Supporting Information

A New Look at Boron Enolate Chemistry: Aminative C-C Bond Formation Using Diaminoboron enolate with Aldehyde

Michinori Suginome,* Lars Uehlin, Akihiko Yamamoto, and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, and PRESTO, Japan Science and Technology Corporation (JST), Sakyo-ku, Kyoto 606-8501, Japan

Contents

1. General
2. Preparation of boron enolates
3. Aminative alkylation of aldehydes
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds

1. General

All reactions were performed in drybox or using Schlenk technique under a nitrogen atmosphere with magnetic stirring. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury$400(400 \mathrm{MHz})$ or Varian GEMINI-2000 (300 MHz) spectrometer using CDCl_{3} as solvent and tetramethylsilane as internal standard or using $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent and internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian GEMINI-2000 spectrometer at 75.45 MHz with CDCl_{3} as solvent. Chemical shifts of the ${ }^{13} \mathrm{C}$ NMR spectra were measured relative to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm}) .{ }^{11} \mathrm{~B}$ NMR spectra were recorded on a Varian Mercury- 400 spectrometer at 128.48 MHz with $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent. Chemical shifts of the ${ }^{11} \mathrm{~B}$ NMR spectra were measured relative to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0 \mathrm{ppm})$. High resolution mass (FAB) spectra were recorded on a JEOL JMS-700 spectrometer.

Anhydrous solvents were purchased from Kanto Chemical Co. Aldehydes and ketones were dried over CaH and distilled under Ar. Bis(diamino)chloroboranes were
synthesized according to the literature method.

2. Preparation of boron enolates $2 \mathrm{a}-2 \mathrm{e}$

2.1. General procedure.

To a solution of diisopropylamine (10 mmol) in THF (10 mL) was added n butyllithium (1.6 M in hexane, $6.3 \mathrm{~mL}, 10 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. Stiring was continued for 30 min . at $0{ }^{\circ} \mathrm{C}$. To the reaction mixture cooled to $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of ketone (10 mmol) in THF (10 mL). After stirring for 15 min ., chlorobis(dialkylamino)borane (10 mmol) was added slowly at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and stirred further for 3 h . Evaporation of the volatile material followed by addition of hexane (20 mL) to the residue resulted in precipitation of LiCl , which was filtered off. Evaporation of hexane gave essentially pure boron enolate, which can be purified by distillation. Obtained yields varied between 82% and 97%.

1-(1-bis(diethylamino)boryloxyvinyl)benzene (2a) (b.p. $90^{\circ} \mathrm{C} / 0.3 \mathrm{mmHg}$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 2.90(\mathrm{q}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}), 4.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.18(\mathrm{~m}, 3 \mathrm{H}) 7.77(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 15.6,41.1,87.8,125.5,127.9,128.5,137.8,156.9 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ 24.4.

3. Aminative alkylation of aldehydes

${ }^{1}$ Chavant, P. Y.; Vaultier M. J. Organomet. Chem. 1993, 455, 37-46. Gerrard, W.; Lappert, M. F.; Pearce, C.A. J. Chem Soc. 1957, 381-386.

3.1. General procedure.

Boron enolate $2(0.25 \mathrm{mmol})$ was dissolved in THF or DMF $(0.5 \mathrm{~mL})$. Aldehyde $(0,50$ mmol) was then added, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 5 h in THF or for 1.5 to 2 h in DMF. To the reaction mixture were added ice water and, subsequently, tert-butyl methyl ether (15 mL). Basic components were extracted three times with hydrochloric acid (0.5 M, $5 \mathrm{~mL} \times 3$). The combined acid layers were washed with tert-butyl methyl ether (10 ml) and cooled to $0^{\circ} \mathrm{C}$. The pH of the solution was brought to 8 by addition of conc. ammonia solution. The organic material was extracted with tert-butyl methyl ether and washed with water (10 mL). Removal of the solvent in vacuo at $0{ }^{\circ} \mathrm{C}$ afforded the products as colorless or pale yellow oil.

3-Diethylamino-1,3-diphenyl-propan-1-one (4aa) ${ }^{2}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.22(\mathrm{dq}, J=13.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dq}, J=$ $13.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.11 (dd, $J=15.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (dd, $J=15.6 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.78(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=13.9,41.2,44.0,60.5,127.5,128.9,129.0,130.6,132.9,141.8,199.6$.

3-Diethylamino-3-(4-methoxy-phenyl)-1-phenyl-propan-1-one (4ab)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.31(\mathrm{dq}, J=13.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dq}, J=$

[^0] 1982, 11, 935-936.
$13.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\delta, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.91 (dd, $J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 13.0,41.3,43.2,55.1,59.2,113.3,128.1$, $128.4,129.4,130.3,132.8,137.5,158.5,199.4$. IR (neat): 2970, 2834, 1683, 1609, 1511, 1447, 1246, 1179, 1036, 831, $708 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 312(12)\left[\mathrm{M}+\mathrm{H}^{+}\right], 289$ (19), 239 (37), 192 (11), 154 (100), 136 (66), 119 (10), 107 (18), 89 (14), 77 (12), 65 (5). HRMS for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{H}^{+}$: calcd.: 312.1964, found: 312.1964.

4-(3-Diethylamino-3-phenyl-propionyl)-benzonitrile (4ac)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.36(\mathrm{dq}, J=13.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.52$ $(\mathrm{dq}, J=13.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.61(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=8.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-$ $7.57(\mathrm{~m}, 8 \mathrm{H}) 7.89(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.0,39.7,43.4,59.3$, 110.6, 118.9, 127.9, 128.7, 129.0, 131.9, 133.3, 136.9, 147.2, 198.5. IR (neat): 2970, 2811, $2229,1683,1607,1385,1206,1065,841,691 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 307(31)\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 277 (5), 234 (5), 187 (100), 159 (4), 135 (4), 105 (39), 89 (6), 77 (8). HRMS for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ON}_{2} \bullet \mathrm{H}^{+}$: calcd.: 307.1810, found: 307.1810.

3-(Diethylamino)-1-phenylpropan-1-one (4ad) ${ }^{3}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.57(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=8.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=6.0$

[^1]$\mathrm{Hz}, 1 \mathrm{H}), 7.96(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 11.7,36.3,46.9,47.8,128.1$, 128.6, 133.8, 137.1, 199.9.

3-Diallylamino-1,3-diphenyl-propan-1-one (4ba)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.73(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.93-5.10(\mathrm{~m}, 4 \mathrm{H}), 5.67-5.76(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ $(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=42.7,54.7,61.2,118.3,128.9,129.9$, 130.0, 130.1, 130.3, 138.0, 138.9, 141.2, 199.2. IR (film): 3080, 2813, 1686, 1580, 1493, 1449, 1285, 996, 919, $702 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 306(89)\left[\mathrm{M}+\mathrm{H}^{+}\right], 289$ (17), 264 (20), 186 (100), 154 (92), 136 (54), 105 (52), 96 (39), 89 (10). HRMS for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ON} \cdot \mathrm{H}^{+}$: calcd.: 306.1858 , found: 306.1856 .

1,3-Diphenyl-3-pyrrolidin-1-yl-propan-1-one (4ca) ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.47$ (brm, 4H), 2.34 (brm, 4 H$), 3.12(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (dd, $J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77(\mathrm{dd}, J=6.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 24.0,46.2,52.7,65.9,127.7,128.7$, 128.9, 132.9, 138.3, 144.2, 197.8.

[^2]

3-Diethylamino-2,2-dimethyl-1,3-diphenyl-propan-1-one (4da)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dq}, J=13.2$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dq}, J=13.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.51(\mathrm{dd}, J=$ $6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.5,22.9,27.1,45.2,52.8,71.2110 .9118 .8$, 127.0, 127.7, 127.8, 130.1, 130.6, 138.8, 199.2. IR (neat): 2968, 2931, 2815, 1697, 1493, 1468, 1382, 1057, 756, $700 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 310(43)\left[\mathrm{M}+\mathrm{H}^{+}\right], 289(17), 188$ (6), 163 (48), 154 (100), 136 (58), 105 (18), 89 (10), 77 (9). HRMS for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ON} \cdot \mathrm{H}^{+}$: calcd.: 310.2171, found: 310.2171.

4-(diethylamino)-4-phenylbutan-2-one (4ea) ${ }^{5}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dq}, J=13.2,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{dq}, J=14.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=15.0,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.1,30.4,43.2$, 46.5, 59.6, 127.1, 128.1, 128.3, 139.9, 207.9.

[^3]

4ae

Ethyl 2-(diethylamino)-4-oxo-4-phenylbutanoate (4ae)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{dq}, J=12.8,6.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.67 (dq, $J=12.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ (dd, $J=17.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=17.6$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.19(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.97$ (dd, $J=$ $8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 13.9,14.3,38.7,45.1,58.7,60.4,128.1,128.6,133.1$, 137.0, 172.4, 199.6. IR (neat): 2964, 2858, 1698, 1636, 1470, 1397, 1260, 1065, 801, 699 $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{FAB}): m / z(\%) 278$ (90) $\left[\mathrm{M}+\mathrm{H}^{+}\right], 204$ (100), 158 (46), 154 (29), 136 (19), 105 (28), 77 (8), 56 (7). HRMS for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N} \cdot \mathrm{H}^{+}$: calcd.: 278.1756, found: 278.1749.

Ethyl 2-(diethylamino)-3,3-dimethyl-4-oxo-4-phenylbutanoate (4de)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}), 2.57(\mathrm{dq}$, $J=13.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{dq}, J=13.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.1,14.4$, 20.8, 26.2, 47.4, 60.1, 69.3 127.1, 127.9, 129.9, 140.6, 172.4, 197.8. IR (film): 2971, 2933, $1723,1679,1466,1382,1198,1069,963,758,700 \mathrm{~cm}^{-1} . \mathrm{MS}$ (FAB): $m / z(\%) 306$ (20) $\left[\mathrm{M}+\mathrm{H}^{+}\right], 289$ (9), 232 (12), 158 (100), 154 (48), 136 (37), 120 (6), 105 (18), 89 (7), 73 (34), 56 (5). HRMS for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N} \cdot \mathrm{H}^{+}$: calcd.: 306.2069, found: 306.207.

Reaction of boron enolate 5 with benzaldehyde. (Table 2)

Reactions were carried out according to the general procedure. The compounds 7a and 7b
were reported in the literature. ${ }^{6}$

Crossover experiment using boron enolate 2b and 2e. (Scheme 2)

Boron enolate 2b ($40.0 \mathrm{mg}, 0.125 \mathrm{mmol}$) was dissolved in DMF- $d^{7}(0.6 \mathrm{~mL})$. Boron enolate $2 \mathbf{e}(26.5 \mathrm{mg}, 0.125 \mathrm{mmol})$ was added and the mixture was heated for 2 h at $50{ }^{\circ} \mathrm{C}$. ${ }^{1}$ H NMR data showed no formation of boron enolates other than $\mathbf{2 b}$ and $\mathbf{2 e}$. Benzaldehyde $(52 \mu \mathrm{l}, 0.5 \mathrm{mmol})$ was added and the mixture was stirred for 2 h at $50^{\circ} \mathrm{C}$. To the yellow solution cooled to room temperature were added ice water (3 ml) and t-butyl methyl ether $(15 \mathrm{ml})$. Basic substances were extracted three times with 5 ml 0.5 N hydrochloric acid. The combined acidic aqueous layers were washed with $10 \mathrm{ml} t$-butyl methyl ether, cooled to $0^{\circ} \mathrm{C}$, and adjusted to pH 9 by addition of conc. ammonia solution. Organic material was extracted with t-butyl methyl ether and washed with 10 ml water. Removal of the solvent in vacuo at $0{ }^{\circ} \mathrm{C}$ yielded 51 mg of a product mixture containing 4aa and 4ea in a ratio of 1:1.38. Yield: 4aa: 69%, 4ea: 95%.

[^4]

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 b a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4ae

[^0]: ${ }^{2}$ Hosomi, A.; Yanagi, T.; Hojo, M.; Tetrahedron Lett. 1991, 32, 2371-2374; Clark, J. H.; Cork, D. G.; Gibbs, H. W.; Perkin Trans. 1 1983, 9, 2253-2258; Clark, J. H.; Cork, D. G.; Chem. Commun.

[^1]: ${ }^{3}$ Rochin, C.; Babot, O.; Dunogues, J.; Duboudin, F. Synthesis 1986, 8, 667-668.

[^2]: ${ }^{4}$ Kinastowski, S.; Grabarkiewicz-Szczesna, J.; Kostecki, M.; Pol. J. Chem. 1980, 9, 1697-1706.

[^3]: ${ }^{5}$ Clark, J. H.; Cork, D. G., Chem. Commun. 1982, 11, 635-636.

[^4]: ${ }^{6}$ 7a: Arend, M.; Nikolaus, R. Angew. Chem. 1995, 107, 2861. 7b: Seebach, D.; C. Betschart; M. Schiess, Helv. Chim. Acta. 1984, 67, 1593.

