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A new LFM-signal detector formulated by the integration of the 4th-power modulus of the fractional Fourier transform is
proposed. It has similar performance to the modulus square detector of Radon-ambiguity transform because of the equivalence
relationship between them. But the new detector has much lower computational complexity in the case that the number of
the searching angles is far less than the length of the signal. Moreover, it is proved that the new detector can be generalized to
the integration of the nth-power (2 < n) modulus of the fractional Fourier transform via mathematical derivation. Computer
simulation results have confirmed the effectiveness of the proposed detector in LFM-signal detection.

1. Introduction

The detection of the Linear Frequency Modulation (LFM)
signal is very important in many information systems, such
as communications, radar, and sonar, for its wide use in
these systems. In recent years, several time-frequency-based
methods for LFM-signal detection have been proposed.
Several intelligible detection algorithms using the short-
time Fourier transform (STFT) or wavelet transform are
mentioned in [1, 2]. However, the poor resolution according
to the narrow or time-variant window used in the analysis
limits their applications in practice. The discrete chirp-
Fourier transform is employed in [3] to estimate the chirp
rate of LFM-signal. But its rigorous constraint, that signal
length must be prime number and the chirp rate must
be integer, limits its application. Since the LFM-signal
distributes as a straight line in the Wigner-Ville distribu-
tion (WVD) plane, the Radon-Wigner transform (RWT)
algorithm computes integrals along the lines with different
angles and positional offsets in the time-frequency plane to
detect the LFM-signal [4, 5], and a two-dimensional search
is necessary to track the straight lines in the time-frequency
plane. The lines, whose integral values exceed a certain
threshold, correspond to the LFM-signal. Similar to WVD,

the ambiguity function (AF) of the LFM-signal distributes
as a straight line passing through the origin in the AF plane.
Therefore, Radon-ambiguity transform is also used to detect
the LFM-signal, especially in the case that the chirp rate is
the only parameter of interest, and two kinds of detectors
(the envelope detector and the modulus square detector)
have been studied in [6]. For Radon-Wigner transform or
Radon-ambiguity transform, both the calculation of the full
time-frequency plane (or AF plane) and the transformation
from the Cartesian coordinate to the polar coordinate
are indispensable, whose high computational complexity
severely hinders the usefulness of the two methods in the
LFM-signal detection, especially in the case of long signal
detection. Recently, as a new time-frequency analysis tool,
the fractional Fourier transform (FRFT) attracts more and
more attention in signal processing field [7, 8]. Several
methods based on FRFT have been proposed to detect
LFM-signal and estimate its parameters [9–12]. An effective
method for parameter estimation and recovery of time-
varying signals including LFM-signal by using FRFT is
proposed in [9]. According to the equivalence relationship
between RWT and the fractional power spectrum [13, 14],
a LFM-signal detection and parameters estimation method
based on FRFT has been presented [10, 11], which achieves
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a near-RWT performance at much lower computational
complexity.

Similar to WVD, ambiguity function also has a close
relation to FRFT [12, 15, 16]. Then an LFM-signal detec-
tor using fractional autocorrelation, which corresponds to
the envelope detector of Radon-ambiguity transform, is
proposed [12]. In this paper, we propose a new LFM-
signal detector formulated by the integration of the 4th-
power modulus of the fractional Fourier transform. The new
detector is equivalent to the modulus square detector of
Radon-ambiguity transform and performs similarly as well
in LFM-signal detection. But the new detector has much
lower computational complexity in the case of long signal
detection, or in the case that the possible distribution area of
the signal in the ambiguity plane is limited to a small-angle
sector. Mathematical derivation proves that the new detector
can be generalized to the integration of the nth-power (2 < n)
modulus of the fractional Fourier transform.

The structure of this paper is as follows. In Section 2,
a simple review of the definition of FRFT and its relation
to AF are given. The modulus square detector of Radon-
ambiguity transform is briefly introduced in Section 3.
The new detector based on FRFT is proposed and its
computational complexity compared with Radon-ambiguity
transform is discussed in Section 4. Section 5 gives the
mathematical derivation of the generalization of the new
detector. Computer simulations are given in Section 6 to
show the effectiveness of the proposed detector. Finally,
conclusions are made in Section 7.

2. Definition of FRFT and Its Relation to AF

FRFT is a generalization of the standard Fourier transform.
The FRFT of signal x(t) with angle α is defined by [7, 8]

Xα(u) =
∫
x(t)Kα(t,u)dt, (1)

where Kα(t,u) is the transformation kernel,

Kα(t,u)

=
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√
1− j cotα

2π

× exp

(
j
t2 + u2

2
cotα− jtu cscα

)
α /=nπ

δ(t − u) α = 2nπ

δ(t + u) α = (2n± 1)π.
(2)

There are some interesting properties of FRFT corre-
sponding to the transformation kernel [7, 8]. Here, we just
list a few of them, which will be successfully employed in our
mathematical derivation in the following sections:
∫
tnx(t)Kα(t,u)dt =

[
u cosα− 1

j
sinα

d

du

]n

Xα(u), (3)

∫
dnx(t)
dtn

Kα(t,u)dt =
[
u j sinα + cosα

d

du

]n
Xα(u). (4)

The standard Fourier transform is an operator that
transforms a time domain signal into a frequency domain
representation. In time-frequency plane, Fourier transform
can be interpreted as a π/2 counterclockwise rotation
operator from the time axis to the frequency axis. FRFT,
as the generalization of the standard Fourier transform,
can be considered as a counterclockwise rotation of the
signal coordinate around the origin on the u axis with an
arbitrary angle α, and transforms a signal to an intermediate
domain between time and frequency. Therefore, FRFT can
be classified into the time-frequency analysis tools, and
it is strongly related to other important time-frequency
transforms, such as WVD and AF.

For its perfect energy localization properties, AF is a very
important and commonly used time-frequency analysis tool.
The AF of signal x(t) is defined as

AF(τ, ξ) =
∫
x
(
t +

τ

2

)
x∗
(
t − τ

2

)
exp
(
jξt
)
dt, (5)

By combing AF and Radon transform, a new LFM-signal
detection method called Radon-ambiguity transform has
been established [6]. It is more efficient than RWT in the case
that the chirp rate is the only parameter of interest.

Similar to WVD, AF also has simple but important
relation to FRFT, and the transformation between them is
easily expressed by a simple formula [15, 16].

AF
(
ρ cosϕ, ρ sinϕ

)=
∫
|Xα(u)|2 exp

(
jρu
)
du

(
α = ϕ +

π

2

)
.

(6)

Equation (6) reveals the relationship between AF and
FRFT as follows: the slice of AF at angle ϕ in the ambiguity
plane is the Fourier transform of the fractional power
spectrum of angle ϕ + π/2. Based on this relationship, an
LFM-signal detection and chirp rate estimation method
using FRFT, which has similar performance but lower
computational complexity compared with Radon-ambiguity
transform, is proposed in this paper.

3. TheModulus Square Detector of
Radon-Ambiguity Transform

For an LFM-signal,

x(t) = exp
[
j
(
ω0t +

1
2
Kt2

)]
. (7)

Its AF can be obtained by substituting (7) into the definition
formula of AF expressed by (5),

AF(τ, ξ) = δ(ξ − kτ) exp
(
jω0τ

)
. (8)

It is obvious that the AF of LFM-signal has its energy
concentrated along a ridge that passes through the origin
in the ambiguity plane. The Radon transform is a well-
performed tool to actually compute the integral values along
the lines. Thus, by applying the Radon transform to AF, the
LFM-signal detection is implemented by computing the line
integral of AF along all the lines passing through the origin,
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which is well-known as the Radon-ambiguity transform
method. Two different detectors of LFM-signal are proposed
in [6]. One of them is the modulus square detector

η
(
ϕ
) =

∫ ∣∣AF(ρ cosϕ, ρ sinϕ
)∣∣2

dρ. (9)

The detector’s good performance is discussed in detail
and its usefulness in LFM-signal detection has been well
demonstrated by some numerical examples in [6].

4. The NewDetector Based on FRFT

AF calculated by (5) is a representation in the Cartesian
coordinate. Contrarily, the “Radon transform” operation
should be implemented in the polar coordinate. Thus, the
transformation from the Cartesian coordinate to the polar
coordinate is required in the implementation of Radon-
ambiguity transform. To avoid this stubborn transforma-
tion, AF is calculated directly in the polar coordinate via
FRFT according to the relationship between FRFT and AF
expressed by (6). A new detector for LFM-signal, which
is equivalent to the modulus square detector of Radon-
ambiguity transform, can be derived. Substituting (6) into
(9), the modulus square detector can be rewritten as

η
(
ϕ
) =

∫
ρ

∣∣AF(ρ cosϕ, ρ sinϕ)
∣∣2
dρ

=
∫
ρ
AF
(
ρ cosϕ, ρ sinϕ

)
AF∗

(
ρ cosϕ, ρ sinϕ

)
dρ

=
∫
ρ

∫
u1

|Xα(u1)|2 exp
(
ju1ρ

)
du1

×
∫
u2

|Xα(u2)|2 exp
(− ju2ρ

)
du2dρ.

(10)

Exchanging the order of integration, we get

η
(
ϕ
) =

∫
u1

∫
u2

|Xα(u1)|2|Xα(u2)|2

×
∫
ρ

exp
[− j(u2 − u1)ρ

]
dρ du1du2

=
∫
u1

∫
u2

|Xα(u1)|2|Xα(u2)|2δ(u2 − u1)du1du2

=
∫
u1

|Xα(u1)|4du1.

(11)

Then a new detector for LFM-signal is obtained, which is
the integration of the 4th-power modulus of the fractional
Fourier transform,

η(α) =
∫
|Xα(u)|4du. (12)

The equivalence between the new detector and the
modulus square detector of Radon-ambiguity transform can

be easily demonstrated from the derivation process. For
LFM-signal, the new detector η(α) will reach its maximum
when the angle α is equal to –arc cot(K), where K is the
chirp rate of the LFM-signal. According to the equivalence
relationship between the new detector and the modulus
square detector of Radon-ambiguity transform, they have
the nearly same performance except the computational
complexity in theory.

We assume that the signal length is N and the
number of the angles to search is M. The computation
of Radon-ambiguity transform consists of the calculation
of AF, the transformation from the Cartesian coordinate
to the polar coordinate, and the Radon transformation
[6]. The calculation of AF in the full of the ambigu-
ity plane consists of N-multiple fast Fourier transform,
and has a computational complexity of O(N2log2N). The
computational complexity of the coordinate transforma-
tion depends on the details of implementation. The
computational complexity of the Radon transformation is
O(MN). Thus the total computational complexity of Radon-
ambiguity transform is more than O(N2log2N + MN).
The computation of the new method proposed in this
paper consists of M-multiple fractional Fourier transform
and the integration operation. Recently, several algorithms
for the calculation of FRFT with different accuracies and
computational complexities have been proposed [17–19].
In this paper, we adopt the decomposition algorithm pro-
posed in [17], which can be implemented by FFT and
has a computational complexity of O(N log2N). Taking the
computational complexity of the integration operation into
consideration, the total computational complexity of the new
method is just only O(MN log2N + MN). It can be seen
that the computational complexity of the new method is
much lower than that of Radon-ambiguity transform when
the number of the searching angles M is far less than the
length of the signal N(M � N), which is most likely to
occur in the case of long signal detection, or in the case that
the distribution area of the signal in the ambiguity plane is
limited to a small-angle sector, or in the case that the possible
chirp rate of the signal is limited to a certain range. Figure 1
shows the comparison of the variation of computational
complexity for the two methods with the increase of signal
length N and number of searching angles M. Obviously, as N
and M (M � N) increases, the computational advantage of
the new method becomes more and more significant.

5. The Generalization of the NewDetector

An interesting phenomena, that the effective detector is not
only limited to the integration of the 4th-power modulus of
the fractional Fourier transform, but can also be generalized
to nth-power modulus for n > 2, is found in our simulation.
In this section, the mathematical derivation is implemented
to prove it.

The generalized detector is written as follows:

ηn(α) =
∫
|Xα(u)|ndu (n > 2). (13)
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Figure 1: The computational complexity of the two methods. Dashed line: the modulus square detector. Solid line: the new detector.

The effectiveness of the detector defined by (13) will be
demonstrated, if the condition given as follows is satisfied:

∂ηn(α)
∂α

∣∣∣∣∣
α=−arc cotK

= 0, (14)

where K is the chirp rate of the LFM-signal.
Thus the differential of the detector with respect to the

variable α is necessary to work out,

∂ηn(α)
∂α

=
∫ ∂

[
|Xα(u)|2

]n/2
∂α

du

= n

2

∫
|Xα(u)|(n−2)

∂
[
|Xα(u)|2

]

∂α
du

= n
∫
|Xα(u)|(n−2) Re

{
X∗

α
(u)

∂[Xα(u)]
∂α

}
du.

(15)

Since the kernel function Kα(t,u) is the only item that
contains the variable α in the definition formula of FRFT
expressed by (1), the differential of the FRFT Xα(u) with
respect to the variable α can be written as

∂[Xα(u)]
∂α

=
∫
x(t)

∂[Kα(t,u)]
∂α

dt. (16)

From (2), the differential of the kernel function Kα(t,u) with
respect to the variable α is

∂[Kα(t,u)]
∂α

=
[

1
2

(
j − ju2 1

sin2α
− cotα

)

+ j
(
ut

cosα
sin2α

− 1
2
t2 1

sin2α

)]
Kα(t,u).

(17)

Therefore

∂[Xα(u)]
∂α

=
[

1
2

(
j − ju2 1

sin2α
− cotα

)]∫
x(t)Kα(t,u)dt

+
(
ju

cosα
sin2α

)∫
tx(t)Kα(t,u)dt

−
(
j

1
2 sin2α

)∫
t2x(t)Kα(t,u)dt.

(18)

Substituting the property of FRFT expressed by (3) into (18),
we can obtain

X∗α (u)
∂[Xα(u)]

∂α

= j
1
2
X∗α (u)

d2Xα(u)
du2

+ j
1
2
|Xα(u)|2

[
1− 1

sin2α
u2 + u2cot2α

]

(19)

Considering the real part of (19) and omitting the imaginary
part, the following equation can be obtained:

Re
{
X∗α (u)

∂[Xα(u)]
∂α

}
= −1

2
Im

{
X∗α (u)

d2Xα(u)
du2

}
. (20)

For LFM-signal, the first- and second-order differential
in time domain is expressed as follows, respectively,

dx(t)
dt

= jω0x(t) + jKtx(t) (21)

d2x(t)
dt2

= −ω2
0x(t)− 2Kω0tx(t)− K2t2x(t) + jKx(t).

(22)

Implementing FRFT operation to both sides of (21) and
(22), we get

∫
dx(t)
dt

Kα(t,u)dt

= jω0Xα(u) + jK
[
u cosαXα(u) + j sinα

dXα(u)
du

]
,

(23)

∫
d2x(t)
dt2

Kα(t,u)dt

= −K2
∫
t2x(t)Kα(t,u)dt

− 2Kω0

∫
tx(t)Kα(t,u)dt +

(
jK − ω2

0

)
Xα(u).

(24)
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Substituting the property of FRFT expressed by (3) into the
right side of (23) and (24), the FRFT of the second-order
differential of the LFM-signal can be obtained as:
∫
d2x(t)
dt2

Kα(t,u)dt

= K2sin2α
d2Xα(u)
du2

− {K cosαu + ω0}2 jK sinα
dXα(u)
du

+
{−K2u2cos2α− 2Kω0u cosα

−K2 j sinα cosα + jK − ω2
0

}
Xα(u).

(25)

Meanwhile, another form of the FRFT of the differential of
the LFM-signal can be derived using the temporal differential
property of FRFT expressed by (4), respectively,

∫
dx(t)
dt

Kα(t,u)dt = cosα
dXα(u)
du

+ ju sinαXα(u)

∫
d2x(t)
dt2

Kα(t,u)dt = cos2α
d2Xα(u)
du2

+2 ju sinα cosα
dXα(u)
du

+ j sinα cosαX − u2sin2αX
(26)

Combining (23), (25), and (26) the second order differ-
ential of FRFT of LFM-signal in fractional Fourier domain is
obtained and expressed by

d2Xα(u)
du2

=
[
2 sinα

(
K2 cosαu + Kω0 + u cosα

)]
(cos2α− K2sin2α)(cosα + K sinα)

× (ω0 + K cosαu− u sinα)Xα(u)

+
−K2u2cos2α− 2Kω0u cosα− ω2

0 − u2sin2α
(cos2α− K2sin2α)

Xα(u)

+ j

[
K − K2 sinα cosα− sinα cosα

]
(cos2α− K2sin2α)

Xα(u).

(27)

Substituting (27) into (20), we can obtain

Re
{
X∗α (u)

∂[Xα(u)]
∂α

}
= −1

2
cosαK − sinα

cosα + K sinα
|Xα(u)|2

(28)

By making the following change: K = tanA, (28) can be
rewritten as the following form:

Re
{
X∗α (u)

∂[Xα(u)]
∂α

}
= −1

2
tan(A− α)|Xα(u)|2 (29)

Substituting (29) into (15), an ordinary differential equation
of the detector function can be obtained.

∂ηn(α)
∂α

+
n

2
tan(A− α)ηn(α) = 0 (30)

Combining the initial condition

ηn(0) =
∫
|x(t)|ndt (31)

The solution of the ordinary differential equation is
obtained.

ηn(α) =
∫
|x(t)|ndt

∣∣∣∣ cos(A)
cos(A− α)

∣∣∣∣
n/2

(32)

It can be seen that, for LFM-signal, the generalized
detector ηn(α) will reach its maximum corresponding to
the chirp rate. Therefore, the generalized detector can be
regarded as an effective detector for LFM-signal. However,
the 4th-power modulus form detector is most frequently
used in practice for its lower computational complexity
compared with other generalized forms.

6. Simulation Results

In this section, some simulation examples, which are exactly
the same as the ones used in [6, 12], are presented to
verify the effectiveness of the new method for LFM-signal
detection. In example I, a discrete single-component LFM-
signal is used as the reference signal:

s(n) = exp
[
jK
(

π

1024

)
n2
]

+ w(n) n = 1, 2 . . . , 512.

(33)

Here the chirp rate is K = 0.5. w(n) is a complex additive
noise, generated via two independent, zero-mean, Gaussian
random processes of equal variance. Figure 2 shows the out-
puts of the detector calculated via (12) with signal-to-noise
ratio (SNR) equaling to ∞, −6 dB, −9 dB, respectively, for
different chirp rate values Kl = (1/1000)l, l = 0, 1, . . . , 999.

In example II, a discrete multicomponent LFM-signal is
used as the reference signal:

s(n) =
3∑
i=0

exp
[
j
(
ωi +

(
Kiπ

4096

)
n
)
n
]

+ w(n),

n = 1, 2, . . . , 2048.

(34)

The initial frequency and chirp rate parameter values are
as follows: ω0 = 2π/1024, ω1 = 10π/1024, ω2 = 6π/1024,
ω3 = 20π/1024, K0 = 0.124, K1 = 0.136, K2 = 0.3, K3 = 0.5.
Figure 3 displays the detection output calculated via (12)
with SNR equaling to ∞, −6 dB, −12 dB, respectively, for
different chirp rate values Kl = (1/1000)l, l = 0, 1, . . . , 599.
It can be seen from Figures 2 and 3 that the results agree
with those in [6]. The peaks of the detection output occur
at the chirp rate K corresponding to the LFM components,
and there is an explicit one-to-one correspondence between
the peaks and the chirp rates. All of the LFM components
with correct chirp rate are accurately detected, and the two
closely spaced chirp rates at K0 = 0.124 and K1 = 0.136 are
also well resolved. The two simulations above have verified
the effectiveness of the proposed detector formulated by
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Figure 2: The detection output of single-component LFM-signal
using 4th-power modulus form. Solid line: SNR = ∞. Dashed line:
SNR = −6 dB. Dotted line: SNR = −9 dB.
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Figure 3: The detection output of multicomponent LFM-signal
using 4th-power modulus form. Solid line: SNR = ∞. Dashed line:
SNR = −6 dB. Dotted line: SNR = −12 dB.

the integration of the 4th-power modulus of the fractional
Fourier transform.

Figures 4 and 5 show the detection outputs of the 3rd and
5th-power modulus detectors with SNR equaling to −6 dB,
respectively. It is obvious that the peak value over noise
floor in Figure 5 is higher than that in Figure 4. Then the
conclusion can be drawn that the peaks are easier to pick
in the noise floor as the order number of power modulus
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Figure 4: The detection output of multicomponent LFM-signal
with SNR = −6 dB using the 3rd-power modulus form.
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Figure 5: The detection output of multicomponent LFM-signal
with SNR = −6 dB using the 5th-power modulus form.

increases. However, the higher order power modulus also
inhibits the smaller signals when the detected signal consists
of multicomponent LFM-signal with different amplitudes.
It means that we should carefully choose the form of
generalized detectors according to specific conditions in the
practical applications of the new method.

7. Conclusions

This paper presents a new detector of LFM-signal, which is
the integration of the 4th-power modulus of its fractional
Fourier transform. The new detector has equivalence relation
to the modulus square detector of Radon-ambiguity trans-
form, and performs similarly to Radon-ambiguity transform
in LFM-signal detection under much lower computational
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complexity. Moreover, it has been proved mathematically
that the new detector can be generalized to the integration of
the nth-power modulus of the fractional Fourier transform
for n > 2. Computer simulations have verified the effective-
ness of the new detectors.
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