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1. INTRODUCTION

In recent years, researchers proposed various ways of generating new continuous dis-
tributions in lifetime data analysis to enhance its capability to fit diverse lifetime data
which have a high degree of skewness and kurtosis. These extended distributions pro-
vide greater flexibility in modelling certain applications and data in practice. Due to the
computational and analytical facilities available in programming softwares such as R,
Maple and Mathematica, it is easy to tackle the problems involved in computing special
functions in these extended distributions. A detailed survey of methods for generating
distributions were discussed by Lee et al. (2013) and Jones (2015).

The Lomax (L) distribution (Lomax, 1954), also known as the Pareto Type II distri-
bution (or simply Pareto II), is a heavy-tail probability distribution often used in busi-
ness, economics and actuarial modeling. It is known as a special form of Pearson type
VI distribution and has also considered as a mixture of exponential and gamma distri-
butions. The Lomax distribution has been applied in a variety of contexts ranging from
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modeling the survival times of patients after a heart transplant (see Bain and Engelhardt,
1992) to the sizes of computer files on servers (see Holland et al., 2006). Some authors,
such as Bryson (1974), suggest the use of this distribution as an alternative to the expo-
nential distribution when data are heavy-tailed. However, the Lomax distribution does
not provide a reasonable parametric fit for modeling phenomenon with non-monotone
failure rates, such as the upside-down bathtub failure rates, which are common in relia-
bility and biological studies. For example, the lifetime models that present upside-down
bathtub failure rates curves can be observed in the course of a disease whose mortal-
ity reaches a peak after some finite period and then declines gradually. The need for
extended forms of the Lomax model arises in many applied areas. For greater details,
readers may refer to Kotz and Nadarajah (2000). It is one of the the most popular distri-
bution in the literature for analyzing lifetime data.

In the recent past, so many generalizations of Lomax distribution have been at-
tempted by researchers to cope with these failure rates. Notable among them Abdul-
Moniem and Abdel-Hameed (2012) studied the exponentiated-Lomax (EL), Ghitany
et al. (2007) introduced the Marshall-Olkin extended Lomax, Lemonte and Cordeiro
(2013) investigated the beta-Lomax (BL), Kumaraswamy-Lomax (KuL) and McDonald
Lomax and Cordeiro et al. (2013) introduced gamma-Lomax (GL) distributions. Tahir
et al. (2015) introduced the Weibull Lomax distribution and studied its mathematical
and statistical properties. Al-Zahrani and Sagor (2014a,b) have introduced the Lomax-
logarithmic and Poisson-Lomax distributions. Al-Zahrani (2015) also introduced ex-
tended Poisson-Lomax distribution.

Many authors have discussed the situations where the data shows decreasing and the
upside-down bathtub (UBT) shape hazard rates. For example, Proschan (1963) found
that the air-conditioning systems of planes follows decreasing failure rate. Kus (2007)
analyzed earthquakes in the last century in North Anatolia fault zone and found that
decreasing failure rate distribution fits well. Efron (1988) analyzed the data set in the
context head and neck cancer, in which the hazard rate initially increased, attained a
maximum and then decreased before it stabilized owing to a therapy. Bennette (1983)
analyzed lung cancer trial data which showed that failure rates were unimodal in nature.
Langlands et al. (1997) have studied the breast carcinoma data and found that the mor-
tality reached a peak after some finite period, and then declined gradually. A few inverse
statistical distributions namely inverse Weibull, inverse Gaussian, inverse Gamma and
inverse Lindley etc., are used to model such UBT data in various real life applications.

The aim of this note is to derive a new distribution from the Lomax distribution by
alpha-power transformation (APT) as suggested by Mahdavi and Kundu (2017), called
APTL distribution which contains special sub-model such as Lomax distribution. This
concept of generalization is well established in the statistical literature, see Dey et al.
(2017a,b). The chief motivation of the generalized distributions for modeling failure
time data lies in its flexibility to model both monotonic and non-monotonic failure rates
even though the baseline failure rate may be monotonic. The proposed distribution en-
compasses the behavior of and provides better fits than some well known lifetime distri-
butions, such as L, EL, GL, BL and KuL distributions. We are motivated to introduce
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the APTL distribution because (i) it contains Lomax lifetime sub model; (ii) it is capable
of modeling monotonically decreasing and upside down bathtub shaped hazard rates
and thus APTL model is useful where Lomax model is not practically applicable; (iii) it
can be viewed as a suitable model for fitting the skewed data which may not be properly
fitted by other common distributions and can also be used in a variety of problems in
different areas such as industrial reliability and survival analysis; and (iv) two real data
applications show that it compares well with other competing lifetime distributions in
modeling bladder cancer data and service times of Aircraft Windshield data.

The rest of the paper is organized as follows. In Sections 2 and 3, we introduce
the alpha-power transformed Lomax distribution, and discuss some properties of this
family of distributions. In Section 4, maximum likelihood estimators of the unknown
parameters are obtained. In Section 5, we investigate the maximum likelihood estima-
tion procedure to estimate the model parameters. The analysis of two real data sets have
been presented in Section 6. Finally, in Section 7, we conclude the paper.

2. MODEL DESCRIPTION

If F (x) is an absolute continuous distribution function with the probability density
function (pdf) f (x), then FAPT (x) is also an absolute continuous distribution function
with the pdf:

fAPT (x) =
logα
α− 1

f (x)αF (x), α > 0, α 6= 1. (1)

For more details about APT, see Nassar et al. (2017) and Dey et al. (2019). Note that
fAPT (x) is a weighted version of f (x), where the weight function is w(x) = αF (x). Thus,
fAPT (x) can be written as

fAPT (x) =
w(x;α) f (x)
E(w(x;α))

, (2)

where w(x;α) is non-negative and

E[w(x;α)] =
∫ ∞

−∞
w((x;α) f (x)d x <∞.

REMARK 1. When α−→ 1, fAPT (x) reduces to f (x). Therefore, fAPT (x) is considered
a generalization of the pdf f (x).

Applications of a weighted distribution to biased samples in various areas including
medicine, ecology, reliability, and branching processes can be seen in Rao (1965), Patil
and Rao (1978), Patil et al. (1986), Gupta and Kirmani (1990), Gupta and Keating (1985),
Oluyede (1999), Patil (2002) and Gupta and Kundu (2009) and the references therein.
In this case the weight function w(x;α) can be increasing or decreasing depending on
whether α > 1 or α < 1.
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3. APTL DISTRIBUTION

Let X be Lomax random variable with parameter β,λ > 0. Recall that the pdf and the
cumulative distribution function (cdf) associated to X are, respectively, given by

f (x) =
βλβ

(λ+ x)β+1
x > 0; β, λ > 0 (3)

and

F (x) = 1−
�

λ

λ+ x

�β

x > 0; β, λ > 0. (4)

We now introduce the notion of the APTL distribution.

DEFINITION 2. A random variable X is said to have APTL distribution if its pdf is of
the form

f (x) =
βλβ logα
α− 1

(λ+ x)−β−1α1−( λ
λ+x )

β
, x > 0; α, β, λ > 0, α 6= 1. (5)

The corresponding cdf and hazard rate functions are, respectively, given by

F (x) =
α1−( λ

λ+x )
β − 1

α− 1
, x > 0; α, β, λ > 0, α 6= 1 (6)

and

h(x) =βλβ logα(λ+ x)−β−1
�

α
�

λ
λ+x

�β

− 1
�−1

, x > 0; α, β, λ > 0, α 6= 1. (7)

Hereafter, a random variable X that follows the distribution in (5) is denoted by X ∼
APTL(α,β,λ). Note that when α−→ 1, the APTL distribution reduces to the L distri-
bution in (3).

Figures 1a and 1b (see Appendix) show the various curves for the pdf and the hazard
rate functions, respectively, of APTL distribution with λ = 1 and various values of α
and β. Figure 1a indicates that the APTL distribution can be uni-modal, reversed J-
shaped and positively right skewed. Figure 1b, shows that the hazard function h(x)
of APTL distribution can be decreasing or UBT shapes. One of the advantages of the
APTL distribution over the L distribution is that the latter cannot model phenomenon
showing an UBT shape failure rate.
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3.1. Statistical properties

The quantile function xp =Q(p) = F −1(p), for 0< p < 1, of the APTL(α,β,λ) distri-
bution is obtained from (6), it follows that the quantile function F −1(p) is

xp = λ
�

�

1−
log((α− 1)p + 1)

logα

�−1/β

− 1

�

, α 6= 1. (8)

The asymptotics of the pdf, cdf and hazard rate function of X are given by

F (x)∼ x as x→ 0

f (x)∼ (1+ x)−β−1 as x→∞,
h(x)∼ (1+ x)−1 as x→∞.

REMARK 3. The APT L(α,β,λ) distribution has the following mixture representation
for α > 1. log(α)

(α−1) is a decreasing function from 1 to 0, as α varies from 1 to ∞. If X ∼
APT L(α,β,λ), then it can be represented as follows:

X =
¨

X1 with probability ( logα
α−1 )

X2 with probability 1− ( logα
α−1 ),

(9)

where X1 and X2 have the following pdfs

fX1
(x) =

βλβ

(λ+ x)β+1
(10)

and

fX2
(x) =

logα
(α− 1− logα)

βλβ

(λ+ x)β+1
[α1−( λ

λ+x )
β − 1], (11)

respectively. It is clear from the representation (9) that as α approaches 1, X behaves like L
distribution, and as α increases, it behaves like X2.

The following two theorems discuss the shapes of the hazard and the density functions
of the APTL distribution.

THEOREM 4. The APT L(α,β,λ) is unimodal. The mode is at x = 0 whenever α ≤
e1+1/β and the mode is at x = λ

h

�

β logα
1+β

�1/b
− 1

i

whenever α > e1+1/β.

PROOF. Without loss of generality assume λ = 1. On can easily see that f ′(x) =
A[β(1+ x)−β logα− b−1], where A> 0 is a constant. This implies that for α≤ e1+1/β,
f ′(x) ≤ 0 for all x > 0. Hence f (x) has a reversed J-shape and the mode is at x = 0.

Now suppose that α > e1+1/β, then f ′(x) = 0 iff x = x0 =
�

β logα
1+β

�1/b
− 1. Now since

f ′′(x)< 0, f (0)> 0 and limx−→∞ f (x) = 0, f (X ) has a unique mode at x = x0. 2
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THEOREM 5. Let X ∼ APT L(α,β,λ). The hazard rate function of X has the follow-
ing shapes.

i. If α≤ e1/β, then the hazard rate function of X has the decreasing failure rate property.

ii. If α > e1/β andβ≤ α−1
1−α+α logα , then the hazard rate function of X has the decreasing

failure rate property.

iii. If α > e1/β and β > α−1
1−α+α logα , then the hazard rate function of X has the UBT

property.

PROOF. From (7), h ′(x) =ψ(x)k(x) where ψ(x)> 0 for all x > 0 and

k(x) = logα
�

β log(α) (x + 1)−βα(x+1)−β − (β+ 1)(α(x+1)−β − 1)
�

.

Also, k ′(x) = ξ (x) ł(x) with ξ (x)> 0 for all x > 0 and

ł(x) = 1−β (x + 1)−β logα.

This implies that the critical value for k(x) is x = x1 = (β logα)1/b − 1. Consider
the following two cases.

Case 1: If α ≤ e1/β, then x1 is not defined or x1 < 0 (this is not possible since the sup-
port of the distribution is positive). Therefore, k ′(x) ≥ 0 for all x > 0. which implies
that k(x) is increasing function on (0,∞). Now the fact k(x)−→ 0 as x −→∞ implies
that k(x)≤ 0 and hence, h(x) is decreasing function on (0,∞). This ends the proof of (i).

Case 2: If α > e1/β, then k ′(x) < 0 on (0, x1) and k ′(x) > 0 on (x1,∞). I.e. k(x) is
decreasing function on 0 < x < x1 and increasing on x > x1. Now, it is not difficult
to show that k(0) < 0 iff β ≤ α−1

1−α+α logα . Therefore, if k(0) < 0 and on using the fact
k(x) −→ 0 as x −→ ∞, we conclude that k(x) < 0 for all x > 0 and hence h(x) is a
decreasing function. This ends the proof of (ii). Now if β > α−1

1−α+α logα , then k(0) > 0.
And since k(x) has unique minimum value at x = x1 and k(x)−→ 0 as x −→∞, k(x)
must have a root at, say, x = x2. Therefore, h ′(x)> 0 on (0, x2) and h ′(x)< 0 on (x2,∞).
Hence, h(x) has UBT shape. This ends the proof of (iii). 2

3.1.1. Moments
In this section, we study the existence of the nth moment for the APTL distribution.

THEOREM 6. Let X ∼ APT L(α,β,λ). Then the nth moment of X exists iff β > n.
Furthermore,

E(X n) =
n!λnαβ

α− 1

∞
∑

k=0

(−1)k (logα)k+1 Γ [β(k + 1)− n]
k!Γ [β(k + 1)+ 1]

, β> n. (12)
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PROOF. From (5), f (x) ∼ (1+ x)−β−1 as x →∞. Therefore,
∫∞

0 xn f (x)d x exists
iff β> n. Now, from (5) it is easy to see that

E(X n) =
βα

α− 1

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1)

k!

∫ ∞

0

xn

(λ+ x)β(k+1)+1
d x.

The result in (12) can be obtained by using equation (3.241.4) in Gradshteyn and Ryzhik
(2014). 2

REMARK 7. The central moments of X areµn = E(X−µ)n =
∑n

k=0

�n
k

�

(−µ′1)
k µ′n−k .

The skewness and kurtosis of X can be obtained using the formulas skewness (X ) = µ3/σ
3

and k u r t os i s(x) =µ4/σ
4, where σ2 =V a r (X ).

Using Equations (8), (12) and Remark 4, we obtain the values of mean, median,
mode, variance, skewness and kurtosis of the APTL distribution. These values are dis-
played in Table 1 for λ= 1 and various values of α and β. It can be noticed from Table
1 that for fixed λ and β the mean, median, mode and the variance of the APTL distri-
bution are increasing functions of α, while the skewness and the kurtosis are decreasing
function of α. Also, it is observed that for fixed λ and α, the mean, median, variance,
skewness and the kurtosis are decreasing function of β.

3.1.2. Moment generating function
Many of the interesting characteristics and features of a distribution can be obtained via
its moment generating function and moments. Let X denote a random variable with
the pdf (5). By definition of moment generating function of X , we have

Mx (t ) = E(e t x ) =
∫ ∞

0
e t x f (x)d x

=
∫ ∞

0

�

1+ t x +
(t x)2

2!
+ · · ·+

(t x)l

l !
+ · · ·

�

f (x)d x

=
∞
∑

l=0

t l

l !

∫ ∞

0
x l f (x)d x

=
α

α− 1

∞
∑

k=0

∞
∑

l=0

(−1)k (λt )l (logα)k+1 l ! Γ [β(k + 1)− l ]
k!Γ [β(k + 1)+ 1]

, β> l . (13)

3.2. Conditional moments

THEOREM 8. Let X ∼ APT L(α,β,λ). Then the conditional moment of X exists iff
β> n. Furthermore,
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E(X n |X > x) =
αβ

(α− 1)

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1) xn

k!(β(k + 1)− n)[1−V (x)]

× 2F1

�

β(k + 1)+ 1; β(k + 1)− n;β(k + 1)− n+ 1;−λ
x

�

, β> n,

(14)

where V (x) = α
1−( λ

λ+x )
β

−1
α−1 and 2F1(a, b ; c ; x) denotes the Gauss hypergeometric function

defined by

2F1(a, b ; c ; x) =
∞
∑

k=0

(a)k (b )k
(c)k

xk

k!
,

where (e)k = e(e + 1) . . . (e + k − 1) denotes the ascending fractorial.

PROOF. From (5), f (x) ∼ (1+ x)−β−1 as x →∞. Therefore,
∫∞

x xn f (x)d x exists
iff β> n. The conditional moments, E(X n |X > x), can be written as

E(X n |X > x) =
1

S(x)
Jn(x), (15)

where

Jn(x) =
∫ ∞

x
yn f (y)d y

=
βλβ logα
α− 1

∫ ∞

x
yn(λ+ y)−(β+1)α1−( λ

λ+y )
β

d y

=
αβ

(α− 1)

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1)

k!

∫ ∞

x

yn

(λ+ y)β(k+1)+1
d y

=
αβ

(α− 1)

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1) xn

k! (β(k + 1)− n)

× 2F1

�

β(k + 1)+ 1; β(k + 1)− n; β(k + 1)− n+ 1; − λ
x

�

. (16)

The final step follow by using equation (3.194.2) in Gradshteyn and Ryzhik (2014). The
result follows from (15) and (16). 2

An application of the conditional moments is the mean residual life (MRL). MRL
function is the expected remaining life, X−x, given that the item has survived to time x.
Thus, in life testing situations, the expected additional lifetime given that a component
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has survived until time x is called the (MRL). The MRL function in terms of the first
conditional moment as

mX (x) = E(X − x|X > x) =
1

S(x)
J1(x)− x,

where J1(x) can be obtained from (16) where n = 1.

Another application of the conditional moments is the mean deviations about the
mean and the median. They are used to measure the dispersion and the spread in a
population from the center. If we denote the median by M , then the mean deviations
about the mean and the median can be calculated as

δµ =
∫ ∞

0
|x −µ| f (x)d x = 2µF (µ)− 2µ+ 2J1(µ)

and

δM =
∫ ∞

0
|x −M | f (x)d x = 2J1(M )−µ,

respectively. Where J1(µ) and J1(M ) can obtained from (16). Also, F (µ) and F (M ) are
easily calculated from (6).

3.3. Mean past lifetime

Assume now that a component with lifetime X has failed at or some time before x, x ≥
0. Consider the conditional random variable x −X |X ≤ x. This conditional random
variable shows, in fact, the time elapsed from the failure of the component given that its
lifetime is less than or equal to x. Hence, the mean past lifetime of the component can
be defined as

k(x) = E(X − x|X ≤ x) = x − 1
F (x)

J (x), (17)

where

J (x) =
∫ t

0
f (x)d x =

βλβ logα
α− 1

∫ t

0
(λ+ x)−(β+1)α1−( λ

λ+x )
β

d x

=
αβ

(α− 1)

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1)

k!

∫ t

0

1
(λ+ x)β(k+1)+1

d x

=
αβ

(α− 1)

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1) t
k! 2F1

�

β(k + 1)+ 1; 1; 2; − x
λ

�

.

The final step follows by using equation (3.194.1) in Gradshteyn and Ryzhik (2014).
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3.3.1. Entropies
An entropy provides an excellent tool to quantify the amount of information (or un-
certainty) contained in a random observation regarding its parent distribution (popula-
tion). A large value of entropy implies the greater uncertainty in the data. The concept
of entropy is important in different areas such as physics, probability and statistics, com-
munication theory, economics, etc. Several measures of entropy have been studied and
compared in the literature. The Shannon entropy of a random variable X is defined by
E[− log( f (X ))]. The Shannon entropy for the APTL distribution can be written as

E[− log( f (X ))] = − log
�

βλβ logα
α− 1

�

+(β+ 1)E[log(λ+ x)]

− E
�

log α1−
�

λ
λ+x

�β
�

. (18)

It is easy to check that

E[log(λ+ x)] =
α

α− 1

∞
∑

k=0

∞
∑

l=1

(−1)k+l+1 l !λl (logα)k+1 Γ [β(k + 1)− l ]
(k + 1)! l αl Γ [β(k + 1)+ 1]

+ logα (19)

and

E
�

log α1−
�

λ
λ+x

�β
�

=
αβ

(α− 1)

∞
∑

k=0

(−1)k (logα)k+2

k!

h

B (1, β(k + 1))

× B (1, β(k + 1))
i

. (20)

Substituting Equations (19) and (20) into Equation (18), we obtain the Shannon en-
tropy of X .

3.3.2. Bonferroni and Lorenz curve
Boneferroni and Lorenz curves are proposed by Bonferroni (1930). These curves have
applications not only in economics to study income and poverty, but also in other fields
like reliability, demography, insurance and medicine. They are defined as

B(p) =
1

pµ

∫ q

0
x f (x)d x (21)

and

L(p) =
1
µ

∫ q

0
x f (x)d x, (22)
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respectively, where µ= E(X ) and q = F −1(p). By using (1), one can get

B(p) =
βλβ logα
p µ(α− 1)

∫ q

0
x(λ+ x)−(β+1)α1−( λ

λ+x )
β

d x

=
αβ

p µ (α− 1)

∞
∑

k=0

(−1)k (logα)k+1λβ(k+1)

k!

∫ q

0

x
(λ+ x)β(k+1)+1

d x, (23)

by using equation (3.194.1) in Gradshteyn and Ryzhik (2014) we can calculate the inte-
gral in (23). Thus, we get

B(p) =
αβ

2 p µ λ(α− 1)

∞
∑

k=0

(−1)k (logα)k+1 q2

k!

× 2F1

�

β(k + 1)+ 1, 2; 3; −
q
λ

�

,

L(p) =
αβ

2 µ λ(α− 1)

∞
∑

k=0

(−1)k (logα)k+1 q2

k!

× 2F1

�

β(k + 1)+ 1, 2; 3; −
q
λ

�

,

respectively.

3.3.3. Stochastic ordering
Stochastic ordering of positive continuous random variable is an important tool for judg-
ing the comparative behavior. There are different types of stochastic orderings which are
useful in ordering random variables in terms of different properties. Here, we consider
four different stochastic orders, namely, the usual stochastic orders, the hazard rate, the
mean residual life, and the likelihood ratio order for APTL random variables under a
restricted parameter space. If X and Y are independent random variables with cdfs FX
and FY respectively, then X is said to be smaller than Y in the

• stochastic order (X ≤s t Y ) if FX (x)≥ FY (x), for all x;

• hazard rate order (X ≤h r Y ) if hX (x)≥ hY (x), for all x;

• mean residual life order (X ≤m r` Y ) if mX (x)≥ mY (x), for all x;

• likelihood ratio order (X ≤`r Y ) if fX (x)
fY (x)

decreases in x.

The APTL distribution is ordered with respect to the strongest "likelihood ratio"
ordering as shown in the following theorem. It shows the flexibility of three parameter
APTL(α,β,λ) distribution.
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THEOREM 9. Let X ∼APTL(α1,β1,λ1) and Y ∼APTL(α2,β2,λ2). If α1 = α2 = α,
β1 =β2 =β and λ1 ≥ λ2 and if α1 = α2 = α, λ1 = λ2 = λ andβ1 ≥β2, then X ≤l r Y ,
X ≤h r Y , X ≤m r l Y and X ≤s t Y .

PROOF. The likelihood ratio is

fX (x)
fY (x)

=
β1 λ

β1
1 (α2− 1) logα1 (λ2+ x)β2+1α

1−
�

λ1
λ1+x

�β1

1

β2 λ
β2
2 (α1− 1) logα2 (λ1+ x)β1+1α

1−
�

λ2
λ2+x

�β2

2

,

thus,

d
d x

log
fX (x)
fY (x)

=
(β2+ 1)
(λ2+ x)

+
λ1 β1 logα1

(λ1+ x)2

�

λ1

(λ1+ x)

�β1−1

−
(β1+ 1)
(λ1+ x)

−
λ2 β2 logα2

(λ2+ x)2

�

λ2

(λ2+ x)

�β2−1

.

Case (i): If α1 = α2 = α, β1 = β2 = β and λ1 ≥ λ2 then d
d x log fX (x)

fY (x)
≤ 0, which

implies that X ≤l r Y and hence X ≤h r Y , X ≤m r l Y and X ≤s t Y .

Case (ii): If α1 = α2 = α, λ1 = λ2 = λ and β1 ≥ β2 then d
d x log fX (x)

fY (x)
≤ 0, which

implies that X ≤l r Y and hence X ≤h r Y ,X ≤m r l Y and X ≤s t Y .
Hence from case (i) and case (ii) X ≤l r Y and X ≤h r Y , X ≤m r l Y and X ≤s t Y . 2

3.3.4. Stress strength reliability
Here, we derive the reliability R = Pr(X2 < X1), when X1 ∼ APTL(α1,β1,λ). and
X2 ∼ APTL(α2,β2,λ) are independent random variables. Probabilities of this form
have many applications especially in engineering concepts. Thus,

R = P (X2 <X1)

=

∞
∫

0

f1(x)F2(x)d x

=
β1 λ

β1 logα1

(α1− 1)(α2− 1)

∞
∫

0

(λ+ x)−(β1+1)α
1−
�

λ
λ+x

�β1

1

h

α
1−
�

λ
λ+x

�β2

2 − 1
i

d x

=
β1 λ

β1 logα1

(α1− 1)(α2− 1)
[I1− I2], (24)
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where

I1 =

∞
∫

0

(λ+ x)−(β1+1)α
1−
�

λ
λ+x

�β1

1 α
1−
�

λ
λ+x

�β2

2 d x

= α1α2

∞
∑

k=0

∞
∑

l=0

(−1)k+l (logα1)
k (logα2)

l λβ1k+β2 l

k! l !

∞
∫

0

1
(λ+ x)β1(k+1)+β2 l+1

d x

= α1α2

∞
∑

k=0

∞
∑

l=0

(−1)k+l (logα1)
k (logα2)

l

k! l ! λβ1
B (1, β1(k + 1)+β2 l ) , λ1 = λ2 = λ

and

I2 = α1

∞
∑

k=0

(−1)k (logα1)
k

k! λβ1
B (1, β1(k + 1)l ) .

Substituting the value of I1 and I2 in (24), R reduces to

R =
α1α2β1

(α1− 1)(α2− 1)

∞
∑

k=0

∞
∑

l=0

(−1)k+l (logα1)
k+1(logα2)

l

k! l !
B (1, β1(k + 1)+β2 l )

−
α1β1

(α1− 1)(α2− 1)

∞
∑

k=0

(−1)k (logα1)
k+1

k!
B (1, β1(k + 1)l )

If β1 =β2 =β, then R becomes

R =
α1α2β

(α1− 1)(α2− 1)

∞
∑

k=0

∞
∑

l=0

(−1)k+l (logα1)
k+1(logα2)

l

k! l !
B (1, β(k + 1+ l ))

−
α1β

(α1− 1)(α2− 1)

∞
∑

k=0

(−1)k (logα1)
k+1

k!
B (1, β(k + 1)l ) .

3.3.5. Order statistics
We know that if X(1) ≤ · · · ≤X(n) denotes the order statistic of a random sample X1, . . . ,Xn
from a continuous population with cdf GX (x) and pdf gX (x) then the pdf of X j :n is given
by

gX j :n
(x) =

n!
( j − 1)!(n− j )!

gX (x) (GX (x))
j−1 (1−GX (x))

n− j ,
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for j = 1, . . . , n. The pdf and cdf of the j th order statistic for a APTL distribution is
given by

gX j :n
(x) =

n!
( j − 1)! (n− j )!

j−1
∑

u=0

(−1)u
�

j − 1
u

�





α1−
�

λ
λ+x

�β

− 1
α− 1





u+ j−1

×
βλβ logα α1−

�

λ
λ+x

�β

(α− 1) (λ+ x)β+1
.

The kth moments of X j :n can be expressed

E[X k
j :n] =

n!
( j − 1)! (n− j )!

∞
∫

0

xk f j :n(x)d x

=
n!

( j − 1)! (n− j )!

j−1
∑

u=0

(−1)u
�

j − 1
u

�

∞
∫

0

xk





α1−
�

λ
λ+x

�β

− 1
α− 1





u+ j−1

×
βλβ logα α1−

�

λ
λ+x

�β

(α− 1) (λ+ x)β+1
d x

=
β λk k!

( j − 1)!(n− j )!(α− 1)

∞
∑

p=0

∞
∑

q=0

n− j
∑

u=0

(−1)2u+ j−1−p+q
�

u + j − 1
p

�

×
�

n− j
u

� (logα)q+1 α p+1 (p + 1)q Γ (β(q + 1)− k)
(q + 1)! Γ (β(q + 1)+ 1)

.

4. MAXIMUM LIKELIHOOD ESTIMATION

The method of maximum likelihood is the most frequently used method of parameter
estimation (Casella and Berger, 1990). Its success stems from its many desirable proper-
ties including consistency, asymptotic efficiency, invariance property as well as its intu-
itive appeal. Let x1, · · · , xn be a random sample of size n from (5), then the log-likelihood
function of (5) without constant terms is given by

l (α,β,λ; x) = log L(α,β,λ; x) = n log
� logα
α− 1

�

+ n logβ+ nβ logλ

− (β+ 1)
n
∑

i=1

log(λ+ xi )+ (logα)
n
∑

i=1

�

1−
�

λ

λ+ xi

�β
�

. (25)
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For ease of notation, we will denote the first partial derivatives of (25) by lα , lβ and lλ.
Now setting lα = 0, lβ = 0 and lλ = 0, we have

n(α− 1−α logα)
α(α− 1) logα

+
1
α

n
∑

i=1

�

1−
�

λ

λ+ xi

�β
�

= 0, (26)

n
β
+ n logλ−

n
∑

i=1

log(λ+ xi )− (logα)
n
∑

i=1

�

λ

λ+ xi

�β

log
�

λ

λ+ xi

�

= 0, (27)

nβ
λ
− (β+ 1)

n
∑

i=1

1
λ+ xi

−βλβ−1(logα)
n
∑

i=1

xi

(λ+ xi )β+1
= 0. (28)

The maximum likelihood estimates α̂, β̂ and λ̂ of α, β and λ are obtained by solving
these nonlinear system of equations. From Equation (28), and for fixedβ and λ, we can
obtain α̂(β,λ) as follows

α̂(β,λ) = exp
nn/λ− (1+ 1/β)

∑n
i=1(λ+ xi )

−1

λβ−1∑n
i=1 xi (λ+ xi )−(β+1)

o

(29)

Now, the MLEs of β and λ can be obtained by solving the following two non-linear
equations

n(α̂(β,λ)− 1− α̂(β,λ) log α̂(β,λ))
α̂(β,λ)(α̂(β,λ)− 1) log α̂(β,λ)

+
1

α̂(β,λ)

n
∑

i=1

�

1−
�

λ

λ+ xi

�β
�

= 0, (30)

n
β
+ n logλ−

n
∑

i=1

log(λ+ xi )− (log α̂(β,λ))
n
∑

i=1

�

λ

λ+ xi

�β

log
�

λ

λ+ xi

�

= 0. (31)

The MLEs of β and λ can be obtained by means of numerical procedures like the
quasi-Newton algorithm. The Mathcad program provides the nonlinear optimization
for solving such problems. Once β̂ and λ̂ are obtained, then α̂(β̂, λ̂) can be obtained
from (29).

5. SIMULATION STUDY

In this section, we use a Monte Carlo simulation to evaluate the performance of the
maximum likelihood method for estimating the unknown parameters of the APTL dis-
tribution in terms of the sample size n. The variates having the APTL distribution are
generated by using (8). We suggest the values 0.5,1.5 for parameter λ, 1, 1.5,2 for param-
eterβ= and 0.5,1.5,2.5,3.5,5 for parameter α= and two different sample sizes, 50,100
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are used. We replicate the process 1000 times. In each setting we obtain the average val-
ues of estimates and the corresponding mean squared errors (MSEs). For each sample
size, the simulation results for a total of 30 parameter combinations are obtained and
reported in Tables 2 and 3. From Tables 2 and 3, it is noticed that the maximum likeli-
hood method works well to estimate the parameters of the APTL distribution. Also, it
is observed that, as the sample size increases the MSEs decrease in all cases.

6. APPLICATIONS

In this section, we provide two applications to real data sets to demonstrate the impor-
tance and flexibility of the proposed distribution.

Data set 1. The first data set corresponds to remission times (in months) of a random
sample of 128 bladder cancer patients, more details about the data set can be found in
Lee and Wang (2003). These data were studied by Lemonte and Cordeiro (2013) and
Nofal et al. (2017). The data are as follows:

0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06,
14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76,
12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Data set 2. The second data set consists of service times of 63 Aircraft Windshield.
These data were considered by Murthy et al. (2004). The data measured in 1000h are as
follows:

0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280,
1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978,
3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500,
1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183,
2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140.

We fitted APTL distribution to the two data sets by using the method of maximum
likelihood and the results are compared with the other competitive models namely, L,
EL, GL, BL and KuL distributions. The density functions of these models are given
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below (for x > 0) as:

EL : f (x;α,β,λ) =
αβ

λ

�

1+
x
λ

�−(β+1)�

1−
�

1+
x
λ

�−β�α−1

,

GL : f (x;α,β,λ) =
βλβ

Γ (α)(λ+ x)β+1

§

−β log
�

λ

λ+ x

�ªα−1

,

BL : f (x;a, b ,β,λ) =
β

λB(a, b )

�

1+
x
λ

�−(bβ+1)�

1−
�

1+
x
λ

�−β�a−1

,

KuL : f (x;a, b ,β,λ) =
abβ
λ

�

1+
x
λ

�−(β+1)�

1−
�

1+
x
λ

�−β�a−1

×
¨

1−
�

1−
�

1+
x
λ

�−β�a«b−1

.

We use the goodness-of-fit statistics: Kolmogorov-Smirnov (K-S) distance and the
corresponding p-value. We also considered information theoretic criterion, such as Akaike
information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike
information criterion (CAIC), Hannan-Quinn information criterion (HQIC), Anderson-
Darling (A∗) and Cramér-von Mises (W ∗) to compare the above models with the APTL
model. The maximum likelihood estimates of the models parameters and the corre-
sponding standard errors (in parentheses) and the approximate confidence intervals (CIs)
of the parameters of all the models are displayed in Tables 4 and 6 for data sets 1 and 2,
respectively. The statistics−L where (L denotes the log-likelihood function evaluated at
the maximum likelihood estimates), AIC, BIC, CAIC, HQIC, A∗ and W ∗ are listed in
Tables 5 and 7 for data sets 1 and 2, respectively. Based on the results displayed in Tables
5 and 7, we can see that the APTL distribution has the lowest AIC, BIC, CAIC, HQIC,
A∗ and W ∗ values among all other competitive models, and so it could be chosen as the
best model. The histogram and the fitted APTL density of data sets 1 and 2, respectively,
are displayed in Figures 2(a) and 3(a), while, the plots of the fitted APTL survival and
the empirical survival functions for the data sets 1 and 2 are displayed in Figures 2(b) and
3(b), respectively. Also, the Q-Q and P-P plots for the data sets 1 and 2, respectively are
presented in Figures 4 and 5.

7. CONCLUSION

In this paper, a new three-parameter family of distributions has been proposed, namely
the APTL distribution. The proposed APTL distribution has two shape and one scale
parameters. The APTL density function can take various forms depending on its shape
parameters. Moreover, the APTL distribution failure rate function can have the follow-
ing two forms: (i) decreasing and (ii) upside down bathtub shaped. Therefore, it can
be used quite effectively in analyzing survival and lifetime data. We fit the new model
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to two real data sets to demonstrate its usefulness in practice. Results indicate that the
APTL model is adequate to fit with two, three and four parameters model for remis-
sion times bladder cancer patients and failure times of aircraft windshield data sets. We
hope that the APTL distribution will attract wider sets of applications in areas such as
survival and lifetime data and others.
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APPENDIX

A. TABLES

TABLE 1
Mean, median, mode, variance, skewness, and kurtosis of APTL distribution for various values of α,

β and λ= 1.

β α Mean Median Mode Variance Skewness Kurtosis
4.5 0.5 0.233 0.126 0 0.113 5.997 177.327

1.5 0.319 0.194 0 0.167 5.218 137.628
3.5 0.393 0.261 0.005 0.212 4.827 120.567
5.5 0.434 0.298 0.077 0.236 4.679 114.568
10 0.488 0.349 0.151 0.265 4.532 108.941

5 0.5 0.204 0.113 0 0.081 5.116 87.767
1.5 0.279 0.173 0 0.118 4.427 67.853
3.5 0.344 0.232 0.009 0.148 4.077 59.228
5.5 0.377 0.265 0.072 0.164 3.942 56.181
10 0.424 0.309 0.139 0.183 3.807 53.311

7.5 0.5 0.126 0.074 0 0.025 3.600 29.801
1.5 0.171 0.112 0 0.0363 3.059 22.786
3.5 0.208 0.149 0.013 0.044 2.773 19.691
5.5 0.229 0.169 0.055 0.048 2.659 18.585
10 0.255 0.197 0.099 0.053 2.544 17.536

10 0.5 0.091 0.055 0 0.0124 3.147 21.402
1.5 0.123 0.083 0 0.017 2.647 16.282
3.5 0.149 0.109 0.013 0.021 2.378 14.009
5.5 0.164 0.125 0.045 0.022 2.270 13.194
10 0.183 0.144 0.076 0.024 2.158 12.419
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TABLE 2
Average value of the estimates of the parameters and the corresponding MSEs (in parentheses) for

n = 50.

Parameters MLE

λ β α λ̂ β̂ α̂
0.5 1 0.5 0.558 (0.055) 1.075 (0.108) 0.598 (0.138)

1.5 0.526 (0.037) 1.029 (0.059) 1.817 (1.097)
2.5 0.519 (0.035) 1.019 (0.050) 3.024 (2.866)
3.5 0.516 (0.035) 1.014 (0.046) 3.992 (3.609)
5 0.514 (0.034) 1.012 (0.043) 5.155 (3.761)

1.5 0.5 0.597 (0.106) 1.713 (0.534) 0.619 (0.181)
1.5 0.547 (0.063) 1.594 (0.264) 1.880 (1.351)
2.5 0.537 (0.057) 1.570 (0.220) 3.068 (2.962)
3.5 0.533 (0.055) 1.558 (0.201) 4.048 (3.856)
5 0.529 (0.053) 1.550 (0.185) 5.138 (3.657)

2 0.5 0.669 (0.251) 2.529 (2.459) 0.641 (0.246)
1.5 0.583 (0.114) 2.239 (0.956) 1.929 (1.555)
2.5 0.568 (0.099) 2.186 (0.774) 3.113 (3.198)
3.5 0.561 (0.093) 2.162 (0.695) 4.086 (4.061)
5 0.556 (0.089) 2.143 (0.632) 5.145 (3.725)

1.5 1 0.5 1.194 (0.423) 1.713 (0.534) 0.619 (0.181)
1.5 1.094 (0.251) 1.594 (0.264) 1.880 (1.351)
2.5 1.074 (0.229) 1.570 (0.220) 3.068 (2.963)
3.5 1.065 (0.220) 1.559 (0.201) 4.048 (3.856)
5 1.059 (0.215) 1.550 (0.185) 5.138 (3.657)

1.5 0.5 1.806 (1.031) 1.725 (0.578) 0.594 (0.142)
1.5 1.664 (0.586) 1.609 (0.275) 1.795 (1.152)
2.5 1.638 (0.534) 1.587 (0.228) 2.961 (2.809)
3.5 1.627 (0.514) 1.577 (0.208) 3.903 (3.529)
5 1.618 (0.501) 1.569 (0.192) 5.077 (3.921)

2 0.5 2.052 (2.759) 2.575 (3.014) 0.619 (0.209)
1.5 1.779 (1.106) 2.268 (1.038) 1.843 (1.391)
2.5 1.738 (0.962) 2.218 (0.834) 3.001 (3.014)
3.5 1.719 (0.900) 2.196 (0.747) 3.905 (3.484)
5 1.706 (0.855) 2.177 (0.677) 5.084 (3.978)



418 S. Dey et al.

TABLE 3
Average value of the estimates of the parameters and the corresponding MSEs (in parentheses) for

n = 100.

Parameters MLE

λ β α λ̂ β̂ α̂
0.5 1 0.5 0.515 (0.018) 1.017 (0.036) 0.535 (0.041)

1.5 0.504 (0.014) 1.003 (0.023) 1.624 (0.396)
2.5 0.503 (0.015) 1.001 (0.021) 2.716 (1.049)
3.5 0.502 (0.015) 1.001 (0.019) 3.805 (2.057)
5 0.501 (0.015) 0.999 (0.019) 5.249 (3.070)

1.5 0.5 0.524 (0.027) 1.553 (0.137) 0.541 (0.044)
1.5 0.510 (0.021) 1.519 (0.090) 1.645 (0.445)
2.5 0.508 (0.021) 1.514 (0.082) 2.753 (1.155)
3.5 0.507 (0.022) 1.512 (0.078) 3.847 (2.193)
5 0.507 (0.022) 1.509 (0.075) 5.271 (3.145)

2 0.5 0.539 (0.041) 2.121 (0.407) 0.546 (0.047)
1.5 0.519 (0.032) 2.056 (0.263) 1.654 (0.407)
2.5 0.517 (0.031) 2.046 (0.243) 2.786 (1.269)
3.5 0.516 (0.032) 2.042 (0.233) 3.874 (2.270)
5 0.516 (0.032) 2.038 (0.225) 5.283 (3.198)

1.5 1 0.5 1.543 (0.154) 0.965 (0.031) 0.535 (0.041)
1.5 1.512 (0.125) 0.953 (0.020) 1.622 (0.392)
2.5 1.507 (0.126) 0.950 (0.018) 2.712 (1.039)
3.5 1.505 (0.129) 0.949 (0.017) 3.806 (2.081)
5 1.503 (0.133) 0.949 (0.016) 5.247 (3.061)

1.5 0.5 1.575 (0.245) 1.580 (0.145) 0.541 (0.044)
1.5 1.532 (0.195) 1.546 (0.096) 1.646 (0.447)
2.5 1.526 (0.197) 1.540 (0.087) 2.755 (1.161)
3.5 1.523 (0.199) 1.538 (0.083) 3.849 (2.204)
5 1.522 (0.203) 1.536 (0.080) 5.274 (3.160)

2 0.5 1.619 (0.379) 2.150 (0.428) 0.546 (0.047)
1.5 1.561 (0.289) 2.084 (0.276) 1.655 (0.409)
2.5 1.553 (0.288) 2.073 (0.255) 2.788 (1.275)
3.5 1.551 (0.289) 2.069 (0.245) 3.877 (2.2795)
5 1.549 (0.292) 2.065 (0.237) 5.281 (3.187)
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TABLE 4
MLEs, standard errors (in parentheses) and the CIs for the fitted distributions based on data set 1.

Model Estimates
L(β,λ) 13.94 (15.39) 121.0 (142.7)

(-16.2, 44.09) (-116.2, 358.2)
APTL(α,β,λ) 26.96 (27.01) 2.907 (0.998) 8.499 (4.975)

(-25.9, 79.88) (1.14, 4.67) (-1.25, 18.25)
EL(α,β,λ) 1.586 (0.280) 4.586 (2.227) 24.74 (16.68)

(1.037, 2.135) (0.221, 8.951) (-7.96, 57.45)
GL(α,β,λ) 1.586 (0.283) 4.754(2.002) 20.59(14.09)

(1.031, 2.141) (0.831, 8.677) (-7.05, 48.21)
BL(β,λ,a,b ) 3.919(18.192) 23.93(27.34) 1.585 (0.280) 1.157 (5.024)

(-31.7, 39.57) (-29.6, 77.51) (1.036, 2.134) (-8.69, 11.01)
KuL(β,λ,a,b ) 0.391 (2.386) 12.29 (17.32) 1.516 (0.228) 12.03 (87.14)

(-4.28, 5.068) (-21.6, 46.24) (1.069, 1.963) (-158.7, 182.8)

TABLE 5
Goodness-of-fit statistics of the fitted distributions for data set 1.

Model −L AI C BI C C AI C H QI C A∗ W ∗ K-S p-value
L 413.8 831.7 837.4 831.8 833.9 0.487 0.080 0.089 0.265
APTL 409.4 824.8 833.4 824.9 828.3 0.086 0.014 0.029 1.000
EL 410.1 826.1 834.7 826.3 829.6 0.190 0.028 0.034 0.999
GL 410.1 826.2 834.7 826.4 829.7 0.203 0.031 0.034 0.998
BL 410.1 828.1 839.5 828.5 832.8 0.190 0.028 0.034 0.998
KuL 409.9 827.8 839.3 828.2 832.5 0.173 0.026 0.033 0.998

TABLE 6
MLEs, standard errors (in parentheses) and the CIs for the fitted distributions based on data set 2.

Model Estimates
L(β,λ) 99279.8 (11863.5) 207019.4 (301.24)

(76017.3, 122522.3) (206428.9, 207609.8)
APTL(α,β,λ) 29.04 (23.22) 89.69 (163.9) 100.8 (188.2)

(-16.5 74.56) (-231.6, 410.9) (-267.9, 469.6)
EL(α,β,λ) 1.915 (0.35) 22971.1 (3209.52) 32881.99 (162.23)

(1.23, 2.59) (16680.4, 29261.8) (32564.0, 33199.9)
GL(α,β,λ) 1.91 (0.32) 35842.4 (6945.1) 39197.6 (151.6)

(1.28, 2.54) (22230.1, 49454.8) (38900.3, 39494.8)
BL(β,λ,a,b ) 4.97 (50.53) 169.57 (339.2) 1.93 (0.32) 31.26 (316.84)

(-94.07, 104.01) (-495.27, 834.42) (1.29, 2.55) (-589.75, 652.27)
KuL(β,λ,a,b ) 2.57 (4.76) 65.06 (177.60) 1.67 (0.26) 60.57 (86.01)

(-6.76, 11.89) (-283.02, 413.14) (1.17, 2.17) (-108.02, 229.15)
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TABLE 7
Goodness-of-fit statistics of the fitted distributions for data set 2.

Model −L AI C BI C C AI C H QI C A∗ W ∗ K-S p-value
L 109.3 222.6 226.9 222.8 224.3 1.126 0.186 0.192 0.019
APTL 100.6 207.1 213.5 207.5 209.6 0.626 0.102 0.091 0.671
EL 103.6 213.1 219.6 213.6 215.7 1.233 0.204 0.129 0.239
GL 102.8 211.7 218.1 212.1 214.2 1.112 0.183 0.123 0.299
BL 102.9 213.9 222.5 214.6 217.4 1.134 0.187 0.124 0.290
KuL 100.9 209.7 218.3 210.4 213.1 0.739 0.122 0.099 0.571
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Figure 1 – Plots for density and hazard rate functions of APTL distribution with λ= 1.
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Figure 2 – Graphs of the fitted APTL density and survival functions for data set 1.
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Figure 3 – Graphs of the fitted APTL density and survival functions for data set 2.
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Figure 4 – P-P and Q-Q plots for the APTL distribution for data set 1.
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Figure 5 – P-P and Q-Q plots for the APTL distribution for data set 2.
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SUMMARY

We introduce a new lifetime distribution, called the alpha-power transformed Lomax (APTL) dis-
tribution which generalizes the Lomax distribution to provide better fits than the Lomax distri-
bution and some of its known generalizations. Various properties of the proposed distribution,
including explicit expressions for the quantiles, mode, moments, conditional moments, mean
residual lifetime, stochastic ordering, Bonferroni and Lorenz curve, stress-strength reliability and
order statistics are derived. The new distribution can have a decreasing and upside-down bathtub
failure rate function depending on its parameters. The maximum likelihood estimators of the
three unknown parameters of APTL are obtained. A simulation study is carried out to examine
the performances of the maximum likelihood estimates in terms of their mean squared error using
simulated samples. Finally, the potentiality of the distribution is analyzed by means of two real
data sets. For the real data sets, this distribution is found to be superior in its ability to sufficiently
model both the data sets as compared to the Lomax (L) distribution, exponentiated-Lomax (EL)
distribution, gamma-Lomax (GL) distribution, beta-Lomax (BL) distribution and Kumaraswamy-
Lomax (KuL) distribution.

Keywords: Lomax distribution; Hazard rate function; Maximum likelihood estimation; Survival
function.


