-
riety of identification and adaptive control problems, both,
theoretical and practical ones, see [34, 38] for an account
of some of these results.

The convergence properties of DREM-based estimators
clearly depend on the scalar regressor ∆(t). Due to the
scalar nature of ∆(t), it is clear that the parameter er-
ror converges if and only if ∆(t) is not square integrable
(summable for DT systems) and convergence is exponen-
tial if and only if ∆(t) is PE, facts that were proven in
[1]. In [14] a DREM-based algorithm using the extended
regressor of [21] that ensures convergence in finite-time im-
posing the IE assumption on ∆(t) was proposed. An in-
teresting open question was to establish the relation of the
excitation of ∆(t) and the original regressor ϕ(t), which
was studied in [17] and [55] for the extended regressors of
[21] and [24], respectively. The equivalence between PE of
∆(t) and PE of the original regressor ϕ(t) was established
for both extended regressors—proving that DREM-based
estimators are at least as good as standard gradient or LS
schemes for excited LPRE. On the other hand, in [17] it
is shown that if ϕ(t) is IE then ∆(t) is also IE for the ex-
tended regressor [21], while in [55] it was shown that the
scheme of [24] ensures the stronger property that ∆(t) is
bounded away from zero in an open interval [tc,∞) with
tc > 0. Finally, in [38, Proposition 3] a new extended
regressor which guarantees exponential convergence under
conditions that are strictly weaker than regressor PE was
presented.

Three major developments in this line of research re-
ported recently are:

(i) the proposal in [18] and [53] of two new, fully on-line,
DREM-based estimators where exponential conver-

3It is interesting to note that this operation was independently
reported in [8] in the context of stochastic estimator convergence
analysis.

4In Appendix A DREM is applied to nonlinearly parameterized
regression equation (NLPRE) of the form (1), which is also consid-
ered in this paper.
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gence is established imposing only the IE condition
to ϕ(t);

(ii) the proof in [53] that IE of the regressor ϕ(t) is equiv-
alent to identifiability of the LPRE. It should be re-
called that identifiability of a LPRE is the existence
of q linearly independent regressor vectors [53, Def-
inition 2] ϕ(ti), i ∈ q̄, and is a necessary and suffi-
cient condition for the on- or off-line estimation of
the parameters [16];

(iii) the proof in [53] that the proposed estimator is ap-
plicable also to separable NLPRE of the form (1),
provided the mapping G(θ) verifies a monotonicity
condition. Estimators for this kind of NLPRE were
reported before in [36], but the convergence condi-
tion was expressed in terms of the scalar regressor
∆(t).

The estimators of [18] and [53] rely on the generation
of new LPRE using the main idea of generalized parame-
ter estimation based observer (GPEBO), which is a tech-
nique to design state observers for state-affine nonlinear
systems, first proposed in [32] and latter generalized in
[35]. GPEBO translates the problem of state-estimation
into one of parameter estimation from a LPRE. The lat-
ter is generated exploiting the well-known property [47,
Property 4.4] that the trajectories of an LTV system can
be expressed as linear combinations of the columns of its
fundamental matrix. Besides the addition of the computa-
tionally demanding calculation of the fundamental matrix,
a potential drawback of GPEBO is that it essentially re-
constructs the initial conditions of some error equation, an
operation which may adversely affect the robustness of the
estimator, [38, Remark 7] and [37], see also [54]. The pro-
cedure followed in the construction of the estimator of [18]
is first the application of DREM and then invoke GPEBO,
hence we refer to it as D+G. On the other hand, the es-
timator of [53] uses also GPEBO and DREM, but in the
opposite order, so we refer to it in the sequel as G+D.

1.3. Contributions of the paper

In this paper we provide an alternative to the D+G
and G+D estimators that also ensures global exponential
convergence under the weak assumption of IE of the origi-
nal regressor ϕ(t). The main features of this new estimator
are summarized as follows.

F1 In contrast to the D+G and G+D estimators that im-
plement a gradient descent search, we use the classical LS
technique, hence we refer to it in the sequel as LS+D esti-
mator. The superior convergence properties of LS estima-
tors, as opposed to gradient-based, are widely recognized
[16, 25, 45].

F2 We avoid the use of the GPEBO technique but instead
exploit some structural properties of the LS estimator to
construct the extended regressor. This fact removes the

need to calculate the computationally demanding funda-
mental matrix.

F3 Similarly to the G+D scheme, the stability mechanism
and, consequently, the stability analysis of the LS+D esti-
mator is much more transparent than the one of the D+G
estimator. There are two consequences of this fact, on one
hand, the procedure of tuning the estimator to achieve a
satisfactory transient performance, which is difficult for
the D+G scheme, is straightforward for the LS+D one.

F4 A time-varying forgetting factor that allows the esti-
mator to preserve its alertness to time-varying parameters
is incorporated.

F5 Besides the case of LPRE we consider (separable and
monotonic) NLPRE, with the associated estimator pre-
serving all the properties of the case of LPRE. Also, we
show that the proposed estimator is applicable to NLPRE
with switched time-varying parameters.

F6 We show that the new estimator is robust with re-
spect to additive disturbances, by proving that it defines
a bounded-input-bounded-state (BIBS) stable system.

F7 The behaviour of many physical systems is described
via CT models. On the other hand, DT implementations
of estimators are of significant practical relevance. There-
fore, similarly to [18, 38, 53], to comply with both scenarios
we consider in the paper both kinds of LPREs. Interest-
ingly, in contrast to [18], the construction and analysis
tools of both cases are essentially the same—however, for
the sake of clarity, they are presented in separate sections.

The remainder of the paper is organized as follows. In
Section 2 we present the main result of the paper for CT
systems, while the DT version is given in Section 3. For
the sake of brevity we give both results for the general
case of NLPRE, presenting the LPRE case as a corollary.
Section 4 is devoted to the derivation of the proposed ex-
tended NLPRE applying directly the DREM construction
procedure. Section 5 is devoted to the proof of robustness
of the new estimator. Simulation results of some exam-
ples reported in the literature are given in Section 6 to
illustrate the superior performance of the proposed LS+D
estimator. The paper is wrapped-up with concluding re-
marks in Section 7.

Notation. In is the n × n identity matrix and 0s×r is
an s × r matrix of zeros. R>0, R≥0, Z>0 and Z≥0 de-
note the positive and non-negative real and integer num-
bers, respectively. For q ∈ Z>0 we defined the set q̄ :=
{1, 2, . . . , q}. For a ∈ Rn, we denote |a|2 := a⊤a, and for

any matrix A its induced norm is ∥A∥. vec : Rp×p → Rp2

is an operator that piles up the columns of a matrix. CT
signals x : R≥0 → Rn are denoted x(t), while for DT se-
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quences x : Z≥0 → Rn we use xk := x(kTs), with Ts ∈ R>0

the sampling time. The action of an operator H on a CT
signal s(t) is denoted asH[s](t), andH[s](k) for a sequence
sk.

2. Main Result for Continuous-time Systems

In this section we present the proposed LS+D inter-
laced estimator for CT systems, with the first estimator
being the LS with bounded-gain forgetting factor proposed
in [51, Subsection 8.7.6]. First, we consider the case of
NLPRE and then specialize to LPRE that, as expected,
ensures stronger convergence properties.

2.1. Nonlinearly parameterized regression equations

Consider the following CT NLPRE

y(t) = ϕ⊤(t)G(θ) (1)

where y(t) ∈ R, ϕ(t) ∈ Rp and G : Rq → Rp, q ≤ p, a
smooth mapping verifying the following.

Assumption A1. [Monotonicity] There exists a matrix
Q ∈ Rq×p such that mapping G(θ) verifies the linear ma-
trix inequality

Q∇G(θ) +∇⊤G(θ)Q⊤ ≥ ρIq > 0, ∀ θ ∈ Rq, (2)

for some ρ ∈ R>0. Consequently [12, 42], The mapping
QG(θ) is strongly monotone, that is,

(a− b)⊤ [QG(a)−QG(b)] ≥ ρ|a− b|2 > 0, ∀ a, b ∈ Rq,
(3)

with a ̸= b.
Assumption A2. [Interval Excitation] The regressor ϕ(t)
is interval exciting (IE) [52, Definition 3.1]. That is, there
exists constants Cc > 0 and tc > 0 such that5∫ tc

0

ϕ(s)ϕ⊤(s)ds ≥ CcIp. (4)

Proposition 1. Consider the NLPRE (1) with G(θ) sat-
isfying Assumption A1 and ϕ(t) verifying Assumption
A2. Define the LS+D interlaced estimator with time-
varying forgetting factor

˙̂η(t) = αF (t)ϕ(t)[y(t)− ϕ⊤(t)η̂(t)], η̂(0) =: η0 ∈ Rp

(5a)

Ḟ (t) = −αF (t)ϕ(t)ϕ⊤(t)F (t)+β(t)F (t), F (0) = 1

f0
Ip

(5b)

˙̂
θ(t) = γQ∆(t)[Y(t)−∆(t)G(θ̂)], θ̂(0) =: θ0 ∈ Rq (5c)

ż(t) = −β(t)z(t), z(0) = 1, (5d)

5In [52, Definition 3.1] there is an initial time in the integral that,
for simplicity and without loss of generality, is taking here as zero.

where we defined

β(t) := β0

(
1− ∥F (t)∥

M

)
(6a)

∆(t) := det{Ip − z(t)f0F (t)} (6b)

Y(t) := adj{Ip − z(t)f0F (t)}[η̂(t)− z(t)f0F (t)η0], (6c)

with tuning gains α > 0, f0 > 0, β0 > 0, M ≥ 1
f0

and γ >

0. Define the parameter estimation error θ̃(t) := θ̂(t)− θ.
Then, for all f0 > 0, η0 ∈ Rp and θ0 ∈ Rq, we have that

lim
t→∞

θ̃(t) = 0, (exp), (7)

with all signals bounded.

Proof. With some abuse of notation, define the signal

G̃(t) := η̂(t)− G(θ),

whose derivative is given by

˙̃G(t) = −αF (t)ϕ(t)ϕ⊤(t)G̃(t), (8)

where we replaced (1) in (5a). Now, from

d

dt
[F−1(t)] = −F−1(t)Ḟ (t)F−1(t),

we have that

d

dt
[F−1(t)] = −β(t)F−1(t) + αϕ(t)ϕ⊤(t), (9)

and consequently

d

dt
[F−1(t)G̃(t)] = F−1(t) ˙̃G(t) + d

dt
[F−1(t)]G̃(t)

= −αϕ(t)ϕ⊤(t)G̃(t) + αϕ(t)ϕ⊤(t)G̃(t)
− β(t)F−1G̃(t)
= −β(t)F−1(t)G̃(t).

This implies that

F−1(t)G̃(t) = z(t)f0G̃(0), ∀t ≥ 0, (10)

where we used the definition of the function z(t) and the
fact that F−1(0) = f0Ip. The latter may be rewritten as6

η̂(t)− G(θ) = z(t)f0F (t)[η0 − G(θ)],

from which we define the extended NLPRE

Y (t) = Φ(t)G(θ) (11a)

Y (t) := η̂(t)− z(t)f0F (t)η0 (11b)

Φ(t) := Ip − z(t)f0F (t). (11c)

6This key identity is given in [51, Equation (8.108)] for the case
of LPRE.
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Following the DREM procedure we multiply (11a) by
adj{Φ(t)} to get the following NLPRE with scalar regres-
sor

Y(t) = ∆(t)G(θ), (12)

where we used (6b) and (6c). Replacing (12) in (5c) we
get

˙̂
θ(t) = −γ∆2(t)Q[G(θ̂(t))− G(θ)].

To analyse the stability of the latter system define the
Lyapunov function candidate

V (θ̃(t)) :=
1

2γ
|θ̃(t)|2. (13)

Computing its time derivative yields

V̇ (t) = −∆2(t)[θ̂(t)− θ]⊤Q[G(θ̂(t))− G(θ)]
≤ −∆2(t)ρ|θ̃(t)|2

= −2ργ∆2(t)V (t),

where we invoked the Assumption A2 of strong mono-
tonicity (3) of QG(θ) to get the first bound.

To complete the proof we first notice that in [51] it is
shown that F (t) ≤ MIp and that β(t) ≥ 0—the latter
implies that z(t) is non-increasing and upper bounded by
one. We consider two cases: when z(t)F (t) → 0 and when
z(t)F (t) ≥ ρIq > 0. In the first case we notice that and
if z(t)F (t) → 0 then ∆(t) → 1 and, consequently, ∆(t) is
PE. For the second case, we solve (9) to get

F−1(t) = z(t)f0Ip + α

∫ t

0

e−
∫ t
τ
β(s)dsϕ(τ)ϕ⊤(τ)dτ, ∀t ≥ 0,

which may be rewritten as

Ip − z(t)f0F (t) = αF (t)

∫ t

0

e−
∫ t
τ
β(s)dsϕ(τ)ϕ⊤(τ)dτ

= αF (t)z(t)

∫ t

0

1

z(τ)
ϕ(τ)ϕ⊤(τ)dτ

≥ αF (t)z(t)

∫ t

0

ϕ(τ)ϕ⊤(τ)dτ

≥ αρ

∫ t

0

ϕ(τ)ϕ⊤(τ)dτ, ∀t ≥ 0.

Now, from the implication

ϕ(t) ∈ IE ⇒
∫ t

0

ϕ(τ)ϕ⊤(τ)dτ > 0, ∀t ≥ tc,

we conclude that the matrix Ip−z(t)f0F (t) is nonsingular
for all t ≥ tc, which implies that ∆(t) is PE. This concludes
the proof. □□□

Remark 1. Notice that, as indicated above, if z(t) → 0
then ∆(t) → 1 and, in view of the extended NLPRE (11a),
we have that Y(t) → G(θ). Consequently the parameter
update law (5c) will verify

˙̂
θ(t) → γQ[G(θ)− G(θ̂(t))],

and the Lyapunov stability analysis still holds.

2.2. Linearly parameterized regression equations

In the next corollary we specialize the result of Proposi-
tion 1 for the case of LPRE. To streamline the presentation
of the result we recall the following.

Definition 1. [16] The LPRE

y(t) = ϕ⊤(t)θ (14)

where y(t) ∈ R, ϕ(t) ∈ Rq and θ ∈ Rq is said to be iden-
tifiable if and only if there exists a set of time instants—
{ti}i∈q̄, ti ∈ R>0, such that

rank
{ [
ϕ(t1)|ϕ(t2)| · · · |ϕ(tq)

] }
= q.

For the sake of completeness we also recall the following
result of [53]

Lemma 1. The LPRE (14) is identifiable if and only if
the regressor vector ϕ is IE.

We are in position to present the main result of the
subsection whose proof follows immediately from Lemma
1, the proof of Proposition 1 and [38, Proposition 2].

Corollary 1. Consider the LPRE (14) and assume it is
identifiable. Define the LS+D interlaced estimator with
time-varying forgetting factor

˙̂η(t) = αF (t)ϕ(t)[y(t)− ϕ⊤(t)η̂(t)], η̂(0) =: η0 ∈ Rp

Ḟ (t) = −αF (t)ϕ(t)ϕ⊤(t)F (t)+β(t)F (t), F (0) = 1

f0
Ip

˙̂
θ(t) = γ∆(t)[Y(t)−∆(t)θ̂], θ̂(0) =: θ0 ∈ Rq

ż(t) = −β(t)z(t), z(0) = 1,

with tuning gains α > 0, f0 > 0, β ≥ 0, M ≥ 1
f0

and

γ > 0, and we used the definitions (6). Then, for all
f0 > 0, η0 ∈ Rq and θ0 ∈ Rq, we have that (7) holds with
all signals bounded. Moreover, the individual parameter
errors verify the monotonicity condition

|θ̃i(ta)| ≤ |θ̃i(tb)|, ∀ ta ≥ tb ≥ 0, i ∈ q̄.

3. Main Result for Discrete-time Systems

In this section we present the proposed LS+D estima-
tor for DT systems. Similarly to the previous section, we
consider first the case of NLPRE and then specialize to
LPRE. As will be shown below, in the DT case we need
an additional Lipschitz assumption on the mapping G(θ),
which is conspicuous by its absence in CT.

3.1. Nonlinearly parameterized regression equations

Consider the following DT NLPRE

yk = ϕ⊤k G(θ) (15)
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where yk ∈ R, ϕk ∈ Rp and G : Rq → Rp, q ≤ p. Assume
G(θ) verifies Assumption A1 and the following.

Assumption A3. [Lipschitz] The mapping G(θ) satisfies
the Lipschitz condition

|G(a)− G(b)| ≤ ν|a− b|, ∀a, b ∈ Rq, (16)

for some ν > 0.
Moreover, assume the regressor ϕk satisfies.

Assumption A4. [Interval Excitation] [52, Definition
3.3] The regressor ϕk is IE. That is, there exists constants
Cd > 0 and kc > 0 such that

Σkc
j=0ϕjϕ

⊤
j ≥ CdIp. (17)

Proposition 2. Consider the NLPRE (15) with G(θ) sat-
isfying Assumption A1 and A3 and ϕk verifying As-
sumption A4. Define the normalized LS+DREM inter-
laced estimator

η̂k+1 = η̂k +
1

β + ϕ⊤k Fk−1ϕk
Fk−1ϕk(yk − ϕ⊤k η̂k), (18a)

Fk =
1

β

(
Ip −

1

β + ϕ⊤k Fk−1ϕk
Fk−1ϕkϕ

⊤
k

)
Fk−1 (18b)

θ̂k+1 = θ̂k + γQ
∆k

1 + ∆2
k

[Yk −∆kG(θ̂k)], θ̂0 =: θ0 ∈ Rq

(18c)

zk = βzk−1, z−1 = 1, (18d)

with initial conditions η̂0 =: η0 ∈ Rp, F−1 = 1
f0
Ip and the

definitions

∆k := det{Ip − f0zkFk−1} (19a)

Yk := adj{Ip − f0zkFk−1}(η̂k − f0zkFk−1η0), (19b)

with tuning parameters the initial condition f0 > 0, the
forgetting factor β ∈ (0, 1] and the adaptation gain γ > 0,
which is selected such that

σ := ρ− γν2

2
λmax{Q⊤Q} > 0. (20)

Define the parameter estimation error θ̃k := θ̂k − θ. Then,
for all f0 > 0, η0 ∈ Rp and θ0 ∈ Rq, we have that

lim
k→∞

|θ̃k| = 0, (exp), (21)

with all signals bounded.

Proof. To simplify the notation we define the normaliza-
tion sequence

mk := β + ϕ⊤k Fk−1ϕk. (22)

With some abuse of notation, define the error signal

η̃k := η̂k − G(θ), (23)

whose dynamics is given by

η̃k+1 =

(
Ip −

1

mk
Fk−1ϕkϕ

⊤
k

)
η̃k, (24)

where we used (15) and (18a). Now, direct application of
the matrix inversion lemma to (18b) shows that,

F−1
k = βF−1

k−1 + ϕkϕ
⊤
k . (25)

Combining (24) and (25) we can prove the following
fundamental property of LS

F−1
k η̃k+1 = βF−1

k−1η̃k.

Solving this difference equation we get

F−1
k−1η̃k = βkF−1

−1 η̃0

= zkf0η̃0, ∀k ≥ 0,

where we replaced the solution of (18d) and the initial con-
dition choice F−1 = 1

f0
Ip to get the second identity. Using

the definition (23), the equation above may be rewritten
as the extended LPRE

(Ip − f0zkFk−1)G(θ) = η̂k − f0zkFk−1η0. (26)

Following the DREM procedure we multiply (26) by adj{Ip
−f0zkFk−1} to get the following NLPRE

Yk = ∆kG(θ), (27)

where we used (19a) and (19b). Replacing (27) in (18c)
we get the dynamics of the parameter error

θ̃k+1 = θ̃k − γ∆̄2
kQ[G(θ̂k)− G(θ)], (28)

where, to simplify the notation, we defined the normalized
scalar regressor sequence

∆̄2
k :=

∆2
k

1 + ∆2
k

≤ 1. (29)

To analyze the stability of this equation define the Lya-
punov function candidate

Vk =
1

2γ
|θ̃k|2, (30)

that satisfies

Vk+1 =Vk − ∆̄2
kθ̃

⊤
k Q[G(θ̂k)− G(θ)]

+
γ

2
∆̄4

k[G(θ̂k)− G(θ)]⊤Q⊤Q[G(θ̂k)− G(θ)] (31)

≤Vk − ρ∆̄2
k|θ̃k|2 +

γν2

2
λmax{Q⊤Q}∆̄4

k|θ̃k|2

≤Vk −
[
ρ− γν2

2
λmax{Q⊤Q}

]
∆̄2

k|θ̃k|2 (32)

=Vk − σ∆̄2
k|θ̃k|2.
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where we invokedAssumption A2 andAssumption A3
to get the first bound, (29) for the second one and used
(20) in the last identity. Summing the inequality above we
get

Vk − V0 ≤ −
k∑

j=1

σ∆̄2
j |θ̃(t)j |2 ⇒ V0

σ
≥

k∑
j=1

∆̄2
j |θ̃(t)j |2.

Taking the limit as k → ∞ we conclude that ∆k|θ̃k| ∈ ℓ2,
consequently

lim
k→∞

∆̄k|θ̃k| = 0. (33)

Now, from the Algebraic Limit Theorem [46, Theorem 3.3]
we know that the limit of the product of two convergent
sequences is the product of their limits. On the other hand,
from the fact that

V (k + 1) ≤ V (k) ≤ V (0), ∀k ∈ Z>0,

we have that |θ̃(k)| is a bounded monotonic sequence,
hence it converges [46, Theorem 3.14]. Finally, if ∆̄(k)
converges to a non-zero limit, we conclude from (33) that
|θ̃k| → 0.

We will proceed now to prove that (17) of Assump-
tion A4 ensures this property of ∆k, which together with
the fact that if ∆k converges to a non-zero limit, then ∆̄k

also converges to a non-zero limit. Indeed, the solution of
the difference equation (25) is given by

F−1
k = βk+1f0 + βk

k∑
j=0

β−jϕjϕ
⊤
j .

Evaluating this expression for k = kc yields

Ip − f0zkc+1Fkc
= βkcFkc

kc∑
j=0

β−jϕjϕ
⊤
j .

The IE assumption ensures that the summation term is
positive definite, since Fkc is nonsingular this ensures that
the matrix on the left hand side is nonsingular. The proof
that this property holds for any k > kc stems from the
observation that, for any kb > 0 we have that

kc+kb∑
j=0

β−jϕjϕ
⊤
j =

kc∑
j=0

β−jϕjϕ
⊤
j +

kc+kb∑
j=kc+1

β−jϕjϕ
⊤
j ,

preserving the positivity property mentioned above. This
completes the proof. □□□

3.2. Linearly parameterized regression equations

In this section, we use the result of Proposition 2 for the
case of LPRE—obviously, in this linear case Assumption
A1 and Assumption A3 are automatically satisfied. As
a first step we recall [53] that Definition 1 and Lemma 1,
given for continuous functions, are also valid for sequences.

As a second step notice that for the LPRE case (26)
takes the form

(Ip − f0zkFk−1)θ = η̂k − f0zkFk−1η0,

consequently (27) now becomes

Yi(k) = ∆kθi, i ∈ q̄,

and the dynamics of the parameter error (28) is now given
by

θ̃k+1 = θ̃k − γ∆̄2
kθ̃k,

whose stability is follows immediately from the IE assump-
tion [53, Proposition 2] .

Corollary 2. Consider the LPRE and assume it is iden-
tifiable. Define the normalized LS+D interlaced estimator
with forgetting factor

η̂k+1 = η̂k +
1

β + ϕ⊤k Fk−1ϕk
Fk−1ϕk(yk − ϕ⊤k η̂k),

Fk =
1

β

(
Ip −

1

β + ϕ⊤k Fk−1ϕk
Fk−1ϕkϕ

⊤
k

)
Fk−1

θ̂k+1 = θ̂k + γ
∆k

1 + ∆2
k

[Yk −∆kθ̂k], θ̂0 =: θ0 ∈ Rq,

with initial conditions η̂0 =: η0 ∈ Rq, F−1 = 1
f0
Ip, tun-

ing gains f0 > 0, β ∈ (0, 1] and γ > 0, and we used
the definitions (19). Then, for all f0 > 0, η0 ∈ Rq and
θ0 ∈ Rq, we have that (33) holds with all signals bounded.
Moreover, the individual parameter errors verify the mono-
tonicity condition

|θ̃i(ka)| ≤ |θ̃i(kb)|, ∀ ka ≥ kb ≥ 0, i ∈ q̄.

Remark 2. The importance of the element-by-element
monotonicity property of the parameter error can hardly
be overestimated. It played a key role for the relaxation
of the assumption of known sign of the high frequency in
model reference adaptive control [14, 53] as well as in the
solution of the adaptive pole placement problem [44].

3.3. Switching parameters case

In this section, we consider the case of switched param-
eters estimation. Whereas the results are presented in DT
only, similar results can be formulated for the CT case in
a straightforward manner. Rewrite (15) as

yk = ϕ⊤k G(θ∗σk
), (34)

where θ∗σk
denotes the switched unknown parameter vector

with θ∗σk
∈ {θ∗1 , θ∗2 , . . . , θ∗s}, s ∈ Z>0. The switching signal

σk : Z≥0 → s̄ is a known7 piecewise-constant function
defining the behavior of θ∗σk

, i.e., θ∗σk
= θ∗i when σk = i,

7Such a scenario arises in several practical control scenarios, when
the known switching signal σk characterizes known changes in oper-
ation regimes [23].
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i ∈ s̄. The known time instants when σk changes its value
are further denoted as tr,i, i ∈ Z≥0.

The estimator (18), (19) is not capable of estimating
switched parameters as for β < 1 the sequence zk con-
verges to zero, and for β = 1 the LS estimator looses its
alertness. To deal with switching parameters, we propose
a resetting-based modification of the estimator (18), (19):

η̂k+1 = η̂k +
1

1 + ϕ⊤k Fk−1ϕk
Fk−1ϕk(yk − ϕ⊤k η̂k), (35a)

θ̂k+1 = θ̂k + γQ
∆k

1 + ∆2
k

[Yk −∆kG(θ̂k)], θ̂0 =: θ0 ∈ Rq,

(35b)

Fk =

{
NkFk−1 if tk ̸= tr,i ∀i,
1
f0
Ip otherwise,

(35c)

Nk =

(
Ip −

1

1 + ϕ⊤k Fk−1ϕk
Fk−1ϕkϕ

⊤
k

)
,

ψk+1 =

{
ψk if tk ̸= tr,i ∀i,
η̂k+1 otherwise,

, ψ0 = η0, (35d)

where η̂0 =: η0 ∈ Rp, F−1 = 1
f0
Ip, and

∆k = det{Ip − f0Fk−1}, (36a)

Yk := adj{Ip − f0Fk−1}(η̂k − f0Fk−1ψk). (36b)

Between the reseting instances tr,i, the estimator (35),
(36) reproduces the estimator (18), (19) with β = 1 and
thus zk ≡ 1. Then, at each reset instance tr,i, the matrix
Fk is reset to its initial condition F−1, and the state ψk

saves the value of η̂k. The state ψk thus plays the same
role as η0 in (26), compare (36b) and (19b). Following the
properties of (18), (19), the proposed estimator ensures
the boundedness of the states and is capable of estimating
θ∗σk

if the following assumption holds.
Assumption A5. [Switching Interval Excitation]. The
switching signal σk is such that the regressor ϕk is IE be-
tween two subsequent switching instants. That is, there
exist constants Cd > 0 and kc > 0 such that for any
i ∈ Z≥0

tr,i + kc ≤ tr,i+1

and
kc∑
ℓ=0

ϕtr,i+ℓϕ
⊤
tr,i+ℓ ≥ CdIp.

Remark 3. In words, Assumption A5 means that the
regressor satisfies the IE condition inside each subinterval
[tr,i, tr,i+1]. For simplicity we have taken that the con-
stants kc and Cd that appear in the definition of IE are
the same for all subintervals [tr,i, tr,i+1], but this is clearly
not necessary.

4. Derivation of the Extended NLPRE (11) via DRE

To simplify the reading of the material presented in
this section we refer the reader to Appendix A where the

procedure to derive DREM is recalled.
In Proposition 1 it is shown that the dynamic exten-

sion (5a) and (5b) generates the extended NLPRE (11)
to which we apply the mixing step S4 of Appendix A to
generate the scalar NLPRE (12). In this section we prove
that this extended NLPRE can also be derived directly
applying the DREM step S2 of Appendix A for a suitably
defined LTV operator H.8 For the sake of brevity we only
consider the CT case, with the DT case following verbatim.

Proposition 3. Define the state space realization of the
LTV operator H : u → U used in step S2 of Appendix A
as in (.1) with

A(t) := −αF (t)ϕ(t)ϕ⊤(t), b(t) := αF (t)ϕ(t),

with F (t) defined in (5b). Starting from the NLPRE
y(t) = ϕ⊤(t)G(θ), construct Y (t) ∈ Rp and Φ(t) ∈ Rp×p

via (.3) that is, as the solutions of the dynamic extension

Ẏ (t) = −αF (t)ϕ(t)ϕ⊤(t)Y (t) + αF (t)ϕ(t)y(t), (37a)

Φ̇(t) = −αF (t)ϕ(t)ϕ⊤(t)Φ(t) + αF (t)ϕ(t)ϕ⊤(t), (37b)

and initial conditions Y (0) = 0p×1 and Φ(0) = 0p×p.

i) The extended NLPRE Y (t) = Φ(t)G(θ) holds.

ii) The signals Y (t) and Φ(t) satisfy (11b) and (11c),
respectively, with η̂(t) ∈ Rp and F (t) ∈ Rp×p so-
lutions of the differential equations (5a) and (5b),
respectively.

Proof. The fact that the extended NLPRE Y (t) = Φ(t)G(θ)
holds follows trivially from linearity of the operator H.

To prove the claim (ii) we invoke (11b) and do the
following calculations

Ẏ (t) = ˙̂η(t)− z(t)Ḟ (t)η0 − ż(t)f0F (t)η0

= αF (t)ϕ(t)[y(t)− ϕ⊤(t)η̂(t)] + β(t)z(t)f0F (t)η0

+ z(t)[αF (t)ϕ(t)ϕ⊤(t)F (t)−β(t)F (t)]η0
= αF (t)ϕ(t)y(t)− αF (t)ϕ(t)ϕ⊤(t)[η̂(t)− z(t)foF (t)η0]

= A(t)Y (t) + b(t)y(t).

In the same spirit as above we compute the time derivative
of Φ(t) as defined in (11c) to get

Φ̇(t) = −ż(t)foF (t)− z(t)f0Ḟ (t)

= αz(t)foF (t)ϕ(t)ϕ
⊤(t)F (t)

= αF (t)ϕ(t)ϕ⊤(t)− αF (t)ϕ(t)ϕ⊤(t)[Iq − z(t)foF (t)]

= A(t)Φ(t) + b(t)ϕ⊤(t).

This completes the proof. □□□

8We refer the interested reader to [53, Proposition 3] where the
DREM operator H for the G+D estimator reported in [53, Proposi-
tion 2] is identified.
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Remark 4. It is important to note that the relation Y (t) =
Φ(t)G(θ) imposes the constraint Y (0) = Φ(0)G(θ), which is
satisfied with the zero initial conditions imposed in Propo-
sition 3. As expected, this choice is consistent with the
choice of initial conditions for η̂(t) and F (t) given in Propo-
sition 1.

Remark 5. The dynamic extension (5b)and (37) pro-
vides an alternative to the construction of the proposed
estimator. The relationship between the two implemen-
tations boils down to a standard diffeomorphic change
of coordinates. Indeed, while the state of the system in
(5) and (5d) is given by col(η̂(t), vec(F (t)), z(t), θ̂(t)) ∈
R(p+p2+1+q), the state of the system of Proposition 3 is
col(Y (t), vec(Φ(t)), z(t), θ̂(t)) ∈ R(p+p2+1+q), and the first
two components are related by a simple invertible coordi-
nate change[

η̂(t)
vec(F (t))

]
=

[
Y (t) + [Ip − Φ(t)]η0

1
z(t)f0

vec(Ip − Φ(t))

]
.

However, the original implementation (5) clearly reveals
the mechanism underlying the operation of the estimator,
namely, the use of a classical LS update and the creation of
the extended NLPRE exploiting the well-known property
of LS (10).9

5. Robustness Analysis of the CT LS+D Estimator

In this section we analyze the robustness vis-à-vis ad-
ditive perturbations of the CT LS+D estimator of Propo-
sition 1. That is, we consider the perturbed NLPRE

y(t) = ϕ⊤(t)G(θ) + d(t), (38)

where d(t) represents an additive perturbation signal. This
signal may come from additive noise in the measurements
of y(t) and ϕ(t) or time variations of the parameters, that
is, d(t) may be decomposed as

d(t) = dy(t) + d⊤θ (t)ϕ(t) + d⊤ϕ (t)G(θ),

where dy(t) ∈ R and dϕ(t) ∈ Rp represent the measure-
ment noise added to y(t) and ϕ(t), respectively, and dθ(t) ∈
Rp captures time variations in the parameters. We make
the reasonable assumption that these signals are all bounded
and prove that the CT LS+D estimator defines a bounded-
input-bounded-state (BIBS) stable system.

The main result is summarized in the proposition be-
low.

Proposition 4. Consider the perturbed NLPLPRE (38)
with d(t) a bounded signal. Assume the regressor ϕ(t) is
IE. The LS+D estimator of Proposition 1 applied to this
NLPRE is BIBS stable.

9To the best of the authors’ knowledge, this property was first
reported in [11, equation (17)] and was widely used for the imple-
mentation of projections in indirect adaptive controllers [27].

Proof. In the light of Remark 3, to carry out the proof we
rely on the use of the alternative implementation of the
extended NLPRE of Proposition 3. Applying the operator
H of Propositions 3 to the perturbed NLPRE (38) yields
the perturbed version of the extended LPRE (11a) as

Y (t) = Φ(t)G(θ) +H[d](t), (39)

where we exploited the property of linearity of H. Next we
proceed to show that the operator H is BIBO-stable. This
is done by proving that, for all bounded d(t), the signal
H[d](t) is also bounded.

The signal H[d](t) is generated via the CT LTV system

ẋd(t) = −αFϕ(t)ϕ⊤(t)xd(t) + αF (t)ϕ(t)d(t)

H[d](t) = xd(t).

Defining W (xd) :=
1
2x

⊤
d (t)F

−1(t)xd(t), we have

Ẇ = −β(t)W (t)− α

2
[ϕ⊤(t)xd(t)− d(t)]2 +

α

2
d2(t)

≤ −β(t)W (t) +
α

2
d2(t).

As β(t) > 0 and d(t) is bounded, this proves that xd(t) =
H[d](t), is also bounded.

From the analysis above, we conclude that the opera-
tor H is BIBO-stable. Consequently, since ϕ(t) and y(t)
are bounded, it follows that Y (t) = H[y](t) and Φ(t) =
H[ϕ⊤](t) are also bounded. It only remains to prove that

and θ̂(t) is bounded. Whence, multiplying (39) by adj{Φ(t)}
we get the following perturbed NLPRE

Y(t) = ∆(t)G(θ) + ξ(t), (40)

where we defined the signal

ξ(t) := adj{Φ(t)}xd(t). (41)

We notice that this signal is bounded. Replacing (41) in
the estimator (5c) yields

˙̂
θ(t) = −γ∆2(t)Q[G(θ̂(t))− G(θ)] + γ∆(t)Qξ(t).

Computing the derivative of the Lyapunov function can-
didate (13) we get

V̇ (t) = −∆2(t)[θ̂(t)− θ]⊤Q[G(θ̂(t))− G(θ)]
+ ∆(t)θ̃⊤(t)Qξ(t)

≤ −ρ∆2(t)|θ̃(t)|2 +∆(t)|θ̃(t)||Qξ(t)|

= −ρ
2
∆2(t)|θ̃(t)|2 − ρ

2
[∆(t)|θ̃(t)| − 1

ρ
|Qξ(t)|]2

+
1

2ρ
|Qξ(t)|2

≤ −ργ∆2(t)V (t) +
1

2ρ
|Qξ(t)|2.

The proof of boundedness of θ̃(t) is completed recalling
that in Proposition 1 it is shown that ∆(t) is PE. □□□
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6. Simulation Examples

In this section we present simulations of the proposed
CT and DT estimators using different examples recently
reported in the literature.

6.1. Example 5 of [29]

Consider the second order stable, CT, linear system
described by

ẋ1(t) =x2(t)

ẋ2(t) =− θ1x1(t)− θ2 + θ3u(t)

y(t) =x1(t),

or equivalently

ẍ1(t) = −θ1x1(t)− θ2ẋ1(t) + θ3u(t) (42)

where θ1, θ2 and θ3 are unknown parameters. Applying
the filter

H(p) =
1

p+ λ

where p := d
dt , to both sides of (42) and rearranging the

terms, we get the LPRE (14) with

y(t) = pH(p)[x2](t), ϕ(t) = H(p)[col(−x1(t), −px1(t), u(t))],
(43)

and θ := col(θ1, θ2, θ3).
To carry out the simulations we use the same condi-

tions that [29], that is, we set to zero the initial conditions
of the filters, as well as the initial value of the parame-
ter estimation vector θ̂(0) = 0, η̂(0) = col(0.1, 0.1, 0.1),
u(t) = 5 and fix θ = col(2, 3, 1). Besides, the tuning pa-
rameters of the proposed estimator of Corollary 1 were
α = 20.3, f0 = 4, β = 0.07 and γ = 700. In Fig. 1 we
appreciate the transient behavior of the estimated param-
eters, which clearly shows the estimation of the real values.
This result should be contrasted with the non-converging
behavior of the estimates reported in [29] with the gradient
scheme and their modified gradient.
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θ̂2

θ̂3

Figure 1: Transient behavior of the estimated parameters θ̂i(t) with
i = 1, 2, 3.

To illustrate the use of the NLPRE (1), we notice that
from the proposed values for θ, we have that θ3 can be

rewritten as θ3 = θ2 − θ1. Hence, after the application
of the filter H(p), the system (42) can be written as the
NLPRE (1) with G(θ) := col(θ1, θ2, θ2 − θ1), Thus, using
the same initial conditions, estimator gains and verifying
Assumption A1 with

Q =

[
1 0 0
0 1 0

]
,

and ρ = 1, we carry out a simulation to estimate only
θ1 and θ2 with the estimator of Proposition 1. Fig. 2
shows the transient behavior of the estimated parameters,
showing again parameter convergence.
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1
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Figure 2: Transient behavior of the estimated parameters θ̂i(t) with
i = 1, 2 using the NLPRE (1).

6.2. Example 4 of [15]

Consider the first order linear system

yk =
θ2

q− θ1
uk, (44)

where q is the forward-shiff operator and θ1 and θ2 are
unknown parameters. After some simple calculations, we
have that (44) can be written as a LPRE yk = ϕ⊤k θ with

ϕk = col(yk−1, uk−1), θ = col(θ1, θ2).

To carry out the simulations we have also used the same
initial conditions and parameters of [15], that is, θ1 = 0.4,
θ2 = 0.8, θ0 = col(0, 0) and the input signal uk = 1.10

The tuning gains of the estimator of Corollary 2 were cho-
sen as β = 1, f0 = 0.14, γ = 0.4 and initial conditions
η̂0 = col(1, 1). It is important to note that for this sys-
tem (44), the estimator proposed in [15] only ensures the

boundedness of θ̂i, with i = 1, 2 (see Fig. 3 of [15]). This
should be contrasted with our estimator, which, as can be
seen in Fig. 3, converges to the real value.

10We notice that there is an unfortunate typo in the definition of
uk in [15, Example 4].
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Figure 3: Transient behavior of the parameter estimates θ̂i with
i = 1, 2.

6.3. Example 8 of [30]

We consider the DT system

yk = −0.5yk−1 + 0.1yk−2 + uk−1 − 0.4uk−2,

which switches for k ≥ kc to

yk = 1.4yk−1 − 0.3yk−2 + uk−1 − 1.3uk−2.

Note that for k ≥ kc the plant is unstable and not minimum-
phase. The initial conditions are y−1 = −0.2, y−2 = 0.4,
and u−1 = u−2 = 0, and kc = 50.

The system can be written in the form (34) setting
G(θ∗σk

) = θ∗σk
,

ϕk :=
[
−yk−1 −yk−2 uk−1 uk−2

]⊤
,

θ∗1 :=
[
0.5 −0.1 1 −0.4

]⊤
,

θ∗2 :=
[
−1.4 0.3 1 −1.3

]⊤
,

and

σk =

{
1 for k < kc,

2 for k ≥ kc,

which corresponds to tr,0 = 0 and tr,1 = kc.
In this example, we consider the indirect adaptive poles

placement for the reference tracking, where the reference
signal is denoted as rk. Then the control signal u is given
by

uk = c1,kyk + c2,kyk−1 + c3,kuk−1 + c4,krk,

where the time-varying coefficients c1,k, c2,k, c3,k, and c4,k
are computed based on the current parameter estimate θ̂k
to provide the desired poles and unit gain of the closed-
loop system; if for a value of θ̂k the computations are
ill-conditioned, then uk = 0 is chosen. For this exam-
ple, the desired poles for this are e−1, e−0.5+0.86

√
−1, and

e−0.5−0.86
√
−1, and the reference signal is rk ≡ 1.

To estimate the parameters, we apply the resetting-
based estimator (35), (36), where we set f0 = 0.4, γ =
500, η0 = 0, and θ0 =

[
0.1 −0.3 0.5 −0.05

]
. Note

that θ0 cannot be chosen zero as such a choice yields zero

input to the system and the regressor ϕ is not IE; for a
nonzero choice of θ0, the interval excitation is provided by
the transients of the plant.

The simulation results are depicted in Fig. ?? for the
output signal y and in Fig. 5 for the estimation errors
θ̃k = θ̂k − θ∗σk

. It can be observed that after the switch,
parameters estimation errors remain almost constant for
approximately 30 steps, and then quickly converge. Fur-
ther investigation shows that the regressor ϕ is not excit-
ing on this initial interval, and thus the estimation does
not progress. As soon as the IE condition is satisfied, the
estimates θ̂k converges to the true value θ∗2 .
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Figure 4: Transients of yk.
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Figure 5: Transients of θ̃.

7. Concluding Remarks

We have presented in this paper a new robust DREM-
based parameter estimator that proves global exponential
convergence of the parameter errors with the weakest exci-
tation assumption, namely, identifiability of the LPRE—
which is, actually necessary for the off- or on-line estima-
tion of the parameters. The main features of the esti-
mator are: (i) it relies on the use of a high performance
LS search, in contrast to the usually slower gradient de-
scents; (ii) it ensures component-wise monotonicity of the
parameter estimation errors; (iii) it incorporates a forget-
ting factor avoiding the well-known covariance wind-up
problem of LS; (iv) it is applicable to NLPRE, which are
separable and monotonic as well as to switching parame-
ters; (v) it constructs the extended regressor avoiding the

11



use of the computationally demanding GPEBO technique,
exploiting instead the key structural property of the LS
estimator captured in (10); and (vi) CT and DT imple-
mentations of the estimator are given. Several simulation
results, borrowed from the literature, show the superior
performance of the proposed estimator.
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Appendix A

In this appendix we briefly review the main steps in the
construction of DREM-based estimators proceeding from
the NLPRE (1). For the sake of brevity we restrict our-
selves to CT versions, with the DT ones constructed ver-
batim. The interested reader is refered to [38] for further
details on these constructions.

Derivation of classical DREM-based estimators

S1 Starting from the NLPRE y(t) = ϕ⊤(t)G(θ), with y(t) ∈
R, ϕ(t) ∈ Rp measurable signals, G : Rq → Rp, p ≥ q
and θ ∈ Rq a constant vector of unknown parameters.

S2 (Creation of the extended regressor) Inclusion of a free,
stable, linear operator H : u(t) → U(t), with u(t) ∈ R
and U(t) ∈ Rp, via its state space realization

U̇(t) = A(t)U(t) + b(t)u(t), (.1)

with A(t) ∈ Rp×p, b(t) ∈ Rp. Upon application to the
NLPRE above, create a new extended NLPRE

Y (t) = Φ(t)G(θ) (.2)

with

Y (t) := H[y](t) ∈ Rp

Φ(t) := [H[ϕ1](t) | H[ϕ2](t) | . . . | H[ϕp](t)] ∈ Rp×p.
(.3)

We underscore the fact that the new extended regres-
sor Φ(t) is a square matrix.

S3 (Lion’s and Kreisselmeier REs) For Lion’s RE [24] we
select for H the LTI filter

A := diag{−ai}, b := col(b1, . . . , bp),

with bi ̸= bj , ai ̸= aj > 0, (i, j) ∈ p̄.

For Kreisselmeier RE we select LTV operators with

A := diag{−ai}, b(t) := ϕ(t), ai > 0, i ∈ p̄.

S4 (Mixing step) Multiplication of the extended LPRE
(.2) by the adjugate of Φ(t) to create the new NLPRE

Y(t) = ∆(t)G(θ), (.4)

with

Y(t) := adj{Φ(t)}Y (t) ∈ Rp

∆(t) := det{Φ(t)} ∈ R

and scalar regressor ∆(t). Notice that in the case of
LPRE y(t) = ϕ⊤(t)θ we obtain q scalar LPREs of the
form

Yi(t) = ∆(t)θi, i ∈ q̄.
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