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Abstract

A new localization set for generalized eigenvalues is obtained. It is shown that the

new set is tighter than that in (Numer. Linear Algebra Appl. 16:883-898, 2009).

Numerical examples are given to verify the corresponding results.
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1 Introduction

LetCn×n denote the set of all complexmatrices of order n. For thematricesA,B ∈C
n×n, we

call the family of matrices A – zB a matrix pencil, which is parameterized by the complex

number z. Next, we regard a matrix pencil A– zB as a matrix pair (A,B) []. A matrix pair

(A,B) is called regular if det(A – zB) �= , and otherwise singular. A complex number λ is

called a generalized eigenvalue of (A,B), if

det(A – λB) = .

Furthermore, we call a nonzero vector x ∈C
n a generalized eigenvector of (A,B) associated

with λ if

Ax = λBx.

Let σ (A,B) = {λ ∈ C : det(A – λB) = } denote the generalized spectrum of (A,B). Clearly,

if B is an identity matrix, then σ (A,B) reduces to the spectrum of A, i.e. σ (A,B) = σ (A).

When B is nonsingular, σ (A,B) is equivalent to the spectrum of B–A, that is,

σ (A,B) = σ
(

B–A
)

.

So, in this case, (A,B) has n generalized eigenvalues. Moreover, if B is singular, then the

degree of the characteristic polynomial det(A – λB) is d < n, so the number of general-

ized eigenvalues of the matrix pair (A,B) is d, and, by convention, the remaining n – d

eigenvalues are ∞ [, ].
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We now list some notation which will be used in the following. Let N = {, , . . . ,n}.

Given two matrices A = (aij), B = (bij) ∈C
n×n, we denote

ri(A) =
∑

k∈N ,
k �=i

|aik|, r
j
i(A) =

∑

k∈N ,
k �=i,j

|aik|,

Ri(A,B, z) =
∑

k∈N ,
k �=i

|aik – zbik|, R
j
i(A,B, z) =

∑

k∈N ,
k �=i,j

|aik – zbik|,

Ŵi(A,B) =
{

z ∈C : |aii – zbii| ≤ Ri(A,B, z)
}

,

and

�ij(A,B) =
{

z ∈C :
∣

∣(aii – zbii)(ajj – zbjj) – (aij – zbij)(aji – zbji)
∣

∣

≤ |ajj – zbjj|R
j
i(A,B, z) + |aij – zbij|R

i
j(A,B, z)

}

.

The generalized eigenvalue problem arises in many scientific applications; see [–].

Many researchers are interested in the localization of all generalized eigenvalues of a ma-

trix pair; see [, , , ]. In [], Kostić et al. provided the following Geršgorin-type theorem

of the generalized eigenvalue problem.

Theorem  ([], Theorem ) Let A,B ∈ C
n×n, n ≥  and (A,B) be a regular matrix pair.

Then

σ (A,B)⊆ Ŵ(A,B) =
⋃

i∈N

Ŵi(A,B).

Here, Ŵ(A,B) is called the generalized Geršgorin set of a matrix pair (A,B) and Ŵi(A,B)

the ith generalized Geršgorin set. As showed in [],Ŵ(A,B) is a compact set in the complex

plane if and only if B is strictly diagonally dominant (SDD) [].When B is not SDD, Ŵ(A,B)

may be an unbounded set or the entire complex plane (see Theorem ).

Theorem ([], Theorem ) Let A = (aij), B = (bij) ∈C
n×n, n≥ .Then the following state-

ments hold:

(i) Let i ∈N be such that, for at least one j ∈ N , bij �= . Then Ŵi(A,B) is an unbounded

set in the complex plane if and only if |bii| ≤ ri(B).

(ii) Ŵ(A,B) is a compact set in the complex plane if and only if B is SDD, that is,

|bii| > ri(B).

(iii) If there is an index i ∈N such that both bii =  and

|aii| ≤
∑

k∈β(i),
k �=i

|aik|,

where β(i) = {j ∈N : bij = }, then Ŵi(A,B), and consequently Ŵ(A,B), is the entire

complex plane.

Recently, in [], Nakatsukasa presented a different Geršgorin-type theorem to estimate

all generalized eigenvalues of a matrix pair (A,B) for the case that the ith row of either
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A (or B) is SDD for any i ∈ N . Although the set obtained by Nakatsukasa is simpler to

compute than that in Theorem , the set is not tighter than that in Theorem  in general.

In this paper, we research the generalized eigenvalue localization for a regular matrix

pair (A,B) without the restrictive assumption that the ith row of either A (or B) is SDD

for any i ∈ N . By considering Ax = λBx and using the triangle inequality, we give a new

inclusion set for generalized eigenvalues, and then prove that this set is tighter than that in

Theorem  (Theorem  of []). Numerical examples are given to verify the corresponding

results.

2 Main results

In this section, a set is provided to locate all the generalized eigenvalue of a matrix pair.

Next we compare the set obtained with the generalized Geršgorin set in Theorem .

2.1 A new generalized eigenvalue localization set

Theorem  Let A = (aij), B = (bij) ∈ C
n×n, with n ≥  and (A,B) be a regular matrix pair.

Then

σ (A,B)⊆ �(A,B) =

n
⋃

i,j=,
i�=j

{

�ij(A,B)∩ �ji(A,B)
}

.

Proof For any λ ∈ σ (A,B), let  �= x = (x,x, . . . ,xn)
T ∈ C

n be an associated generalized

eigenvector, i.e.,

Ax = λBx. ()

Without loss of generality, let

|xp| ≥ |xq| ≥ max
{

|xi| : i ∈N , i �= p,q
}

.

Then xp �= .

(i) If xq �= , then from Equality (), we have

appxp + apqxq +
∑

k∈N ,
k �=p,q

apkxk = λbppxp + λbpqxq + λ
∑

k∈N ,
k �=p,q

bpkxk

and

aqqxq + aqpxp +
∑

k∈N ,
k �=q,p

aqkxk = λbqqxq + λbqpxp + λ
∑

k∈N ,
k �=q,p

bqkxk ,

equivalently,

(app – λbpp)xp + (apq – λbpq)xq = –
∑

k∈N ,
k �=p,q

(apk – λbpk)xk ()
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and

(aqq – λbqq)xq + (aqp – λbqp)xp = –
∑

k∈N ,
k �=q,p

(aqk – λbqk)xk . ()

Solving for xp and xq in () and (), we obtain

(

(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
)

xp

= –(aqq – λbqq)
∑

k∈N ,
k �=p,q

(apk – λbpk)xk + (apq – λbpq)
∑

k∈N ,
k �=q,p

(aqk – λbqk)xk ()

and

(

(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
)

xq

= –(app – λbpp)
∑

k∈N ,
k �=q,p

(aqk – λbqk)xk + (aqp – λbqp)
∑

k∈N ,
k �=p,q

(apk – λbpk)xk . ()

Taking absolute values of () and () and using the triangle inequality yield

∣

∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣

∣|xp|

≤ |aqq – λbqq|
∑

k∈N ,
k �=p,q

|apk – λbpk||xk| + |apq – λbpq|
∑

k∈N ,
k �=q,p

|aqk – λbqk||xk|

and

∣

∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣

∣|xq|

≤ |app – λbpp|
∑

k∈N ,
k �=q,p

|aqk – λbqk||xk| + |aqp – λbqp|
∑

k∈N ,
k �=p,q

|apk – λbpk||xk|.

Since xp �=  and xq �=  are, in absolute value, the largest and second largest components

of x, respectively, we divide through by their absolute values to obtain

∣

∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣

∣

≤ |aqq – λbqq|R
q
p(A,B,λ) + |apq – λbpq|R

q
p(A,B,λ)

and

∣

∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣

∣

≤ |app – λbpp|R
p
q(A,B,λ) + |aqp – λbqp|R

q
p(A,B,λ).

Hence,

λ ∈
(

�pq(A,B)∩ �qp(A,B)
)

⊆ �(A,B).
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(ii) If xq = , then xp is the only nonzero entry of x. From equality (), we have

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝


...



xp


...



⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

apxp
...

ap–,pxp

appxp

ap+,pxp
...

anpxp

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= λ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

bpxp
...

bp–,pxp

bppxp

bp+,pxp
...

bnpxp

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which implies that, for any i ∈N , aip = λbip, i.e., aip – λbip = . Hence for any i ∈N , i �= p,

λ ∈
(

�pi(A,B)∩ �ip(A,B)
)

⊆ �(A,B).

From (i) and (ii), σ (A,B)⊆ �(A,B). The proof is completed. �

Since thematrix pairs (A,B) and (AT ,BT ) have the same generalized eigenvalues, we can

obtain a theorem by applying Theorem  to (AT ,BT ).

Theorem  Let A = (aij) ∈ C
n×n, B = (bij) ∈ C

n×n, with n ≥ , and (AT ,BT ) be a regular

matrix pair. Then

σ (A,B)⊆ �
(

AT ,BT
)

.

Remark  If B is an identity matrix, then Theorems  and  reduce to the corresponding

results of [].

Remark  When all entries of the ith and jth rows of the matrix B are zero, then

�ij(A,B) =
{

z ∈ C : |aiiajj – aijaji| ≤ |ajj|r
j
i(A) + |aij|r

i
j (A)

}

and

�ji(A,B) =
{

z ∈C : |aiiajj – aijaji| ≤ |aii|r
i
j (A) + |aji|r

j
i(A)

}

.

Hence, if

|aiiajj – aijaji| ≤ |ajj|r
j
i(A) + |aij|r

i
j (A) ()

and

|aiiajj – aijaji| ≤ |aii|r
i
j (A) + |aji|r

j
i(A), ()

then

�ij(A,B)∩ �ji(A,B) =C,
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otherwise,

�ij(A,B)∩ �ji(A,B) = ∅.

Moreover, when inequalities () and () hold, the matrix B is singular, and det(A– zB) has

degree less than n. Aswe are considering regularmatrix pairs, the degree of the polynomial

det(A – zB) has to be at least one; thus, at least one of the sets �ij(A,B) ∩ �ji(A,B) has to

be nonempty, implying that the set �(A,B) of a regular matrix pair is always nonempty.

We now establish the following properties of the set �(A,B).

Theorem  Let A = (aij), B = (bij) ∈ C
n×n, with n ≥  and (A,B) be a regular matrix pair.

Then the set �ij(A,B)∩ �ji(A,B) contains zero if and only if inequalities () and () hold.

Proof The conclusion follows directly from putting z =  in the inequalities of �ij(A,B)

and �ji(A,B). �

Theorem  Let A = (aij), B = (bij) ∈ C
n×n, with n ≥  and (A,B) be a regular matrix pair.

If there exist i, j ∈N , i �= j, such that

bii = bjj = bij = bji = ,

|aiiajj – aijaji| ≤ |ajj|
∑

k∈β(i),
k �=i,j

|aik| + |aij|
∑

k∈β(j),
k �=j,i

|ajk|,

and

|aiiajj – aijaji| ≤ |aii|
∑

k∈β(j),
k �=j,i

|ajk| + |aji|
∑

k∈β(i),
k �=i,j

|aik|,

where β(i) = {k ∈ N : bik = }, then �ij(A,B) ∩ �ji(A,B), and consequently �(A,B) is the

entire complex plane.

Proof The conclusion follows directly from the definitions of �ij(A,B) and �ji(A,B). �

2.2 Comparison with the generalized Geršgorin set

We now compare the set in Theorem  with the generalized Geršgorin set in Theorem .

First, we observe two examples in which the generalized Geršgorin set is an unbounded

set or the entire complex plane.

Example  Let

A = (aij) =

⎛

⎜

⎜

⎜

⎝

–   .

  . 

  i 

.   –i

⎞

⎟

⎟

⎟

⎠

, B = (bij) =

⎛

⎜

⎜

⎜

⎝

. . . .

 – . .

  i .

.   –.i

⎞

⎟

⎟

⎟

⎠

.
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Figure 1 Ŵ(A,B) of Example 1 on the left, and �(A,B) on the right.

It is easy to see that b = . >  and

|b| =
∑

k=,,

|bk| = ..

Hence, from the part (i) of Theorem , we see that Ŵ(A,B) is unbounded. However, the

set �(A,B) in Theorem  is compact. These sets are given by Figure , where the actual

generalized eigenvalues are plotted with asterisks. Clearly, �(A,B) ⊂ Ŵ(A,B).

Example  Let

A = (aij) =

⎛

⎜

⎜

⎜

⎝

–   .

  . 

  i 

.   –i

⎞

⎟

⎟

⎟

⎠

, B = (bij) =

⎛

⎜

⎜

⎜

⎝

  . .

 – . .

  i .

.   –.i

⎞

⎟

⎟

⎟

⎠

.

It is easy to see that b = , β() = {} and

|a| =
∑

k∈β(),
k �=

|ak| = |a| = .

Hence, from the part (iii) of Theorem , we see that Ŵ(A,B) is the entire complex plane,

but the set �(A,B) in Theorem  is not. �(A,B) is given by Figure , where the actual

generalized eigenvalues are plotted with asterisks.

We establish their comparison in the following.
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Figure 2 �(A,B) of Example 2.

Theorem Let A = (aij) ∈C
n×n,B = (bij) ∈C

n×n,with n≥  and (A,B) be a regularmatrix

pair. Then

�(A,B)⊆ Ŵ(A,B).

Proof Let z ∈ �(A,B). Then there are i, j ∈N , i �= j such that

z ∈
(

�ij(A,B)∩ �ji(A,B)
)

.

Next, we prove that

�ij(A,B) ⊆
(

Ŵi(A,B)∪ Ŵj(A,B)
)

()

and

�ji(A,B) ⊆
(

Ŵi(A,B)∪ Ŵj(A,B)
)

. ()

(i) For z ∈ �ij(A,B), then z ∈ Ŵi(A,B) or z /∈ Ŵi(A,B). If z ∈ Ŵi(A,B), then () holds. If

z /∈ Ŵi(A,B), that is,

|aii – zbii| > Ri(A,B, z), ()

then

|ajj – zbjj|R
j
i(A,B, z) + |aij – zbij|R

j
i(A,B, z)

≥
∣

∣(aii – zbii)(ajj – zbjj) – (aij – zbij)(aji – zbji)
∣

∣

≥ |aii – zbii||ajj – zbjj| – |aij – zbij||aji – zbji|. ()
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Note that R
j
i(A,B, z) = Ri(A,B, z) – |aij – zbij| and Ri

j(A,B, z) = Rj(A,B, z) – |aji – zbji|. Then

from inequalities () and (), we have

|ajj – zbjj|
(

Ri(A,B, z) – |aij – zbij|
)

+ |aij – zbij|
(

Rj(A,B, z) – |aji – zbji|
)

≥ |ajj – zbjj|Ri(A,B, z) – |aij – zbij||aji – zbji|,

which implies that

|aij – zbij|Rj(A,B, z) ≥ |aij – zbij||ajj – zbjj|. ()

If aij = zbij, then from z ∈ �ij(A,B), we have

|aii – zbii||ajj – zbjj| ≤ |ajj – zbjj|R
j
i(A,B, z) ≤ |ajj – zbjj|Ri(A,B, z).

Moreover, from inequality (), we obtain |ajj – zbjj| = . It is obvious that

z ∈ Ŵj(A,B) ⊆
(

Ŵi(A,B)∪ Ŵj(A,B)
)

.

If aij �= zbij, then from inequality (), we have

|ajj – zbjj| ≤ Rj(A,B, z),

that is,

z ∈ Ŵj(A,B) ⊆
(

Ŵi(A,B)∪ Ŵj(A,B)
)

.

Hence, () holds.

(ii) Similar to the proof of (i), we also see that, for z ∈ �ji(A,B), () holds.

The conclusion follows from (i) and (ii). �

Since thematrix pairs (A,B) and (AT ,BT ) have the same generalized eigenvalues, we can

obtain a theorem by applying Theorem  to (AT ,BT ).

Theorem  Let A = (aij) ∈ C
n×n, B = (bij) ∈ C

n×n, with n ≥  and (AT ,BT ) be a regular

matrix pair. Then

�
(

AT ,BT
)

⊆ Ŵ
(

AT ,BT
)

.

Example  ([], Example ) Let

A = (aij) =

⎛

⎜

⎜

⎜

⎝

   .

 – . 

  i 

.   –i

⎞

⎟

⎟

⎟

⎠

, B = (bij) =

⎛

⎜

⎜

⎜

⎝

. . . .

 – . .

  i .

.   –.i

⎞

⎟

⎟

⎟

⎠

.

It is easy to see that B is SDD. Hence, from the part (ii) of Theorem , we see that Ŵ(A,B)

is compact. Ŵ(A,B) and �(A,B) are given by Figure , where the exact generalized eigen-

values are plotted with asterisks. Clearly, �(A,B)⊂ Ŵ(A,B).
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Figure 3 Ŵ(A,B) of Example 3 on the left, and �(A,B) on the right.

Remark  From Examples ,  and , we see that the set in Theorem  is tighter than that

in Theorem  (Theorem  of []). In addition, note that A and B in Example  satisfy

|a| =  <
∑

k=,,

|ak| = .

and

|b| =
∑

k=,,

|bk| = .,

respectively. Hence, we cannot use the method in [] to estimate the generalized eigen-

values of the matrix pair (A,B). However, the set we obtain is very compact.

3 Conclusions

In this paper, we present a new generalized eigenvalue localization set �(A,B), and we

establish the comparison of the sets�(A,B) andŴ(A,B) inTheoremof [], that is,�(A,B)

captures all generalized eigenvalues more precisely than Ŵ(A,B), which is shown by three

numerical examples.
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