
A New Lithography Hotspot Detection Framework Based on
AdaBoost Classifier and Simplified Feature Extraction

Tetsuaki Matsunawaa, Jhih-Rong Gaob, Bei Yub and David Z. Panb

a Center for Semiconductor Research & Development, Toshiba Corp., Kawasaki, Japan
b ECE Department, Univ. of Texas at Austin, Austin, TX, USA

tetsuaki.matsunawa@toshiba.co.jp, {jrgao, bei, dpan}@cerc.utexas.edu

ABSTRACT

Under the low-k1 lithography process, lithography hotspot detection and elimination in the physical verification
phase have become much more important for reducing the process optimization cost and improving manufacturing
yield. This paper proposes a highly accurate and low-false-alarm hotspot detection framework. To define an
appropriate and simplified layout feature for classification model training, we propose a novel feature space
evaluation index. Furthermore, by applying a robust classifier based on the probability distribution function of
layout features, our framework can achieve very high accuracy and almost zero false alarm. The experimental
results demonstrate the effectiveness of the proposed method in that our detector outperforms other works in
the 2012 ICCAD contest in terms of both accuracy and false alarm.

Keywords: Design for Manufacturability, Lithography Hotspot Detection, Machine Learning, Real AdaBoost

1. INTRODUCTION

Shrinking device feature sizes is the holy grail for the semiconductor industry and it is being pursued through the
use of shorter wavelength and several design for manufacturing (DFM) technologies, such as optical proximity
correction (OPC) and resolution enhancement techniques (RETs). In view of the delay of next generation lithog-
raphy technologies, such as extreme ultra-violet lithography (EUVL), optimization of design for manufacturing
process has recently become much more important.1 However, for 45nm node and below, lithography hotspot,
which is lower fidelity pattern on a wafer, still exists even after application of these DFM techniques. In the
physical design and verification phase, a technique to detect these lithography hotspots is essential for improving
manufacturing yield.

So far, lithography simulation is the most widely used hotspot detection method.2 Although this method is
expected to achieve very high accuracy, it is also known to be extremely time-consuming.3 Therefore, a hotspot
detection method with reasonable runtime without accuracy loss is sorely needed in the physical verification
phase to avoid increase of turn-around time (TAT) and manufacturing cost. To achieve a balance between
runtime and accuracy, several hotspot detection methods without lithography simulation have been proposed.
Popular candidates are pattern matching based methods4–8 and machine learning based methods.9–20 Pattern
matching based methods define a pattern library consisting of known hotspots, followed by the whole layout
scanning with this library. Although pattern matching based methods are very fast and accurate in detecting
known hotspots, these methods have a fundamental problem in that unknown-hotspot detection is impossible.

On the other hand, machine learning based methods generate classification models based on given hotspots
and non-hotspots (training data set) and can detect unknown hotspots. Machine learning based methods have
been shown to be of benefit for the hotspot detection problem in terms of runtime and detection accuracy.
However, the contradiction between high detection accuracy and low false alarm remains a critical issue that
inhibits the practical use of machine learning based methods, for the following reasons:

(1) Layout feature selection: The optimal layout feature that represents geometrical attributes of hotspots and
non-hotspots appropriately is uncertain. On the one hand, short runtime can be expected from a simple layout
feature in low-dimensional feature space, but this simplicity may also lead to deterioration of detection accuracy
because it is unable to describe hotspot-specific attributes exactly. On the other hand, highly accurate detection
in high-dimensional space causes over-fitting (false alarm) and long runtime due to complexity of feature space.

Design-Process-Technology Co-optimization for Manufacturability IX, edited by John L. Sturtevant, Luigi Capodieci,
Proc. of SPIE Vol. 9427, 94270S · © 2015 SPIE · CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2085790

Proc. of SPIE Vol. 9427 94270S-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

(2) Classification model training: It is difficult to define an efficient classification algorithm for a complicated
feature space with the relatively small number of training data sets. Non-hotspots usually significantly outnumber
hotspots in a layout, and furthermore, the amount of real hotspots may be less than 50 in a later phase of process
development. To improve detection accuracy with a small number of training data, a nonlinear classification
algorithm is essential. However, an algorithm with strong nonlinearity that classifies patterns in high-dimensional
space, such as SVM, increases the possibility of false alarms, resulting in difficulty of highly accurate and low-false
alarm detection.

So far, a fragmentation-based feature14 and a density-based feature,13 have been proposed to represent layout
patterns. In addition, several learning models, e.g., artificial neural network (ANN)9,12 and support vector ma-
chine (SVM),11 have been applied. Multi-level learning13 based on multiple SVM kernels, hierarchical learning,14

and a hybrid method combining pattern matching and machine learning have recently been proposed.15–18,20

The basic idea of these state-of-the-art methods is the construction of multiple nonlinear classifiers in a restricted
feature space through classifying training data before model calibration. Although these works have shown that
higher accuracy and lower false alarm can be achieved compared to previous techniques, there is still much room
for improvement in view of runtime increase and many remaining false alarms.

To achieve a good trade-off between accuracy and false alarm, it is necessary to utilize an uninvolved layout
feature that is simple but sufficiently appropriate to represent geometrical attributes of hotspots. In addition,
a smart nonlinear classification algorithm with lower complexity than SVM is required as well. In this paper,
we propose a high-accuracy and low-false alarm hotspot detection framework. A robust classifier in conjunction
with base classifiers using a probability distribution function of simplified layout features realizes high-accuracy
detection without false alarm increase. Our key contributions are as follows:

• We develop a feature space evaluation index to quantify different layout extraction methods and to define
a learning-algorithm-friendly layout feature.

• We propose a simple but highly effective layout feature based on the feature space index, which provides
an efficient description of layout patterns in low-dimensional space.

• We develop a new Adaboost machine learning algorithm that works together with our simplified layout
feature to boost detection accuracy without causing false alarm increase.

• We demonstrate high accuracy and low false alarm under industry-strength benchmarks.

The rest of the paper is organized as follows. In Section 2, we give the problem formulation and the overall
hotspot detection flow. In Section 3 and Section 4, we present details of the proposed simplified features and
classification models, respectively. Section 5 presents the experiment results, followed by the conclusion in Section
6.

2. PRELIMINARIES

2.1 Problem Formulation

A hotspot is defined as a low-image-fidelity pattern on a wafer. As mentioned in the introduction, detecting
all hotspots and eliminating them in the early phase of physical design and verification is becoming important.
Fig. 1 (a) and (b) indicate examples of non-hotspot layout and hotspot layout, respectively. A “Frame” and a
“Core” show the ambit associated with its center and the computational domain, respectively. The contour of a
resist shape calculated by lithography simulation is also shown in each figure. We can see that, compared with
non-hotspot layout, the hotspot layout shows a clear difference between the contour and the target shape. To
evaluate the effectiveness of hotspot detection, we define several terms used throughout this paper.

Definition 1 (Accuracy). The detection accuracy rate is as follows:

Accuracy =
Hit

#of hotspots
(1)

where Hit is the number of correctly detected hotspots.

Proc. of SPIE Vol. 9427 94270S-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

(a) Non-Hotspot

Core

□

■

Frame

(a) Non-Hotspot.

(b) Hotspot

□Target

■Resist Contour

Hotspot

(b) Hotspot.

Figure 1. Examples of hotspot pattern.

Start

Input training data set

Optimize & Extract

layout features

Machine learning

END

Start

Input testing data set

Extract layout features

Prediction

END

Learning Phase Testing Phase

Classification

model

Figure 2. Overview of the proposed method.

Definition 2 (False alarm). The false alarm (extra) is as follows:

False Alarm = #of falsely detected hotspots (2)

Now we give the problem formulation of hotspot detection.

Problem 1 (Hotspot Detection). Given layout data including hotspots and non-hotspots, a prediction model
is calibrated to detect unknown hotspots from a verification layout. The goal of the hotspot detection is to
maximize the accuracy and minimize the false alarm.

In previous work it has been shown that optimization for either accuracy or false alarm is not difficult.
However, it is really challenging to optimize accuracy and false alarm simultaneously.

2.2 Overview of Hotspot Detection Flow

Our hotspot detection method consists of two phases, “Learning phase” and “Testing phase”, as shown in Fig.
2. In the learning phase, a training layout is given and a classification model is calibrated after optimization and
extraction of a layout feature. The details of the layout feature and classification model making are described
in Section 3 and 4. In the testing phase, a verification layout that is not the same as the training layout and
includes unknown hotspots is used as the input. After the feature extraction from the verification layout, labels,
which consist of −1 for non-hotspots and +1 for hotspots, are predicted by using the classification model trained
in the learning phase.

As shown in Fig. 2, our proposed flow is simple and complicated processing such as layout classification before
model learning in hierarchical or multi-level learning13,14 does not need to be performed. Also, optimization with
complicated nonlinear classification kernels is not required. The following are two reasons why high-accuracy
detection and low false alarm can be expected with our simple flow. (1) Simplified Layout Feature: Simple
but highly effective layout feature with high linear separability and low-dimensional space is defined by using
our feature space index. (2) Boosting-Based Classification Model: Utilization of a weakly nonlinear learning
algorithm is provided by using simplified layout feature.

3. SIMPLIFIED LAYOUT FEATURE

In hotspot detection, feature extraction is a vitally important phase, in which the initial geometrical information
is translated into a set of layout features. Although several layout features have been proposed, the question of
how to define the optimal parameters of layout features remains open. In this section, we present a feature space
index to resolve this issue.

Proc. of SPIE Vol. 9427 94270S-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

3.1 Feature Space Index

In order to define an appropriate layout feature, we propose a feature space index capable of optimizing the
parameters of layout features. The basic idea is to evaluate the performance of layout features by measuring the
distances between hotspots and non-hotspots in low-dimensional feature space. Based on the index, we can select
an appropriate layout feature with a small amount of data while suppressing complexity of feature space. The
definition of the index is as follows. The feature vectors X are projected to form new low-dimensional feature
vectors P .

P = XUk (3)

In this paper, eigenvectors U are determined by using principal component analysis (PCA) to avoid redundant
layout attributes and reduce dimensions.20 In the PCA calculation, U are calculated by solving the following
eigenvalue problem:

RxU = UΛ (4)

where Rx is the variance-covariance matrix of feature vectors X, Λ is the diagonal matrix of the eigenvalues in
(λ1, ..., λM), and k in equation (3) is defined by the value of contribution rate ηk, which is 1.

ηk =

∑k
i=1 λi∑M
i=1 λi

(5)

In the projected feature space P , feature space index H is given by the following equation.

H =

∣∣∣∣1− 1

α+ exp(−Z)

∣∣∣∣ (6)

where α, discussed in detail below, is a hyper-parameter in consideration of generalization capability and Z is
average distance of hotspot features to non-hotspot features.

Z =
1

N

N∑
i=1

di (7)

di =

√
(xi − µ)TV−1(xi − µ)− dNHSmin

dNHSmax − dNHSmin

(8)

where N is the total number of real hotspots in the training set, d is the Mahalanobis distance21 normalized
by non-hotspot features, µ is the center of mass of non-hotspot features, V is the variance covariance matrix of
non-hotspot features, dNHSmax

is the maximum Mahalanobis distance of non-hotspot features, and dNHSmin
is

the minimum Mahalanobis distance of non-hotspot features.

With the above definitions, the linear separability and predicting performance can be estimated by H and Z
in a given layout feature space. For a layout extraction feature, if its resulting Z is in the range of 1 < Z < 10 and
its resulting H is near or toward zero, it indicates that it is an appropriate layout feature. Specifically, Z < 1
means that it is difficult to separate hotspots and non-hotspots linearly as most hotspots are located in the
non-hotspot feature space. In contrast, Z > 1 shows linear-separation-friendly features because of the distance
of hotspots from non-hotspots. However, too large Z indicates deterioration of prediction accuracy. When the
hotspot features are too far away from the non-hotspot features, the allowable range of decision boundary is
broadened, and as a result, generalization capability for the testing layout cannot be ensured. The appropriate
upper limit of Z depends on training data, but according to our preliminary experiments, it is up to 10.

In our framework, generalization capability is evaluated using H . In equation (6), α = 1 is equivalent
to sigmoid function, but this means the bigger Z the better. To prevent decreases in prediction accuracy, an
appropriate criterion is defined by adjusting α. This parameter depends on technology node and automatic
determination of the optimal value of α is a subject for future work. In this paper, we set α value as 0.9 by the
prescribed preliminary experiments.

Proc. of SPIE Vol. 9427 94270S-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

20

1000

1200
20

10

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a23 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

Feature Vector : X = {a11, a12, …, a54, a55}

��

��
��

��

Figure 3. Density-based layout feature. Feature Vector is
represented as: X = {a11, a12, ..., a54, a55}.

w
s

w
n

H

min

max

Figure 4. Solution space of density-based parameters.

3.2 Feature Selection and Optimization

We utilize a simplified density-based feature as an appropriate feature. “Simplified” means the feature with high
linear separability in low-dimensional space and its parameters are optimized by using equation (6) and (7). Fig.
3 indicates the basic concept of the density-based feature. Feature vectors X show arrangement of area values of
layout patterns in a given grid. Parameters of a feature w consist of the total size of the encoding area ws and
the number of grids wn. Based on the discussion in the previous section, these parameters can be optimized by
the following formula:

minimize H(w) (9)

subject to ws ∈ {1, 2, ...,S} (10)

wn ∈ {1, 2, ...,N} (11)

Because equation (6) and (7) are nonlinear and parameters w are integer values, the above formulation is a
nonlinear integer programing problem (NIPP). Fig. 4 indicates an example of the solution space of density-based
parameters for training data set of Case 1 in Table 1 (See section 5). Since both integer linear programming and
non-linear programming are well-known hard problems, it is not surprising that solving the combined version,
NIPP, is challenging. However, as illustrated in Fig. 4, due to the limited solution space, we can find the optimal
w using brute-force search method. The ws is to be restricted within S = 1200nm depending on core area of
the layout data, and because the small grid size leads to increase in data, computational time and complexity of
feature space, wn is preferably N = 20 or less. Fig. 4 shows a bottom (low H) region representing parameters
expected to ensure high prediction accuracy with good linear separability.

The flat region indicates parameters restricted by α because the large wn features are able to represent layout
attributes in detail but it can also lead to a big difference in Z due to its complexity.

Although the density-based layout feature has been used successfully for the hotspot detection problem,13,19

it is unclear how the parameters of the feature are defined. In this framework, our simplified feature can define
the optimal parameters and represent larger area of the layout with lower-dimensional space compared to the
conventional density-based method.10 We will further discuss the advantages of the proposed layout feature
compared to the conventional features in Section 5.

4. HOTSPOT DETECTION

As mentioned in the introduction, strong nonlinear classification models such as ANN and SVM are inappropriate
for the hotspot detection problem in terms of false alarm reduction. Moreover, multi-nonlinear kernel models
are unfit for low-false alarm detection and cause TAT increase. We therefore employ a decision tree classifier22

Proc. of SPIE Vol. 9427 94270S-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

to prevent increasing of false alarms. A decision tree is simple to interpret and has advantages both of fast
runtime and good performance even if its assumptions are somewhat violated by the true model. Furthermore,
we enhance accuracy based on the probability distribution function of layout features corresponding with the
complexity of parity structure in layout feature space.

We briefly describe the formulation to build a robust classifier as follows. Given the training data xn : n =
1, ..., N , label of the training data tn ∈ {−1,+1} and number of base classifiers m = 1, ...,M , first the sample
weight D is initialized.

D1(n) = 1/N (12)

Then the base decision tree classifier ym is fitted using Dm to define candidate split θ = (j, sk) of a feature j
and threshold s at node k.

θ = argminθ(G, θ) (13)

G =
nl
Nk

F (P (Qleft)) +
nr
Nk

F (P (Qright)) (14)

Qleft(θ) = (x, t)|xj ≤ sk (15)

Qright(θ) = Q \Qleft(θ) (16)

P =
1

Nk

∑
i∈xk

Dm(ti = l) (17)

F =
∑
l

P (1− P) (18)

where G is Gini index, Q is new tree, nl, nr are the numbers of x in new trees, Nk is the total number of x at
node k, P is proportion of class l = ±1 and F is impurity function. Next, the probability distribution function
W is defined and the output of the base classifier is set as follows:

W j
l =

∑
n:j∈J∧tn=l

Dm(n) (19)

ym(x) =
1

2
ln

(
W j

+1 + ε

W j
−1 + ε

)
(20)

Dm+1(n) = Dm(n)exp (−tnym(xn)) (21)

where ε is a small positive constant. The processing above is repeated as many times as the number of M , and
finally the robust classifier Y is given by the following equation.

Y (x) = sign

[
M∑
m=1

ym(x)

]
(22)

This kind of classifier is known as “Real Adaboost”, which was proposed by Friedman et al.23 We show the
details for calibration of our detection model in Algorithm 1, where “DECISIONTREE” is decision tree function
to define θ in equation (13). The output of the base classifier is calculated by using the sample weight based on
θ in (19) and (20).

In our framework, layout features are simplified by our feature space index but still contain a little complexity
of parity structure, discussed in detail in Section 5.1, that includes several disjoint clusters in layout feature space.
Thus, SVM cannot resolve the trade-off relation between accuracy and false alarm because it is difficult to select
an appropriate kernel for this kind of layout feature. Although ANN might be able to learn this problem, it is
very difficult to optimize its parameters while minimizing the false alarm. In contrast, a simple decision tree
achieves a certain degree of accuracy without false alarm increase because this is a weakly nonlinear algorithm.22

It should be noted that a weakly nonlinear algorithm is indicated to be a classifier which is only slightly correlated
with the true classification model. However, our classifier is able to achieve a performance superior to that of
other classification algorithms by adding base classifiers.

Proc. of SPIE Vol. 9427 94270S-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

Algorithm 1 Real Adaboost with Decision Tree

Require: x, t, m
1: Initialize the sample weights D1

2: for all base classifier do
3: Tree depth = 0
4: DECISIONTREE(x, t, Dm)
5: Calculate the probability distribution function W
6: Set the output of base classifier ym
7: Update the sample weights Dm

8: end for
9: return Final classifier Y

Generally, Adaboost is sensitive to the data including lots of noise and outliers. However, it can be superior
with respect to the over-fitting issue compared to other classification algorithms. In the hotspot detection
problem, layout features contain few or no factors corresponding to noise or outliers because the layout patterns
are restricted by design rules. Although the minuscule differences among the patterns, such as small jogs, may be
regarded as a noisy factor, Real Adaboost is able to construct a robust classifier considering such small differences
based on the probability distribution function of feature space.

5. EXPERIMENTAL RESULTS

The proposed methodologies are implemented in Python and accelerated by Cython on a Linux machine with
eight 3.4GHz CPUs and 32GB memory. The industrial benchmark suite released by24 is applied. This benchmark
suite includes five test cases, and the statistics of each case are listed in Table 1. It should be noted that Case 1
and 3 have a sufficient number of hotspots (HS) compared to the non-hotspots (NHS). In Case 2, 4 and 5, however,
model learning is expected to be very difficult because they have small numbers of hotspots, which are less than
5% compared to their total numbers of non-hotspots. These cases can be seen as disadvantageous for machine
learning, and the performance of the model is greatly influenced by feature selection and the classification
algorithm. We conducted two experiments related to feature space evaluation and comparison for hotspot
detection accuracy, respectively.

Table 1. ICCAD 2012 Benchmark Data.

Name Tech Training data Testing data

#HS #NHS HS rate #HS Area (mm2)

Case 1 32nm 99 340 29.12% 226 12516

Case 2 28nm 174 5285 3.29% 498 106954

Case 3 28nm 909 4643 19.58% 1808 122565

Case 4 28nm 95 4452 2.13% 177 82010

Case 5 28nm 26 2716 0.96% 41 49583

5.1 Feature Space Evaluation

In order to define an appropriate layout feature in consideration of the complexity of feature space, we compare
our simplified density-based feature with fragmentation-based feature17 and conventional density-based feature13

by using the method described in Section 3.1. Motif data constitutes the core area in the training data of the
Case 1 layout. Fig. 5 shows the histograms of di values for each layout feature. The parameters in our feature
are set as the size of encoding area ws = 1200 nm and the number of grids wn = 10.We use following parameters
for the conventional density-based method: ws = 420 nm and wn = 12.Fig. 5(a) and (b) indicate that in
the fragmentation-based and conventional density-based features, linear separation is hard as most di values are
smaller than 1. In contrast, Fig. 5(c) represents that, with our simplified feature, linear separation is less difficult
than with the other two methods because all di are larger than 1.

Proc. of SPIE Vol. 9427 94270S-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

H2

H3

H

5

10
5

s : '
NIP.. i ;*;..s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Distance

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

P
ro
b
a
b
ili
ty

(a) H=0.394
(b) H=0.256
(c) H=0.016

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Distance

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

P
ro
b
a
b
ili
ty

H=0.256

Figure 5. Histograms of distances (di) between hotspots and non-hotspots, (a) Fragmentation-based, (b) Conventional
density-based, (c) Our simplified density-based.

■ Non-Hotspot

● Hotspot

P1P2

P3

(a) Fragmentation-based.

■ Non-Hotspot

● Hotspot

P2

P1

P3

(b) Conventional density-
based.

■ Non-Hotspot

● Hotspot

P1

P2

P3

(c) Our simplified density-
based.

Figure 6. 3D visualized images of feature space.

To check the complexity of feature space, reference data to which principal component analysis was applied
is shown in Fig. 6. The three axes in Fig. 6 correspond to the orthogonal basis of the three higher eigenvalues.
Comparing these figures, layout features in fragmentation-based space are separated into nine clusters, and
hotspots are mixed with non-hotspots in each cluster. Thus, a multi nonlinear classification kernel technique
such as those used in13 or14 is required for this kind of complicated feature space. However, a multi kernel method
may cause over-fitting.Moreover, runtime will also increase because the data clustering process after the feature
extraction phase is added in the testing phase. For the same reason, the conventional density-based feature is
too complicated for a single classification kernel because most hotspot features are covered with non-hotspot
features. In contrast, Fig. 6(c) indicates that our simplified feature can define the decision boundary easily due
to its unsophisticated feature space.

5.2 Effectiveness of Hotspot Detection

In order to confirm the hotspot detection accuracy and false alarm, we compared our results with18 as the highest
level of accuracy and19 as the lowest level of false alarm. Since the benchmark data consists of layout clips, we
limited the verification region to the core area (layout clips only) in order to avoid uncertainty effect from outside
the frame area. In parameter setting for Real Adaboost classifier, we adjust them by increasing the number of
base classifiers and tree depth within the following ranges until the prediction accuracy in the testing data is
stabilized: #classifiers are 10 to 300 and tree depth is 1 to 4. As shown in Table 2, with the exception of the
Case 4, our approach achieves more than 95% average accuracy and 0 false alarm. Though the runtime of our
method is comparable even with Python implementation, further acceleration, e.g., 10 to 100 times, is possible
by implementation in a statically typed language such as C++.

To evaluate the impact of our proposed feature space index, we compare our simplified density-based feature

Proc. of SPIE Vol. 9427 94270S-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

Table 2. Comparison with [18] and [19].

Layout Methods Accuracy False Alarm Runtime

[18] 94.69% 1,493 38.1s

Case 1 [19] 62.30% 17 14.4s

ours 100.00% 0 7.0s

[18] 98.20% 11,834 3m54s

Case 2 [19] 43.30% 75 3m1s

ours 98.60% 0 5m51s

[18] 91.88% 13,850 14m58s

Case 3 [19] 42.50% 7 4m3s

ours 97.20% 0 4m57s

[18] 85.94% 3,664 5m56s

Case 4 [19] 52.60% 41 1m37s

ours 87.01% 1 2m50s

[18] 92.86% 1,205 20s

Case 5 [19] 53.70% 4 44.6s

ours 92.68% 0 1m9s

Table 3. Comparison on different wn.
Layout Methods Accuracy False Alarm Runtime

Low-wn 92.00% 3 4.8s

Case 1 High-wn 100.00% 4 10.4s

ours 100.00% 0 7.0s

Low-wn 83.10% 2 3m47s

Case 2 High-wn 95.80% 0 9m1s

ours 98.60% 0 5m51s

Low-wn 94.70% 43 3m44s

Case 3 High-wn 97.60% 5 6m51s

ours 97.20% 0 4m57s

Low-wn 72.88% 7 2m6s

Case 4 High-wn 79.10% 2 3m46s

ours 87.01% 1 2m50s

Low-wn 65.85% 2 1m5s

Case 5 High-wn 90.24% 0 1m28s

ours 92.68% 0 1m9s

Table 4. Comparison of different algorithms.
Layout Methods Accuracy False Alarm Runtime

LR 92.50% 32 10.2s

Case 1 SVM 95.10% 14 10.21s

ours 100.00% 0 7.0s

LR 47.20% 320 5m49s

Case 2 SVM 77.50% 142 4m55s

ours 98.60% 0 5m51s

LR 54.70% 1,001 4m31s

Case 3 SVM 90.80% 258 4m26s

ours 97.20% 0 4m57s

LR 63.84% 149 3m55s

Case 4 SVM 66.67% 74 2m42s

ours 87.01% 1 2m50s

LR 63.41% 82 1m9s

Case 5 SVM 65.85% 21 1m6s

ours 92.68% 0 1m9s

with the other two parameters. In Table 3, Low-wn and High-wn indicate wn = 5 and wn = 20, and H values
of Low-wn, High-wn and ours are 0.196, 0.111 and 0.016, respectively. All ws are set to 1200 nm. Table 3 shows
that the feature parameters are optimized by our proposed feature space index to maximize the accuracy and
minimize the false alarm.

We further compare our proposed Real Adaboost method with two other classification algorithms: Logistic
Regression (LR) and SVM. We use the parameters for SVM defined by the grid search method: C = 1000,
γ = 100. Table 4 shows the comparison results and indicates that Real Adaboost has the best performance for
both accuracy and false alarm. It should be noted that LR is able to achieve reasonable accuracy even though
it is a simple linear classification model. This result shows that the hotspot detection problem is simplified by
larger-area representation based on our feature space index. This result also shows a little complexity of layout
features due to the large number of false alarms in LR. However, the result in SVM indicates that it is difficult to
resolve the trade-off relation between accuracy and false alarm with a strong nonlinear classification algorithm.

6. CONCLUSIONS

This paper proposes an accuracy-boosted hotspot detection method for layout optimization. By applying our
feature space evaluation index for layout representation, a density-based layout feature is defined, which realizes
extraction of layout attributes with low-dimensional space. The robust Real Adaboost classifier is able to detect
hotspots accurately with extremely low false alarm. The experimental results show that our method can achieve

Proc. of SPIE Vol. 9427 94270S-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

over 95% hotspot detection accuracy with almost zero false alarm and outperform the best published results for
the ICCAD 2012 benchmarks. We believe this simple but effective methodology is promising to dramatically
reduce the manufacturing and process optimization cost.

REFERENCES

[1] Pan, D. Z., Yu, B., and Gao, J.-R., “Design for manufacturing with emerging nanolithography,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 32(10), 1453–1472
(2013).

[2] Inoue, S., Kotani, T., Nojima, S., Tanaka, S., Hashimoto, K., and Mori, I., “Total hot spot management
from design rule definition to silicon fabrication,” in Electronic Design Processes Workshop EDP , (2003).

[3] Simmons, M. C., Kang, J.-H., Kim, Y., Park, J. I., weon Paek, S., and Kim, K.-s., “A state-of-the-art
hotspot recognition system for full chip verification with lithographic simulation,” in Proc. of SPIE , 7974
(2011).

[4] Kahng, A. B., Park, C.-H., and Xu, X., “Fast dual graph based hotspot detection,” in Proc. of SPIE , 6925
(2006).

[5] Kang, J.-H., Choi, J.-Y., Shim, Y.-A., Lee, H.-S., Su, B., Chan, W., Zhang, P., Wu, J., and Kim, K.-Y.,
“Combination of rule and pattern based lithography unfriendly pattern detection in opc flow,” in Proc. of
SPIE , 71221 (2008).

[6] Yu, Y.-T., Chan, Y.-C., Sinha, S., Jiang, I. H.-R., and Chiang, C., “Accurate process-hotspot detection
using critical design rule extraction,” in IEEE/ACM Design Automation Conference (DAC) , 1167–1172
(2012).

[7] H.Yao, Sinha, S., Chiang, C., Hong, X., and Cai, Y., “Efficient process-hotspot detection using range pattern
matching,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD) , 625–632 (2006).

[8] Xu, J., Sinha, S., and Chiang, C. C., “Accurate detection for process-hotspots with vias and incomplete spec-
ification,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD) , 839–846 (2007).

[9] Nagase, N., Suzuki, K., Takahashi, K., Minemura, M., Yamauchi, S., and Okada, T., “Study of hot spot
detection using neural network judgment,” in Proc. of SPIE , 6607 (2007).

[10] Wuu, J.-Y., Pikus, F. G., Torres, A., and Marek-Sadowska, M., “Detecting context sensitive hot spots in
standard cell libraries,” in Proc. of SPIE , 7275 (2009).

[11] Drmanac, D. G., Liu, F., and Wang, L.-C., “Predicting variability in nanoscale lithography processes,” in
IEEE/ACM Design Automation Conference (DAC) , 545–550 (2009).

[12] Ding, D., Wu, X., Ghosh, J., and Pan, D. Z., “Machine learning based lithographic hotspot detection
with critical-feature extraction and classification,” in IEEE International Conference on IC Design and
Technology (ICICDT) , 219–222 (2009).

[13] Wuu, J.-Y., Pikus, F. G., Torres, A., and Marek-Sadowska, M., “Rapid layout pattern classification,” in
IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC) , 781–786 (2011).

[14] Ding, D., Torres, A. J., Pikus, F. G., and Pan, D. Z., “High performance lithographic hotspot detection
using hierarchically refined machine learning,” in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC) , 775–780 (2011).

[15] Wuu, J.-Y., Pikus, F. G., and Marek-Sadowska, M., “Efficient approach to early detection of lithographic
hotspots using machine learning systems and pattern matching,” in Proc. of SPIE , 7974 (2011).

[16] Mostafa, S., Torres, J. A., Rezk, P., and Madkour, K., “Multi-selection method for physical design verifica-
tion applications,” in Proc. of SPIE , 7974 (2011).

[17] Ding, D., Yu, B., Ghosh, J., and Pan, D. Z., “EPIC: Efficient prediction of ic manufacturing hotspots
with a unified meta-classification formulation,” in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC) , 263–270 (2012).

[18] Yu, Y.-T., Lin, G.-H., Jiang, I. H.-R., and Chiang, C., “Machine-learning-based hotspot detection using
topological classification and critical feature extraction,” in IEEE/ACM Design Automation Conference
(DAC) , 671–676 (2013).

[19] Lin, S.-Y., Chen, J.-Y., Li, J.-C., Wen, W.-y., and Chang, S.-C., “A novel fuzzy matching model for
lithography hotspot detection,” in IEEE/ACM Design Automation Conference (DAC) , 681–686 (2013).

Proc. of SPIE Vol. 9427 94270S-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

[20] Gao, J.-R., Yu, B., and Pan, D. Z., “Accurate lithography hotspot detection based on pca-svm classifier
with hierarchical data clustering,” in Proc. of SPIE , 90530E–90530E (2014).

[21] Mahalanobis, P. C., “On the generalized distance in statistics,” Proceedings of the National Institute of
Sciences (Calcutta) 2, 49–55 (1936).

[22] Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J., “The elements of statistical learning: data mining,
inference and prediction,” The Mathematical Intelligencer 27(2), 83–85 (2005).

[23] Friedman, J., Hastie, T., and Tibshirani, R., “Special invited paper. additive logistic regression: A statistical
view of boosting,” Annals of statistics , 337–374 (2000).

[24] “ICCAD contest 2012.” http://cadcontest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2012/problems/

p3/p3.html.

Proc. of SPIE Vol. 9427 94270S-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/07/2015 Terms of Use: http://spiedl.org/terms

