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A NEW LINEARLY EXTRAPOLATED CRANK-NICOLSON

TIME-STEPPING SCHEME FOR

THE NAVIER-STOKES EQUATIONS

ROSS INGRAM

Abstract. We investigate the stability of a fully-implicit, linearly extrapo-
lated Crank-Nicolson (CNLE) time-stepping scheme for finite element spatial
discretization of the Navier-Stokes equations. Although presented in 1976 by
Baker and applied and analyzed in various contexts since then, all known
convergence estimates of CNLE require a time-step restriction. We propose
a new linear extrapolation of the convecting velocity for CNLE that ensures
energetic stability without introducing an undesirable exponential Gronwall
constant. Such a result is unknown for conventional CNLE for inhomogeneous
boundary data (usual techniques fail!). Numerical illustrations are provided
showing that our new extrapolation clearly improves upon stability and accu-
racy from conventional CNLE.

1. Introduction

The Navier-Stokes (NS) equations (NSE) provide an accurate description of fluid
flow. However, there are many subtle and unresolved questions regarding existence
and smoothness of the NS velocity field u. There are related open questions regard-
ing the development and implementation of stable, accurate, robust, and feasible
methods for approximating u. Suppressing spatial discretization, the usual, linearly
implicit Crank-Nicolson (CN) method (also called CNLE-CN with Linear Extrap-
olation) for the NSE is: given u0, u1, and p1, for each n = 1, 2, . . . find velocity
un+1 and pressure pn+1 satisfying

un+1 − un

Δt
+ (

3

2
un −

1

2
un−1) · ∇un+1/2 − νΔun+1/2 + ∇pn+1/2 = fn+1/2,(1)

∇ · un+1 = 0.(2)

Here Δt > 0 is the time-step, f is body-force term, ν > 0 the kinematic viscosity
of the fluid, and zn+1/2 = 1

2 (zn+1 + zn). Equations (1), (2) have been widely
studied since proposed and analyzed by Baker in [2], e.g., [3, 6, 17, 20, 25]. Let
Ω ⊂ R

d for d = 2 or 3 be the problem domain. CNLE is generally believed to be
comparable in stability and accuracy to the more expensive, fully implicit, nonlinear
CN method denoted CN-NSE. We show that this is not the case for problems with
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1954 R. INGRAM

inhomogeneous boundary data

(3) u|∂Ω = φ �= 0

such as simple channel flow with inflow-outflow boundaries. Additionally, we de-
rive a new, linearly implicit variation of CN that corrects for the subtle problems
associated with solutions to (1), (2) under (3).

CN-NSE is well-known to be unconditionally nonlinearly (energetically) stable;
see e.g. [19] and references therein. We show, however, that within current tech-
niques, the standard O(Δt2) linear extrapolation in (1) does not lead to a (provable)
energetically stable numerical discretization in the case of inhomogeneous problem
data for long-time solutions. Specifically, stability has not been proven and known
methods of proof fail. We propose a new O(Δt2) extrapolation for general data:

(4)
un+1 + un

2
· ∇u ≈ ξn(u) · ∇u, ξn(u) := 2(

un + un−1

2
) −

un−1 + un−2

2
.

Note the increased stencil requires additional storage (i.e., un, un−1, un−2 at each
time-step) compared to conventional CNLE (that requires only un, un−1). We show
herein that CNLE approximations {un}n obtained with (4) are provably stable for
general data (3) so that

max
n

||un+1||2 + νΔt
∑

n

||∇un+1/2||2 ≤ C(data) < ∞.

It is illuminating to introduce the backward-Euler (BE) scheme (stable for gen-
eral data) to highlight the difficulties of inhomogeneous CNLE. First, the stability
analysis for homogeneous data relies on the skew-symmetry of the convective non-
linearity in the NSE:

u|∂Ω = 0, ∇ · u = 0 ⇒

∫

Ω

u · ∇u · u = 0.

Let i = 1 for BE with linear extrapolation (BELE) and i = 2 for CNLE. The energy

difference due to the numerical extrapolation

(5)

∫

un+1/i ·∇un+1/i ·v ≈

∫

ξn(u)·∇un+1/i ·v, ξn(u) := a0u
n+. . .+an0

un−n0

must be absorbed into the model viscous term ν
∑

n ||∇un+1/i||2 to establish en-
ergetic stability for T → ∞. Indeed, we lift the data with an extension operator
E(φ) so that

u = u0 + E(φ), u0|∂Ω = 0, E(φ)|∂Ω = φ.

Cross-terms from the nonlinearity pollute the RHS of the resulting estimate upon
the substitution un = un

0 + E(φn). The energy estimate for un
0 is obtained by

testing either BELE or CNLE with v = u
n+1/i
0 to get

||un+1
0 ||2 + νΔt

∑

n

||∇u
n+1/i
0 ||2 + . . .

= −Δt
∑

n

∫

ξn(u0) · ∇E(φn+1/i) · u
n+1/i
0 + . . . .(6)

Suppose that the extension E(φ) satisfies

(7) |

∫

ξn(u0) · ∇E(φn+1/i) · u
n+1/i
0 | ≤ δ||∇ξn(u0)|| ||∇u

n+1/i
0 ||
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for some δ > 0. In the continuous-space case, for each δ > 0, there exists E(φ)
satisfying (7). Suppose that ξn(u) = un for BELE and ξn(u) = 3

2u
n − 1

2u
n−1 for

CNLE. We apply (7) to derive an a priori estimate for u0 from (6). One option is
to bound the right-hand side of (7) so that

|

∫

ξn(u0) · ∇E(φn+1/i) · u
n+1/i
0 |

≤
δ

2

{

(||∇un+1
0 ||2 + ||∇un

0 ||
2), BELE,

(||∇( 32u
n
0 − 1

2u
n−1
0 )||2 + ||∇u

n+1/2
0 ||2), CNLE.

(8)

We can absorb δ
2

∑

n(||∇un+1
0 ||2 + ||∇un

0 ||
2) into ν

∑

n ||∇un+1
0 ||2 in (6) for BELE.

However, regardless of how small δ is taken, there is no way in general to absorb
δ
2

∑

n ||∇( 32u
n
0 − 1

2u
n−1
0 )||2 into ν

∑

n ||∇u
n+1/2
0 ||2 in (6) for CNLE. Indeed, in the

extreme case that vn = −vn+1 �= 0, then ||∇vn+1/2||2 = 0 while ||∇vn||2 > 0 so
that no small data restriction on ν or φ �= 0 will help absorb the latter into the for-
mer. Instead, we restrict linearizations (5) to satisfy (4). Extrapolation (4) allows

the RHS of (8) (CNLE) to be replaced by ||∇u
n+1/2
0 ||2 +

∑2
i=1 ||∇u

n−i+1/2
0 ||2. For

small enough δ > 0, we can now absorb δ
2

∑

n(||∇u
n+1/2
0 ||2 +

∑2
i=1 ||∇u

n−i+1/2
0 ||2)

into ν
∑

n ||∇u
n+1/2
0 ||2 in (6).

A discrete Gronwall lemma can be applied instead of (7), but introduces the
factor

C(data) ∝ exp(νq−1
∑

n

||E(φn)||2−q
W q,∞), q = 0, or 1

so that the a priori estimate of CNLE solutions in the energy norm grows expo-
nentially with problem data and T . Ultimately the Gronwall constant gives very
poor long-time estimates and, to preserve the applicability of a numerical method,
should be avoided for a priori energy estimates.

We provide a brief overview of extrapolation schemes for CN-NSE with references
in Section 1.1. We formulate the continuous and discrete setting for analysis in Sec-
tions 1.2, 1.3. We consider finite element (FE) spatial discretization in conjunction
with time-stepping for BE (BE-FEM) and CN (CN-FEM). In Section 2 we present
and prove stability of BELE and CNLE (with extrapolations of the form (4)) for
inhomogeneous data. In Section 3, we conclude with a numerical investigation in
which we compare CN-FEM (with Newton nonlinear iterations), traditional CNLE
in (1), and CNLE with extrapolation (4) denoted CNLE(stab). For flow past a 2d
cylinder, for a given time-step, the energy dissipation rate for CNLE(stab) approx-
imations more closely matches CN-FEM (with Newton) than CNLE. In fact, for
a given time-step, CNLE fails to predict the vortex shedding in the wake of the
cylinder (overly diffusive) whereas CNLE(stab) captures the physics properly.

1.1. Motivation of fully implicit linearizations of the NSE. A central ques-
tion in practical computational fluid dynamics concerns the smallest amount of

work permitted to produce a stable and accurate approximation of the flow field.
The method for approximating NS fluid flows is largely influenced by the following:

• stiffness of problem in diffusion-dominated flow regions,
• lack of and/or unknown regularity of true NS-solution,
• large Re ⇒ many mesh points ⇒ extremely large system of DAE’s.

(where DAE’s are Differential Algebraic Equations). Implicit time-stepping ap-
proximations of the NSE are preferred in practice in order to avoid unnecessary

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1956 R. INGRAM

numerical/modeling restrictions on the time-step size. We investigate the stability
and accuracy of a linearly extrapolated version of the CN time-stepping scheme for
the NSE which eliminates the necessity of multiple, time-intensive, nonlinear iter-
ations at each time-step. Adaptive time-stepping techniques can (and should!) be
applied in conjunction with any time-discretization to (significantly) reduce com-
putational costs.

There are many analyses of CN time-stepping methods for the NSE. Heywood
and Rannacher [19] provide analysis of CN-FEM. The 2nd and 3rd order CNLE
methods are introduced and analyzed in [2, 3]. Multilevel methods based on CNLE
(building on the work in [26] and [10]) are analyzed in [17, 20]. CNLE approximation
of a stochastic NSE is analyzed in [6]. The authors in [25] analyze a stabilized CNLE
method. Each of these analyses requires, explicitly or implicitly stated, a time-step
restriction of the form

(9) Δt ≤ C(Re, h)

to guarantee convergence. A 1st order CNLE is used in [22] in conjunction with
coupled multigrid and pressure Schur complement schemes for the NSE. Numerical
comparison of various NS time-stepping schemes (excluding CNLE) are provided
in [24]. A CN/Adams-Bashforth (CN-AB) time-stepping scheme is another linear
variant of CN-FEM. Unlike CNLE, CN-AB is explicit in the nonlinearity and only
conditionally stable [16] (i.e., a time-step restriction of form (9) is required for
stability). CN-AB is a popular method for approximating NS flows because it
is fast and easy to implement. Each time-step requires only one discrete Stokes
system and linear solve. For example, it is used to model turbulent flows induced
by wind turbine motion [33], turbulent flows transporting particles in [28], and
reacting flows in complex geometries (e.g. gas turbine combustors) [1]. The CN
method is also applied, for example, to a general class of nonstationary partial
differential equations encompassing reaction-diffusion type equations including the
nonlinear Sobolev equations [29] and the Ginzburg-Landau model [21]. Time-step
restrictions of type (9) (where Re has a different meaning) are implicitly required
in the convergence analyses of these discrete models.

Error estimates for BE time-stepping is analyzed in [11] (semi-discrete) and
[34] (fully-discrete). Although the most stable time-stepping scheme, BE methods
are only Δt-accurate. Higher order backward difference methods like BDF2 are
considered the best choice in general for time-stepping (more stable than CN and
Δt2-accurate), but introduce artificial dissipation which is avoided by CN meth-
ods. See [13] (e.g. Chapter 3.16) for an overview of the analysis and treatment
of many time-stepping schemes available for approximating NS-flows with a well-
documented discussion of the advantages and disadvantages of each method.

1.2. Continuous function setting. Let a := (a0, a1, . . . , an0
) ∈ R

n0+1 for some
n0 ∈ {0}∪N be equipped with the standard lq norm denoted by |a|q for 1 ≤ q ≤ ∞.
Fix p ≥ 1. Let Lp(Ω) denote the linear space of all real Lebesgue-measurable
functions and bounded in the usual norm denoted by || · ||Lp(Ω). Let (·, ·)Ω and

|| · ||Ω be the standard L2(Ω)-inner product and norm. Fix k ∈ R. The Sobolev
space W k,p(Ω) is equipped with the usual norm denoted by ||u||Wk,p(Ω). Identify

|| · ||k,p,Ω := || · ||Wk,p(Ω), H
k(Ω) := W k,2(Ω) and || · ||k,Ω := || · ||Wk,2(Ω) with | · |k,Ω

the corresponding semi-norm. Let the context determine whether W k,p(Ω) denotes
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a scalar, vector, or tensor function space. For example, let v : Ω → R
d. Then,

v ∈ H1(Ω) implies that v ∈ H1(Ω)d and ∇v ∈ H1(Ω) implies that ∇v ∈ H1(Ω)d×d.
Fix φ ∈ H1/2(∂Ω) (an element of the trace of H1(Ω) functions) satisfying

∫

∂Ω
φ ·

n̂ = 0 where n̂ is the outward (relative to Ω) unit normal defined a.e. on ∂Ω. Define

H1
φ(Ω) :=

{

v ∈ H1(Ω) : v|∂Ω = φ
}

, Vφ(Ω) :=
{

v ∈ H1
φ(Ω) : ∇ · v = 0

}

.

Write V (Ω) = V0(Ω). Moreover, the dual space of H1
0 (Ω) is denoted W−1,2(Ω) :=

(H1
0 (Ω))′ and equipped with the norm

||f ||−1,Ω := sup
0�=v∈H1

0
(Ω)

〈f ,v〉W−1,2(Ω)×H1
0
(Ω)

|v|1,Ω
.

Define

L2
0(Ω) :=

{

q ∈ L2(Ω) : (q, 1) = 0
}

.

For brevity, omit Ω in the definitions above. For example, (·, ·) = (·, ·)Ω, H1 =
H1(Ω), and V = V0(Ω). It is convenient in the analysis of problems with inhomo-
geneous data to introduce the following function spaces:

V∗ :=
{

v ∈ H1 : ∇ · v = 0
}

, H
1/2
0 (∂Ω) :=

{

µ ∈ H1/2(∂Ω) :

∫

∂Ω

µ · n̂ = 0

}

.

There exists an extension operator E : H
1/2
0 (∂Ω) → V∗ (see e.g. [9], pp. 131-132).

Note that all such extensions satisfy E(0) ∈ V .
Fix time T > 0 and m ≥ 1. Let Wm,q(0, T ;W k,p(Ω)) denote the linear space

of all Lebesgue measurable functions from (0, T ) onto W k,p equipped with and
bounded in the norm

||u||Wm,q(0,T ;Wk,p) :=

(

∫ T

0

m
∑

i=0

||∂
(i)
t u(·, t)||q

Wk,pdt

)1/q

.

Write Wm,q(W k,p) = Wm,q(0, T ;W k,p(Ω)) and Cm(W k,p) = Cm([0, T ];W k,p(Ω)).

1.3. Discrete function setting. Fix h > 0. Let Th be a family of subdivisions
(e.g. triangulation) of Ω ⊂ R

d satisfying Ω =
⋃

E∈Th
E so that diameter(E) ≤ h

and any two closed elements E1, E2 ∈ Th are either disjoint or share exactly one
face, side, or vertex. See Chapter II, Appendix A in [12] for more on this subject
in context of Stokes problem and [5] for a more general treatment. For example,
Th consists of triangles for d = 2 or tetrahedra for d = 3 that are nondegenerate as
h → 0.

Let Xh,∗ ⊂ (H1)d and Qh,∗ ⊂ L2 be a mixed finite element (FE) space. For
example, let Xh,∗ and Qh,∗ be continuous, piecewise (on each E ∈ Th) polynomial
spaces. Fix φh ≈ φ so that there exists v ∈ Xh,∗ satisfying v|∂Ω = φh. Define
Xh,φh

:= Xh,∗ ∩ H1
φh

, Qh := Qh,∗ ∩ L2
0. The discretely divergence-free space is

given by

Vh,φh
= {vh ∈ Xh,φh

: (qh,∇ · vh) = 0 ∀qh ∈ Qh,∗} .

Write Vh = Vh,0, Xh = Xh,0. Note that in general Vh �⊂ V (e.g. Taylor-Hood
elements). Define the discrete trace space of Xh by

Λh(∂Ω) : =
{

λh : H1/2(∂Ω) : ∃vh ∈ Xh,∗ such that

λh|∂E∩∂Ω = vh|∂E∩∂Ω ∀E ∈ Th and |∂E ∩ ∂Ω| > 0} .
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1958 R. INGRAM

Next define discrete analogues to V∗ and H
1/2
0 (∂Ω) respectively by

Vh,∗ : = {vh ∈ Xh,∗ : (qh,∇ · vh) = 0 ∀qh ∈ Qh,∗}

Λh,0(∂Ω) : =

{

µh ∈ Λh(∂Ω) :

∫

∂Ω

µh · n̂ = 0

}

.

Then there exists a discrete extension operator Eh : Λh,0(∂Ω) → Vh,∗ (see e.g.
[4, 14, 32]). Note that all such extensions satisfy Eh(0) ∈ Vh.

We assume that Xh ×Qh satisfies the uniform inf-sup (LBB) condition:

(10) inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

|vh|1 ||q||
≥ C > 0

where C is independent of h → 0. The well-known Taylor-Hood element is one such
example satisfying (10).

Set 0 = t0 < t1 < . . . < tn = T < ∞ with constant time-step Δt = tn − tn−1.
Write zn := z(tn) and zn+1/2 := 1

2 (z(tn+1) + z(tn)). Define

||u||lq(m1,m2;Wk,p) :=

{

(Δt
∑m2

n=m1
||un||qk,p)

1/q, q ∈ [1,∞),

maxm1≤n≤m2
||un||k,p, q = ∞,

for any 0 ≤ n = m1,m1 +1, . . . ,m2 ≤ N . Write ||u||lq(Wk,p) = ||u||lq(0,N ;Wk,p). We

say that u ∈ lq(m1,m2;W
k,p) is bounded in respective norm as Δt → 0. Define

the discrete time-derivative

∂n+1
∆t v :=

vn+1 − vn

Δt
.

In order to avoid stability issues arising when FE solutions are not exactly di-
vergence free (i.e., when Vh �⊂ V ), we introduce the explicitly skew-symmetric
convective term

ch(u,v,w) :=
1

2
((u · ∇v,w) − (u · ∇w,v))(11)

so that

(12) ch(u,v,v) = 0.

Fix ai ∈ R for i = 0, 1, . . . , n0 ≥ 0 and n ∈ {0} ∪ N. Define the linearization
operator ξn(u) so that

ch(u,v,w) ≈ ch(ξn(u),v,w), ξn(u) := a−1u
n+1 + a0u

n + . . . + an0
un−n0 .

For example,

ξn(u) = 1
2 (3un − un−1) ⇒ ξn(u) = u(·, tn+1/2) + O(Δt2),

ξn(u) = 2un−1/2 − un−3/2 ⇒ ξn(u) = u(·, tn+1/2) + O(Δt2).

Note that a−1 = 0 gives a linear NSE approxmation and a−1 �= 0 gives a nonlinear
(fully implicit) NSE approximation.
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2. Stable linearizations when uh|∂Ω �= 0

Fix f ∈ W−1,2 and ν > 0. In this setting, we consider strong NS solutions: find
u ∈ L2(H1

φ) ∩ L∞(L2) and p ∈ W−1,∞(L2
0) satisfying

(∂tu,v) + (u · ∇u,v) + ν(∇u,∇v) − (p,∇ · v) = (f ,v), ∀v ∈ H1
0 ,(13)

∇ · u(·, t) = 0 in L2, a.e. t ∈ (0, T ),(14)

u(·, 0) = u0 in L2.(15)

Next, we pose a FE discretization of (13), (14), (15). BE is the simplest implicit
time-stepping scheme with Δt-accuracy and excellent stability properties.

Problem 2.1 (BELE). Let ui
h ∈ Vh,φi

h
approximate ui for each i = 0, 1, . . . , n0.

For each n = n0, n0 + 1, . . . , N − 1, find (un+1
h , pn+1

h ) ∈ Xh,φn+1

h

×Qh satisfying

(∂n+1
∆t uh,vh) + ch(ξn(uh),un+1

h ,vh)

+ ν(∇un+1
h ,∇vh) − (pn+1

h ,∇ · vh) = 〈fn+1,vh〉, ∀vh ∈ Xh,(16)

(qh,∇ · un+1) = 0, ∀qh ∈ Qh.(17)

Remark 2.2. Note that ξn(uh) = un+1
h (n0 = 0, a−1 = 1, a0 = 0) defines BE-FEM

and ξn(uh) = un
h (n0 = 0, a−1 = 0, a0 = 1) defines BELE (see e.g. [11, 13, 18, 34]).

Also note that it is possibly desirable to pick n0 > 0 for a better approximation of
the lagged convecting velocity.

CN methods are Δt2-accurate (more accurate than BE), but require consistent
initial conditions including pressure. CNLE is a particularly attractive method
because it is Δt2-accurate, implicit in the convective term (a source of stiffness),
and linear.

Problem 2.3 (CNLE). Let ui
h ∈ Vh,φi

h
approximate ui for each i = 0, 1, . . . , n0 and

pn0

h ∈ Qh approximate pn0 . For each n = n0, n0 + 1, . . . , N − 1, find (un+1
h , pn+1

h ) ∈
Xh,φn+1

h

×Qh satisfying

(∂n+1
∆t uh,vh) + ch(ξn(uh),u

n+1/2
h ,vh)

+ ν(∇u
n+1/2
h ,∇vh) − (p

n+1/2
h ,∇ · vh) = 〈fn+1/2,vh〉, ∀vh ∈ Xh,(18)

(qh,∇ · un+1) = 0, ∀qh ∈ Qh.(19)

Remark 2.4. Note that ξn(uh) = u
n+1/2
h (n0 = 0) defines the CN-FEM method

analyzed e.g. in [19] and ξn(uh) = 1
2 (3un

h − un−1
h ) (n0 = 1) defines the CNLE

method e.g. of [2, 15, 25] and ξn(uh) = 2u
n−1/2
h − u

n−3/2
h (n0 = 2) defines the

CNLE(stab) method proposed here.

We now establish energetic stability of BELE and CNLE approximations. We
require minimal stability properties of the initial iterates. First define

(20) Fic := ||un0

h ||2 +

{

νΔt
∑n0

i=0 |u
i
h|

2
1, if n0 ≥ 0 and BELE,

νΔt
∑n0−1

i=0 |u
i+1/2
h |21, if n0 ≥ 1 and CNLE.
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The constants K0 in Lemma 2.5 and Theorem 2.7 do not depend on a Gronwall
constant exp(C(T )). For example,

K0 := Cν1/2Fic + C(Δt

N−1
∑

n=n0

||fn+1/i||2−1)
1/2 + . . .

. . . + Cν1/2(Δt

N
∑

n=0

||Eh(φ
n+1/i
h )||41)

1/2 + . . .

. . . + Cν1/2(Δt

N−1
∑

n=n0

||∂∆tEh(φ
n+1/i
h )||2−1)

1/2 + . . .

. . . + Cν3/2(Δt

N−1
∑

n=n0

||∇Eh(φ
n+1/i
h )||2)1/2 + Cν max

n0+1<n<N−1
||Eh(φ

n+1/i
h )||

for some Eh : Λh,0(∂Ω) → Vh,∗ and i = 1 for BELE and i = 2 for CNLE in the
proofs of Lemma 2.5 and Theorem 2.7.

Lemma 2.5 (BELE solutions are bounded). Fix f ∈ l2(W−1,2). Fix
{

φi
h

}N

i=0

satisfying φh ∈ l4(Λh,0(∂Ω)), ∂∆tφh ∈ l2(Λh,0(∂Ω)). Suppose further that ui
h ∈

Vh,φi
h
for i = 0, 1, . . . , n0 so that

Fic < ∞, as h, Δt → 0

where Fic is given in (20) and

(21)

⎧

⎨

⎩

|ch(ξn(vh), Eh(φn+1
h ),vn+1

h )| ≤
ν

4(1 + |a|22)(n0 + 1)1/2
|ξn(vh)|1|v

n+1
h |1,

∀ {vn
h}

N
n=0 ⊂ Vh, ∀n = n0, n0 + 1, . . . , N − 1

for some extension operator Eh : Λh,0(∂Ω) → Vh,∗. Then

(22) ||uh||l∞(n0+1,N ;L2) + ν1/2||∇uh||l2(n0+1,N ;L2) ≤ ν−1/2K0 < ∞

for some K0 > 0.

Proof. See Section 2.2. �

Remark 2.6. Note that K0 < ∞ uniformly as h, Δt → 0 is ensured, for example,
for smooth enough t �→ φh(·, t) under a small data constraint; i.e., either φh, ν−1,
or h (at least refined near ∂Ω where φh �= 0) is small.

Theorem 2.7 (CNLE solutions are bounded). Fix f ∈ l2(W−1,2). Fix
{

φi
h

}N

i=0

satisfying φh ∈ l4(Λh,0(∂Ω)), ∂∆tφh ∈ l2(Λh,0(∂Ω)). Suppose further that ui
h ∈

Vh,φi
h
for i = 0, 1, . . . , n0 so that

Fic < ∞, as h, Δt → 0

where Fic is given in (20) and
⎧

⎨

⎩

|ch(ξn(vh), Eh(φ
n+1/2
h ),v

n+1/2
h )| ≤

ν

4(1 + |a|22)(n0 + 1)1/2
|ξn(vh)|1|v

n+1/2
h |1,

∀ {vn
h}

N
n=0 ⊂ Vh, ∀n = n0, n0 + 1, . . . , N − 1
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for some extension operator Eh : Λh,0(∂Ω) → Vh,∗. If φh = 0, then

(23) ||uh||l∞(n0+1,N ;L2) + ν1/2(Δt
N−1
∑

n=n0

|u
n+1/2
h |21)

1/2 ≤ ν−1/2K0 < ∞

where 0 < K0 < ∞ is a constant depending on
{

ui
h

}n0

i=0
, f , φh, but independent of

ν. If φh �= 0 and

ξn(u) = b0u
n−1/2 + b1u

n−3/2 + . . . + bn0−1u
n−n0+1/2,

then CNLE solutions satisfy (23) where n0 ≥ 1, a0 = b0/2, ai = (bi−1 + bi)/2 for

1 ≤ i < n0, and an0
= bn0−1/2.

Proof. See Section 2.2. �

Remark 2.8. As mentioned previously, the result for CNLE for inhomogeneous data
with ξn(v) = a0v

n + . . .+vn−n0 remains an open question. Of course, n0 = 2 with
the alternate extrapolation now refers to a 3-step extrapolation rather than 2-step
to preserve O(Δt2) accuracy of CN time-stepping.

2.1. Fundamentals of estimation. The estimates in the following sections are
fundamental to our analysis. Let C > 0 be a generic data-independent constant
throughout (depending, possibly on Ω). Let C∗ > 0 be a generic data-dependent
constant (depending, possibly, on f , φ, u0, ν−1). In the discrete case, C, C∗ are
independent of h, Δt → 0. The following change of indices formula is required to
resolve double sums in stability and convergence analysis of linearly extrapolated
BE-FEM and CN-FEM.

Lemma 2.9. Let κn, λn ∈ R for all n ∈ N, αi ∈ R for all i = 0, 1, . . . , n0. Then,

(24)
N−1
∑

n=n0

κn

(

n0
∑

i=0

αiλn−i

)

=
N−1
∑

n=0

⎛

⎝

i1(n)
∑

i=i0(n)

αiκn+i

⎞

⎠λn

where

i0(n) :=

{

0, n ≥ n0,
n0 − n, otherwise,

i1(n) :=

{

n0, n < N − 1 − n0,
N − n, otherwise.

Proof. Identity (24) follows from a change of indices. �

We require Young’s inequality in our analysis: for any a > 0, b > 0, and δ > 0

(25) ab ≤
1

qδq/q′
aq +

δ

q′
bq

′

.

The following estimate of the explicitly skew-symmetric convective term is obtained
through application of Hölder’s, Ladyzhenskaya’s, and Sobolev embedding inequal-
ities. See [27] for a comprehensive compilation of associated estimates with proof.

Lemma 2.10. Fix u, v, w ∈ H1 and suppose that (u · n̂)v ·w|∂Ω = 0. Then

(26) |ch(u,v,w)| ≤ C||u||1||v||0,3||w||1.

Energetic stability (which leads to existence) of NS solutions with inhomogeneous
data (including general divergence constraint) is investigated in [7, 8, 30, 31]. We
conclude without further proof:
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Lemma 2.11 (NSE solutions are bounded). Fix φ ∈ C0(H
1/2
0 (∂Ω)) and f ∈

L2(W−1,2). Suppose that

(27) 4ν−1 |(w(·, t) · ∇w(·, t), E(φ(·, t)))| ≤ |w(·, t)|21, ∀w(·, t) ∈ V

is satisfied where E : H
1/2
0 (∂Ω) → V∗ is an extension operator. Then

||u||L∞(L2) + ν1/2||u||L2(H1) ≤ ν−1/2M0

for some 0 < M0 = M0(f , φ) < ∞ independent of ν−1.

Remark 2.12. Note that for all φ ∈ W 1,∞(H
1/2
0 (∂Ω)) and for any δ > 0 there

exists an extension Eδ : H
1/2
0 (∂Ω) → V∗ that satisfies (27) as long as Ω is simply

connected. Avoiding the smallness constraint on φ leads to an exponential growth
of ||E(φ(·, t))||k,p ≤ C exp(1/δ) for k ≥ 0, p ≥ 1. Alternatively, we can avoid
the smallness assumption on the extension E(φ) ∈ Vφ by exploiting the Gronwall
Lemma. However, the Gronwall Lemma introduces an exponential dependence of
u on ν−1 that grows as T → ∞ render such estimates meaningless over long time
intervals.

2.2. Proof of energetic stability.

Proof of Lemma 2.5. Fix Eh(φn
h) ∈ Vh,φh

for each n ≥ 0. Fix n ≥ n0. Write
un
h = wn

h + Eh(φn
h) so that wn

h ∈ Vh. Substitute un
h = wn

h + Eh(φn
h) into (16) and

test with v = wn+1
h . Recall identity (12) so that ch(·,v,v) = 0. Then

(∂n+1
∆t wh,w

n+1
h ) + ν|wn+1

h |21 = (fn+1,wn+1
h ) − (∂n+1

∆t Eh(φh),wn+1
h )

− ν(∇Eh(φn+1
h ),∇wn+1

h )

− ch(ξn(Eh(φh)), Eh(φn+1
h ),wn+1

h ) − ch(ξn(wh), Eh(φn+1
h ),wn+1

h ).(28)

Identity (a− b, a) = 1
2 (|a|2 − |b|2 + |a− b|2) gives

(29) (∂n+1
∆t wh,w

n+1
h ) =

1

2Δt
(||wn+1

h ||2 − ||wn
h ||

2) +
1

2Δt
||wn+1

h −wn
h ||

2.

Apply the duality estimate in W−1,2 ×H1
0 to get

(30)
(fn+1,wn+1

h ) − (∂n+1
∆t Eh(φh),wn+1

h ) ≤ (||fn+1||−1 + ||∂n+1
∆t Eh(φh)||−1)|w

n+1
h |1.

Apply Cauchy-Schwarz inequality to get

|(∇Eh(φn+1
h ),∇wn+1

h )| ≤ |Eh(φn+1
h )|1|w

n+1
h |1.(31)

Estimate (26) gives

(32) ch(ξn(Eh(φh)), Eh(φn+1
h ),wn+1

h ) ≤ C||ξn(Eh(φh))||1||Eh(φn+1
h )||0,3|w

n+1
h |1.

Apply estimates (29), (30), (31), (32) along with (25) to (28) to get

1

2Δt
(||wn+1

h ||2 − ||wn
h ||

2) +
1

2Δt
||wn+1

h −wn
h ||

2 + ν|wn+1
h |21

≤ 5ν−1||fn+1||2−1 + 5ν−1||∂n+1
∆t Eh(φh)||2−1 + 5ν|Eh(φn+1

h )|21

+ 5Cν−1||ξn(Eh(φh))||21||Eh(φn+1
h )||20,3

+
ν

4
|wn+1

h |21 − ch(ξn(wh), Eh(φn+1
h ),wn+1

h ).(33)
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Young’s inequality (25) gives

(34) (1 + n0)
−1/2|ξn(wh)|1|w

n+1
h |1 ≤

1

2
((1 + n0)

−1|ξn(wh)|21 + |wn+1
h |21).

Apply condition (21) along with (34) to (33). Absorb like terms from right into
left-hand sides to get

Δt−1(||wn+1
h ||2 − ||wn

h ||
2) + Δt−1||wn+1

h −wn
h ||

2

+
ν

2

(

(
3

2
−

1

2(1 + |a|22)
)|wn+1

h |21 − (
1

2(1 + |a|22)(1 + n0)
)|ξn(wh)|21

)

≤ 5ν−1||fn+1||2−1 + 5ν−1||∂n+1
∆t Eh(φh)||2−1 + 5ν|Eh(φn+1

h )|21

+ 5Cν−1||ξn(Eh(φh))||21||Eh(φn+1
h )||20,3.(35)

From the change of indices identity (24), we obtain

N−1
∑

n=n0

|ξn(wh)|21 ≤

N−1
∑

n=n0

n0
∑

i=0

(1 + n0)|ai|
2|wn−i

h |21

= (1 + n0)

N−1
∑

n=0

|wn
h |

2
1

i1(n)
∑

i=i0(n)

|ai|
2 ≤ (1 + n0)|a|

2
2

N−1
∑

n=0

|wn
h |

2
1

so that

(
3

2
−

1

2(1 + |a|22)
)

N−1
∑

n=n0

|wn+1
h |21 − (

1

2(1 + |a|22)(1 + n0)
)

N−1
∑

n=n0

|ξn(wh)|21

≥ (
3

2
−

1

2(1 + |a|22)
)
N−1
∑

n=n0

|wn+1
h |21 −

|a|22
2(1 + |a|22)

N−1
∑

n=0

|wn
h |

2
1

≥
N
∑

n=n0+1

|wn
h |

2
1 −

|a|22
2(1 + |a|22)

n0
∑

i=0

|wi
h|

2
1.(36)

Apply Young’s inequality and Sobolev imbedding to show

N−1
∑

n=n0

||ξn(Eh(φh))||21||Eh(φn+1
h )||20,3 ≤ C

N
∑

n=0

||Eh(φn
h)||41.

Sum from n = n0 to n = N − 1 in (35). Apply (36) and simplify to get

||wN
h ||2 +

N−1
∑

n=n0

||wn+1
h −wn

h ||
2 + νΔt

N−1
∑

n=n0

|wn+1
h |21

≤ ||wn0

h ||2 +
ν

2
Δt

n0
∑

n=0

|wn
h |

2
1 + Cν−1Δt

N
∑

n=0

||Eh(φn
h)||41

+ 5ν−1Δt

N−1
∑

n=n0

(||fn+1||2−1 + ||∂n+1
∆t Eh(φn+1

h )||2−1 + ν2|Eh(φn+1
h )|21)(37)
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Apply the triangle inequality with un
h = wn

h − Eh(φn
h) and (37) to get

ν||∇uh||
2
l2(n0+1,N ;L2) ≤ ||un0

h ||2 + ν||∇uh||
2
l2(0,n0;L2)

+ ν||∇Eh(φh)||2l2(0,n0;L2) + Cν−1||Eh(φh)||4l4(H1)

+ Cν−1||f ||2l2(n0+1,N ;W−1,2) + Cν−1||∂n+1
∆t Eh(φh)||2l2(n0+1,N ;W−1,2)

+ Cν||∇Eh(φh)||2l2(n0+1,N ;L2)(38)

and

||un
h||

2
l∞(n0+1,N ;L2) ≤ ||un0

h ||2 + ν||∇uh||
2
l2(0,n0;L2)

+ ν||∇Eh(φh)||2l2(0,n0;L2) + Cν−1||Eh(φh)||4l4(H1)

+ C||Eh(φh)||2l∞(n0+1,N ;L2) + Cν−1||f ||2l2(n0+1,N ;W−1,2)

+ Cν−1||∂n+1
∆t Eh(φh)||2l2(n0+1,N ;W−1,2) + Cν||∇Eh(φh)||2l2(n0+1,N ;L2).(39)

The estimate (22) follows from (38), (39) under the assumed regularity. �

Proof of Theorem 2.7. The proof of Theorem 2.7 follows the proof in Lemma 2.5
closely. For CN-FEM, test with vh = wn+1/2 to get

1

2Δt
(||wn+1

h ||2 − ||wn
h ||

2) + ν|w
n+1/2
h |21

= (fn+1,wn+1
h ) − (∂n+1

∆t Eh(φh),w
n+1/2
h ) − ν(∇Eh(φ

n+1/2
h ),∇w

n+1/2
h )

− ch(ξn(Eh(φh)), Eh(φ
n+1/2
h ),w

n+1/2
h ) − ch(ξn(wh), Eh(φ

n+1/2
h ),w

n+1/2
h )(40)

instead of (28). The remaining estimates are obtained similar to those in the proof
of Lemma 2.5. The main difference, aside from exchanging indices n + 1 with
n + 1/2, concerns the legitimacy of estimate (36) in the case of CNLE. When
φh = 0, there is no problem because there is no contribution from the nonlinearity.
However, for general φh �= 0, we require the prescribed form of the linearization
ξn(u) = b0u

n−1/2 + b1u
n−3/2 + . . .+ bn0−1u

n−n0+1/2 which allows the nonlinearity
to be absorbed in a similar way as shown in (36) for BELE. Proceeding as before,
we prove (23). �

3. Numerical investigation

In this section we investigate how CNLE(stab), with the alternate extrapolation

ξn(u) = 2un−1/2 − un−3/2,

improves flow statistics and preserves flow integrity relative to CNLE with conven-
tional extrapolation ξn(u) = 3

2u
n − 1

2u
n−1. The energy dissipation rate is given

by

ε(t) := ν|u(·, t)|21.

In the previous discussion, our work suggests that CNLE solutions might have worse
control on the size of ε(t) than CNLE(stab). To be precise, we compare herein the
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size of the numerical dissipation rate εncnle for CNLE and CNLE(stab) applied to
flow past a 2d cylinder where

ε
n+1/2
cnle := ν|u

n+1/2
h |21.

For the problem setup, consider the channel ([0, 2.2] × [0, 0.41]) − Ωs where Ωs is
circular obstacle with diameter = 0.1 centered at (0.2, 0.2). The flow has boundary
conditions:

u(x, y = 0) = u(x, y = 0.41) = u|∂Ωs
= 0,

u(x = 0, y) = u(x = 2.2, y) =
4

0.412
y(0.41 − y).

Let the initial data (u0, p0) satisfy the (steady) Stokes problem. For high enough
Reynolds number (albeit below turbulence levels) vortices will begin shedding in
the wake of Ωs at a regular frequency (von Kármán vortex street). This is a similar
experiment performed in [23], but there with time-dependent boundary conditions
and starting from rest.

We compare 3 approximate NSE flows obtained with CN-FEM, CNLE, and
the newly proposed CNLE(stab). We solve each problem on the time interval
[0, 15] with Taylor-Hood finite elements on the same mesh. The mesh is generated
by Delaunay-Voronoi triangulation in FreeFem++ and contains 143100 velocity
degrees of freedom (161168 total degrees of freedom) with 128 vertices on ∂Ωs.
For CN-FEM, we resolve the nonlinearity with Newton iterations so that the H1

residual error is less than 10−12 at each time step. For CNLE and CNLE(stab),
the iterates ui

h for i = 1, . . . , n0 are obtained with a fixed point nonlinear iteration
so that the H1 residual error is less than 10−12.
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Figure 1. Flow past cylinder: magnitude of velocity field com-
puted with CN-FEM (newton) at (top) T = 5, (middle) T = 10,
(bottom) T = 15 with Δt = 0.005. Notice the distinct and periodic
vortex shedding associated with the von Kàrmàn vortex street.
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Figure 2. Flow past cylinder at T = 10 with Δt = 0.002:
speed-profile and velocity field for (top) CNLE and (bottom)
CNLE(stab). Notice that CNLE suppresses all vortex shedding
predicted by CNLE(stab).

We present the magnitude of the velocity field of the CN-FEM flow for ν−1 =
1000 computed with Δt = 0.005 at T = 5, 10, 15 in Figure 1. The characteristic
vortex shedding off the back of the cylinder is realized here. We present the mag-
nitude of the velocity field and vector field of the CNLE and CNLE(stab) flow for
the same conditions at T = 10 computed with Δt = 0.005 in Figure 2. In this case
the CNLE(stab) method closely models the flow generated by CN-FEM, but the
CNLE method is over-diffused and fails to capture the expected vortex shedding.

The degradation of CNLE flow approximation is clearly seen in the plots dis-
played in Figures 3, 4. In each plot, we plot a statistic measuring the numerical

energy dissipation rate ε
n+1/2
cnle over the time interval [0, 15] for ν−1 = 400, 600, 800,

1000, 1200, 1400. In Figure 3 we measure the maximum ε
n+1/2
cnle on the time interval

and in Figure 4 we measure the l2(0, T )-norm of ε
n+1/2
cnle . The curve on each plot for

CN-FEM is the bottom-most curve and decreases as ν−1 as expected. The curve
for CNLE(stab) matches CN-FEM when Δt = 0.001, but deviates slightly starting
at ν−1 = 1200 when Δt = 0.002. Conversely, the curve for CNLE deviates from
CN-FEM starting at ν−1 = 1400 when Δt = 0.001, and deviates more significantly
starting at ν−1 = 600 when Δt = 0.002.

In Figures 5 and 6 we present the behavior of an alternate measure of the numer-
ical dissipation based on εncnle rather than the average un+1/2 natural for the CN
method. Interestingly, the curves for CN-FEM and CNLE(stab) are comparable

for ε
n+1/2
cnle and εncnle but the curve for CNLE deviates from the expectation even

more dramatically for εncnle.
In Figure 7 we plot εncnle for CN-FEM (Δt = 0.005), CNLE (Δt = 0.002), and

CNLE(stab) (Δt = 0.002) respectively for ν−1 = 600, 800, 1000 with respect to the
numerical time levels over [0, 15]. The curves for CN-FEM and CNLE(stab) match
closely with a relative decrease between each curve with increasing ν−1. Conversely,
the curves for CNLE increases with ν−1.
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Figure 3. Flow past cylinder: maximal energy dissipation rate at
tn+1/2 vs. ν−1 for CN-FEM solutions computed with Δt = 0.005
and CNLE, CNLE(stab) solutions with (top) Δt = 0.002, and
(bottom) Δt = 0.001.
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Figure 4. Flow past cylinder: time-averaged energy dissipation
rate at tn+1/2 vs. ν−1 for CN-FEM solutions computed with Δt =
0.005 and CNLE, CNLE(stab) solutions with (top) Δt = 0.002,
and (bottom) Δt = 0.001.
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Figure 5. Flow past cylinder: maximal energy dissipation rate vs.
ν−1 for CN-FEM solutions computed with Δt = 0.005 and CNLE,
CNLE(stab) solutions with (top) Δt = 0.002, and (bottom) Δt =
0.001.
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Figure 6. Flow past cylinder: time-averaged energy dissipation
rate vs. ν−1 for CN-FEM solutions computed with Δt = 0.005 and
CNLE, CNLE(stab) solutions with (top) Δt = 0.002, and (bottom)
Δt = 0.001.
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Figure 7. Flow past cylinder: energy dissipation rate vs. time
for (top-left) CN-FEM with Δt = 0.005, (top-right) CNLE with
Δt = 0.002, (bottom) CNLE(stab) with Δt = 0.002. Notice that
the CN-FEM and CNLE(stab) curves demonstrate the expected
relative decrease in energy dissipation with increasing ν−1 unlike
conventional CNLE.

4. Conclusions

We investigated herein the stability and accuracy of an extrapolated Crank-
Nicolson time-stepping method for a finite element spatial discretization of the NSE.
We propose a novel, nonstandard linear extrapolation of the convecting velocity
that encourages speed-up from solving the fully nonlinear CN scheme denoted by
CNLE(stab). We prove that CNLE(stab) is energetically stable without a Gronwall
exponential factor (this result is not achievable under standard techniques for the
inhomogeneous Dirichlet problem for conventional CNLE). The numerical results in
Section 3 confirm that CNLE(stab) is clearly advantageous relative to conventional
CNLE.
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tions, Anal. Non Linéaire 24 (2007), 921–951. MR2371113 (2009a:35188)

31. , Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition,
Discret. Contin. Dyn. S. B 14 (2010), no. 4, 1537–1564. MR2679654 (2011g:35323)

32. L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying
boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR1011446 (90j:65021)

33. J.N. Sorensen and W.Z Shen, Numerical modeling of wind turbine wakes, J. Fluids Eng. 124
(2002), 393–399.

34. M. Tabata and D. Tagami, Error estimates for finite element approximations of drag and
lift in nonstationary Navier-Stokes flows, Japan J. Indust. Appli. Math. 17 (2000), 371–389.
MR1794176 (2002j:65095)

University of Pittsburgh, 615 Thackeray Hall, Pittsburgh Pennsylvania 15260

Current address: 2259 Shady Avenue, Pittsburgh, Pennsylvania 15217
E-mail address: rni1@psualum.com

URL: http://www.math.pitt.edu/~rni1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1220955
http://www.ams.org/mathscinet-getitem?mr=1220955
http://www.ams.org/mathscinet-getitem?mr=1639994
http://www.ams.org/mathscinet-getitem?mr=1639994
http://www.ams.org/mathscinet-getitem?mr=2600188
http://www.ams.org/mathscinet-getitem?mr=2600188
http://www.ams.org/mathscinet-getitem?mr=2371113
http://www.ams.org/mathscinet-getitem?mr=2371113
http://www.ams.org/mathscinet-getitem?mr=2679654
http://www.ams.org/mathscinet-getitem?mr=2679654
http://www.ams.org/mathscinet-getitem?mr=1011446
http://www.ams.org/mathscinet-getitem?mr=1011446
http://www.ams.org/mathscinet-getitem?mr=1794176
http://www.ams.org/mathscinet-getitem?mr=1794176

	1. Introduction
	1.1. Motivation of fully implicit linearizations of the NSE
	1.2. Continuous function setting
	1.3. Discrete function setting

	2. Stable linearizations when 𝐮_{𝐡}|_{∂Ω}≠0
	2.1. Fundamentals of estimation
	2.2. Proof of energetic stability

	3. Numerical investigation
	4. Conclusions
	References

