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Abstract—Physical transceivers have hardware impairments
that create distortions which degrade the performance of com-
munication systems. The vast majority of technical contributions
in the area of relaying neglect hardware impairments and,
thus, assumes ideal hardware. Such approximations make sense
in low-rate systems, but can lead to very misleading results
when analyzing future high-rate systems. This paper quantifies
the impact of hardware impairments on dual-hop relaying, for
both amplify-and-forward and decode-and-forward protocols.
The outage probability (OP) in these practical scenarios is a
function of the effective end-to-end signal-to-noise-and-distortion
ratio (SNDR). This paper derives new closed-form expressions
for the exact and asymptotic OPs, accounting for hardware
impairments at the source, relay, and destination. A similar
analysis for the ergodic capacity is also pursued, resulting in
new upper bounds. We assume that both hops are subject to
independent but non-identically distributed Nakagami-m fading.
This paper validates that the performance loss is small at low
rates, but otherwise can be very substantial. In particular, it
is proved that for high signal-to-noise ratio (SNR), the end-to-
end SNDR converges to a deterministic constant, coined the
SNDR ceiling, which is inversely proportional to the level of
impairments. This stands in contrast to the ideal hardware
case in which the end-to-end SNDR grows without bound in
the high-SNR regime. Finally, we provide fundamental design
guidelines for selecting hardware that satisfies the requirements
of a practical relaying system.

Index Terms—Amplify-and-forward, decode-and-forward,
dual-hop relaying, ergodic capacity, Nakagami-m fading, outage
probability, transceiver hardware impairments.

I. INTRODUCTION

THE use of relay nodes for improving coverage, reliability,

and quality-of-service in wireless systems has been a hot

research topic over the past decade, both in academia [2]–[4]
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and in industry [5], [6]. This is due to the fact that, unlike

macro base stations, relays are low-cost nodes that can be

easily deployed and, hence, enhance the network agility. The

vast majority of works in the context of relaying systems make

the standard assumption of ideal transceiver hardware.

However, in practice, hardware suffers from several types

of impairments; for example, phase noise, I/Q imbalance,

and high power amplifier (HPA) nonlinearities among others

[7]–[9]. The impact of hardware impairments on various

types of single-hop systems was analyzed in [7]–[19]. For

instance, I/Q imbalance was considered in [12] and it was

shown to attenuate the amplitude and rotate the phase of the

desired constellation. Moreover, it creates an additional image-

signal from the mirror subcarrier, which leads to a symbol

error rate floor. In addition, [13] characterized the effect of

non-linear HPAs as a distortion of the constellation position

plus an additive Gaussian noise. The authors therein showed

that, in the presence of HPA non-linearities, the bit-error-rate

increases compared to linear HPAs; for severe non-linearities,

an irreducible error floor emerges. Hardware impairments are

typically mitigated by compensation algorithms, but there are

always residual impairments [8]–[10]. As a general conclu-

sion, hardware impairments have a deleterious impact on

the achievable performance [10]–[19]. This effect is more

pronounced in high-rate systems, especially those employing

inexpensive hardware [8]. Recent works in information theory

have demonstrated that non-ideal hardware severely affects

multi-antenna systems; more specifically, [18] proved that

there is a finite capacity limit at high signal-to-noise ratio

(SNR), while [19] provided a general resource allocation

framework where existing signal processing algorithms are

redesigned to account for impairments.

Despite the importance of transceiver hardware impair-

ments, their impact on one-way relaying1 has only been

partially investigated; bit error rate simulations were conducted

in [15] for amplify-and-forward (AF) relaying, while [16], [17]

derived expressions for the bit/symbol error rates consider-

ing only non-linearities or I/Q imbalance, respectively. Most

recently, [21], [22] elaborated on the impact of I/Q imbal-

ance on AF relaying and suggested novel digital baseband

compensation algorithms. In this paper, we follow a different

line of reasoning by providing a detailed performance analysis

of dual-hop relaying systems in the presence of aggregate

transceiver impairments, both for AF and decode-and-forward

(DF) protocols. To the best of our knowledge, this is the

1Analysis of two-way AF relaying was conducted in our recent paper [20].
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first paper presenting an analytical study of relaying with

transceiver impairments under the generalized system model of

[8]–[11]. The paper makes the following specific contributions:

• We introduce a general model to account for transceiver

hardware impairments in relaying. Unlike the works of

[16], [17], [21], [22], which examined the impact of a

single type of impairments, we herein take a macroscopic

look and investigate the aggregate impact of hardware

impairments.

• After obtaining the instantaneous end-to-end signal-to-

noise-plus-distortion ratios (SNDRs) for both AF and DF

relaying, we derive new closed-form expressions for the

exact outage probability (OP) of the system. This enables

us to characterize the impact of impairments for any

arbitrary SNR value. New upper bounds on the ergodic

capacity are also provided. Note that our analysis consid-

ers Nakagami-m fading, which has been extensively used

in the performance analysis of communication systems.

• In order to obtain more engineering insights, we elaborate

on the high-SNR regime and demonstrate the presence

of a so-called SNDR ceiling. This fundamental ceiling is

explicitly quantified and its value is shown to be inversely

proportional to the level of impairments. This observation

manifests that both AF and DF relaying systems are

intimately limited by hardware impairments—especially

at high SNRs and when high rates are desirable. On a

similar note, the ergodic capacity exhibits a so-called

capacity ceiling.

• In the last part of the paper, we provide some design

guidelines for optimizing the performance of hardware-

constrained relaying systems. These results are of partic-

ular importance when it comes down to finding the lowest

hardware quality (i.e., highest level of impairments) that

can theoretically meet stipulated requirements.

The remainder of the paper is organized as follows: In

Section II, the signal and system models, for both ideal and

impaired hardware, are outlined. For the sake of generality,

we consider both dual-hop AF and DF relaying and assume

that both hops are subject to independent and non-identically

distributed fading. In Section III, an OP analysis is pursued

that can be applied for any type of fading and is specialized

to the cases of Nakagami-m and Rayleigh fading. A similar

analysis for the ergodic capacity is performed in Section IV,

which results in new upper bounds. The performance limits

of hardware-constrained relaying systems in the high-SNR

regime are examined in Section V and some fundamental

design guidelines are also obtained. Our numerical results are

provided in Section VI, while Section VII concludes the paper.

A. Notation

Circularly-symmetric complex Gaussian distributed vari-

ables are denoted as x ∼ CN (a, b) where a is the mean value

and b > 0 is the variance. Gamma distributed variables are

denoted as ρ ∼ Gamma(α, β), where α ≥ 0 is the shape

parameter and β > 0 is the scale parameter. The expectation

operator is denoted E{·} and Pr{A} is the probability of an
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(a) Classical dual-hop relaying with ideal transceiver

Source RelayChannel 1

s1 h1

ν1η1

y1

η2

h2

ν2

y2

DestinationChannel 2

s2

Noise Noise
AF
or
DF

(b) Generalized dual-hop relaying with hardware impairments

Fig. 1. Block diagram of AF/DF relaying with (a) ideal hardware or (b)
non-ideal hardware with transceiver impairments modeled by the aggregate
distortion noises η1, η2.

event A. The operator , denotes a definition. The gamma

function Γ(n) of an integer n satisfies Γ(n) = (n− 1)!.

II. SIGNAL AND SYSTEM MODEL

This paper revisits classical dual-hop relaying where a

source communicates with a destination through a relay; see

Fig. 1(a). There is no direct link between the source and the

destination (e.g., due to heavy shadowing), but the results

herein can be extended to that scenario as well. Contrary to

most prior works, we consider a generalized system model that

accounts for transceiver hardware impairments. This model is

described in the following subsections and the block model is

shown in Fig. 1(b).

A. Preliminaries on Distortion Noise from Impairments

We first describe a generalized system model for single-hop

transmission that originates from [8]–[11]. Suppose an infor-

mation signal s ∈ C is conveyed over a flat-fading wireless

channel h ∈ C with additive noise ν ∈ C. This channel can,

for example, be one of the subcarriers in a multi-carrier system

based on orthogonal frequency-division multiplexing (OFDM)

[23]. The received signal is conventionally modeled as

y = hs+ ν (1)

where h, s, and ν are statistically independent. However,

physical radio-frequency (RF) transceivers suffer from impair-

ments that are not accurately captured in this way. Informally

speaking, such impairments 1) create a mismatch between

the intended signal s and what is actually generated and

emitted; and 2) distort the received signal during the reception

processing. This calls for the inclusion of additional distortion

noise sources that are statistically dependent on the signal

power and channel gain.

Detailed distortion models are available for different sources

of impairments (e.g., I/Q imbalance, HPA non-linearities, and

phase-noise); see [8] for a detailed description of hardware

impairments in OFDM systems and related compensation

algorithms. However, the combined influence at a given flat-

fading subcarrier is often well-modeled by a generalized

channel model [8], where the received signal becomes

y = h(s+ ηt) + ηr + ν (2)
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while ηt, ηr are distortion noises from impairments in the

transmitter and receiver, respectively [8]. The distortion noises

are defined as

ηt ∼ CN (0, κ2
t
P ), ηr ∼ CN (0, κ2

r
P |h|2) (3)

which is a model that has been supported and validated by

many theoretical investigations and measurements (see e.g.,

[9]–[11], [13], [24] and references therein). The design param-

eters κt, κr ≥ 0 are described below. The joint Gaussianity in

(3) is explained by the aggregate effect of many impairments.2

For a given channel realization h, the aggregate distortion seen

at the receiver has power

Eηt,ηr{|hηt + ηr|2} = P |h|2(κ2
t
+ κ2

r
). (4)

Thus, it depends on the average signal power P = Es{|s|2}
and the instantaneous channel gain |h|2. Note that this depen-

dence is not supported by the classical channel model in (1),

because the effective distortion noise is correlated with the

channel and is not Gaussian distributed.3

The design parameters κt, κr ≥ 0 characterize the level

of impairments in the transmitter and receiver hardware,

respectively. These parameters are interpreted as the error

vector magnitudes (EVMs). EVM is a common quality mea-

sure of RF transceivers and is the ratio of the average dis-

tortion magnitude to the average signal magnitude.4 Since

the EVM measures the joint impact of different hardware

impairments and compensation algorithms, it can be measured

directly in practice (see e.g., [26]). As seen from (4) it is

sufficient to characterize the aggregate level of impairments

κ =
√

κ2t + κ2
r

of the channel, without specifying the exact

contribution from the transmitter hardware (κt) and the re-

ceiver hardware (κr). This observation is now formalized.

Lemma 1: The generalized channel in (2) is equivalent to

y = h(s+ η) + ν (5)

where the independent distortion noise η ∼ CN (0, κ2P )
describes contributions from hardware impairments at both the

transmitter and the receiver, such that κ ,
√

κ2t + κ2
r
.

The single-parameter characterization in Lemma 1 is used

henceforth for the sake of brevity and without loss of gen-

erality. Note that (5) reduces to the classical model in (1)

when κ = 0, which represents ideal transmitter and receiver

hardware since it implies that κt = κr = 0.

2Note that the Gaussian assumption holds particularly well for the residual
distortion when compensation algorithms are applied to mitigate hardware
impairments [9].

3The effective distortion noise can be seen as two independent jointly
Gaussian variables ηt and ηr/h that are multiplied with the fading channel h.
The effective distortion noise is thus only complex Gaussian distributed when
conditioning on a channel realization, while the true distribution is the product
of the complex Gaussian distribution of the distortion noise and the channel
fading distribution. This becomes a complex double Gaussian distribution
under Rayleigh fading [25], while the distribution under Nakagami-m fading
does not admit any known statistical characterization.

4The EVM at the transmitter is defined as
√

Eηt{|ηt|
2}/Es{|s|2} [26].

3GPP LTE has EVM requirements in the range κt ∈ [0.08, 0.175], where
smaller values are needed to support the highest spectral efficiencies [27,
Sec. 14.3.4].

B. System Model: Relaying with Non-Ideal Hardware

Consider the dual-hop relaying scenario in Fig. 1. Let the

transmission parameters between the source and the relay have

subscript 1 and between relay and destination have subscript 2.

Using the generalized system model in Lemma 1, the received

signals at the relay and destination are

yi = hi(si + ηi) + νi, i = 1, 2 (6)

where s1, s2 ∈ C are the transmitted signals from the

source and relay, respectively, with average signal power

Pi = Esi{|si|2}. In addition, νi ∼ CN (0, Ni) represents the

complex Gaussian receiver noise and ηi ∼ CN (0, κ2iPi) is

the distortion noise (introduced in Section II-A), for i = 1, 2.

The distortion noise from hardware impairments (after con-

ventional compensation algorithms have been applied) acts as

an unknown noise-like interfering signal ηi that goes through

the same channel hi as the intended signal, thus making (6)

fundamentally different from a conventional multiple-access

channel, where each user signal experiences independent chan-

nel fading.

The channel magnitudes |hi| are modeled as independent

but non-identically distributed Nakagami-m variates, such that

the channel gains ρi , |hi|2 ∼ Gamma(αi, βi). These are

Gamma distributed with integer5 shape parameters αi ≥ 1 and

arbitrary scale parameters βi > 0.6 In this case, the cumula-

tive distribution functions (cdfs) and probability distribution

functions (pdfs) of the channel gains, ρi, are

Fρi(x) = 1−
αi−1
∑

j=0

e
− x

βi

j!

(

x

βi

)j

, x ≥ 0 (7)

fρi(x) =
xαi−1e

− x
βi

Γ(αi)β
αi

i

, x ≥ 0 (8)

for i = 1, 2. Note that most of the analysis in this paper is

generic and applies for any fading distribution. The choice of

Nakagami-m fading is only exploited for deriving closed-form

expressions for quantities such as the OP and ergodic capacity.

For any fading distribution, the quantity

SNRi =
PiEρi{ρi}

Ni
(9)

is referred to as the average SNR, for i = 1, 2. The average

fading power is Eρi{ρi} = αiβi under Nakagami-m fading.

Remark 1 (High SNR): The level of impairment κi depends

on the SNR [11], [19], [29]. In most of our analysis, we

consider an arbitrary fixed SNRi and thus κi can be taken

as a constant. However, some remarks are in order for our

high-SNR analysis in Section V. As seen from (9), a high

SNR can be achieved by having high signal power Pi and/or

high fading power Eρi{ρi}. If we increase the signal power to

operate outside the dynamic range of the power amplifier, then

5The assumption of integer shape parameters is made to facilitate the,
otherwise tedious, algebraic manipulations for the Nakagami-m fading case.

6We recall that Nakagami-m fading reduces to the classical Rayleigh fading
with variance Ωi when αi = 1 and βi = Ωi; thus, Nakagami-m fading brings
more degrees-of-freedom for describing practical propagation environments
and has been shown to provide better fit with real measurement results in
various multipath channels [28].
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the level of impairments κi increases as well due to the HPA

nonlinearities [29]. Advanced dynamic power adaptation is

then required to maximize the performance [14]. If we, on the

other hand, increase the fading power (e.g., by decreasing the

propagation loss) then it has no impact on κi. For brevity, we

keep the analysis clean by assuming that any change in SNR

is achieved by a change in the average fading power, while

the signal power is fixed. We stress that the upper bounds and

necessary conditions derived in Section V are also valid when

the signal power is increased, but then they will be optimistic

and no longer tight in the high-SNR regime.

In the next subsections, we derive the end-to-end SNDRs

for AF and DF relaying, respectively.

C. End-to-End SNDR: Amplify-and-Forward Relaying

The information signal s1 should be acquired at the desti-

nation. In the AF relaying protocol, the transmitted signal s2
at the relay is simply an amplified version of the signal y1
received at the relay: s2 = Gy1 for some amplification factor

G > 0. With non-ideal (ni) hardware, as described by (6), the

received signal at the destination is now obtained as

y2 = h2Gni

(

h1 (s1 + η1) + ν1

)

+ h2 η2 + ν2 (10)

= Gni h1 h2 s1 +Gni h1 h2 η1 +Gni h2 ν1 + h2 η2 + ν2

where the amplification factor Gni is selected at the relay

to satisfy its power constraint. The source needs no channel

knowledge. If the relay has instantaneous knowledge of the

fading channel, h1, it can apply variable gain relaying with

Gv ,
√

P2/Es1,ν1,η1{|y1|2} [30]. Otherwise, fixed gain

relaying with Gf ,
√

P2/Es1,ν1,η1,h1
{|y1|2} can be applied

using only statistical channel information [3].7 For fixed and

variable gain relaying, Gni reads respectively as

Gf

ni
,

√

P2

P1 Eρ1{ρ1}(1 + κ21) +N1
(11)

Gv

ni
,

√

P2

P1 ρ1(1 + κ21) +N1
(12)

where Eρ1{ρ1} = α1β1 for Nakagami-m fading.

Note that variable gain relaying has always an output power

of P2 at the relay, whilst for fixed gain relaying this varies

with the channel gain of the first hop. This, in turn, affects the

variance of the distortion noise η2 for the second hop, which by

definition is E{|η2|2} = κ22G
2
ni
Es1,ν1{|y1|2} for AF relaying.

This reduces to the simple expression κ22 P2 for variable gain

relaying, while it becomes
(

Gf

ni

)2
κ22 (P1 ρ1(1+κ

2
1)+N1) for

fixed gain relaying.

After some algebraic manipulations (e.g., using the expres-

sions for Gv

ni
), the end-to-end SNDRs for fixed and variable

gain relaying are obtained as

γAF-f
ni

=
ρ1 ρ2

ρ1 ρ2 d+ ρ2(1 + κ22)
N1

P1
+ N2

P1(Gf

ni
)2

(13)

γAF-v
ni

=
ρ1 ρ2

ρ1 ρ2 d+ρ1(1+κ21)
N2

P2
+ρ2(1+κ22)

N1

P1
+N1N2

P1P2

(14)

7The relay then has a long-term power constraint P2 = E{|Gfy1|2} where
expectation is taken over signal, noise, and channel fading realizations.

respectively, assuming that the destination knows the two

channels and the statistics of the receiver and distortion noises.

Note that the parameter d , κ21 + κ22 + κ21 κ
2
2 that appears in

(13)–(14) plays a key role in this paper.

Remark 2 (Ideal Hardware): The end-to-end SNRs for AF

relaying with ideal (id) hardware were derived in [3], [30].

The results of this section reduce to that special case when

setting κ1 = κ2 = 0. The amplification factors then become

Gf

id
=

√

P2

P1 Eρ1{ρ1}+N1
, Gv

id
=

√

P2

P1 ρ1 +N1
(15)

and the end-to-end SNRs become

γAF-f
id

=
ρ1 ρ2

ρ2
N1

P1
+ N2

P1(Gf

id
)2

, γAF-v
id

=
ρ1 ρ2

ρ1
N2

P2
+ρ2

N1

P1
+N1N2

P1P2

(16)

for fixed and variable gain relaying, respectively. Comparing

the SNDRs in (13)–(14) with the ideal hardware case in (16),

the mathematical form of the former is more complicated,

since the product ρ1ρ2 appears in the denominator. It is,

therefore, non-trivial to generalize prior works on AF relaying

with Nakagami-m fading (e.g., [4], [31], [32]) to the general

case of non-ideal hardware. This generalization is done in

Section III and is a main contribution of this paper.

D. End-to-End SNDR: Decode-and-Forward Relaying

In the DF relaying protocol, the transmitted signal s2 at the

relay should equal the original intended signal s1. This is only

possible if the relay is able to decode the signal (otherwise

the relayed signal is useless); thus, the effective SNDR is the

minimum of the SNDRs between 1) the source and relay; and

2) the relay and destination. We assume that the relay knows

h1 and the destination knows h2, along with the statistics of

the receiver and distortion noises.

With non-ideal hardware as described by (6), the effective

end-to-end SNDR becomes

γDF
ni

= min

(

P1ρ1
P1ρ1κ21 +N1

,
P2ρ2

P2ρ2κ22 +N2

)

(17)

and does not require any channel knowledge at the source. In

the special case of ideal hardware (i.e., κ1 = κ2 = 0), (17)

reduces to the classical result from [2]; that is

γDF
id

= min

(

P1ρ1
N1

,
P2ρ2
N2

)

. (18)

Just as for AF relaying, the SNDR expression with DF relaying

is more complicated in the general case with hardware impair-

ments. This is manifested in (17) by the statistical dependence

between numerators and denominators, which is different from

the ideal case in (18).

III. OUTAGE PROBABILITY ANALYSIS

This section derives new closed-form expressions for the ex-

act OPs under the presence of transceiver impairments. These

results generalize the well known results in the literature, such

as [2]–[4], [31], [32], which rely on the assumption of ideal

hardware. The OP is denoted by Pout(x) and is the probability

that the channel fading makes the effective end-to-end SNDR
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fall below a certain threshold, x, of acceptable communication

quality. Mathematically speaking, this means that

Pout(x) , Pr{γ ≤ x} (19)

where γ is the effective end-to-end SNDR.

A. Arbitrary Channel Fading Distributions

This subsection derives general expressions for the OP that

hold true for any distributions of the channel gains ρ1, ρ2.

These offer useful tools, which later will allow us to derive

closed-form expressions for the cases of Nakagami-m and

Rayleigh fading. Note that ρ1, ρ2 appear in both numerators

and denominators of the SNDRs in (13)–(14) and (17). The

following lemma enable us to characterize this structure.

Lemma 2: Let c1, c2, c3 be strictly positive constants and

let ρ be a non-negative random variable with cdf Fρ(·). Then,

Pr

{

c1ρ

c2ρ+ c3
≤ x

}

=

{

Fρ
(

c3x
c1−c2x

)

, 0 ≤ x < c1
c2
,

1, x ≥ c1
c2
.

(20)

Suppose c2 = 0 instead, then (20) simplifies to

Pr

{

c1ρ

c3
≤ x

}

= Fρ

(

c3x

c1

)

. (21)

Proof: The left-hand side of (20) is equal to

Pr
{

c1ρ ≤ (c2ρ+ c3)x
}

= Pr

{

ρ ≤ c3x

(c1 − c2x)

}

(22)

after some basic algebra. The last expression is exactly

Fρ

(

c3x
c1−c2x

)

. If (c1−c2x) ≤ 0, then the inequality is satisfied

for any realization of the non-negative variable ρ.

Based on Lemma 2, we can derive integral expressions for

the OPs with AF relaying.

Proposition 1: Suppose ρi is an independent non-negative

random variable with cdf Fρi(·) and pdf fρi(·) for i = 1, 2.

The OP with AF relaying and non-ideal hardware is

P AF,ni
out (x) =

1−
∫ ∞

0

(

1−Fρ1
(

b2x

(1−dx) +
b1b2x

2

1−dx +cx

z(1−dx)

))

fρ2

(

z+
b1x

1−dx

)

dz

(23)

for x < 1
d

and P AF,ni
out (x) = 1 for x ≥ 1

d
. Recall that d ,

κ21+κ
2
2+κ

2
1 κ

2
2. The choice of AF protocol determines b1, b2, c:

{

b1 = 0, b2 =
N1(1+κ

2
2)

P1
, c = N2

P1(Gf

ni
)2

if fixed gain,

b1 =
N2(1+κ

2
1)

P2
, b2 =

N1(1+κ
2
2)

P1
, c = N1N2

P1P2
if variable gain.

In the special case of ideal hardware, (23) reduces to

P AF,id
out (x)

= 1−
∫ ∞

0

(

1−Fρ1
(

b2x+
b1b2x

2+cx

z

))

fρ2

(

z+b1x

)

dz

(24)

where the parameters b1, b2, c, d depend on the AF protocol:
{

b1 = 0, b2 = N1

P1
, c = N2

P1(Gf

id
)2
, d = 0 if fixed gain,

b1 = N2

P2
, b2 = N1

P1
, c = N1N2

P1P2
, d = 0 if variable gain.

Proof: The proof follows from Lemma 2 and Lemma 3

in Appendix A, by noting that the end-to-end SNDRs for non-

ideal hardware in (13)–(14) and ideal hardware in (16), are of

the form in (46) for different values of a, b1, b2, c, d.

The result in Lemma 2 also allows explicit expressions for

the OPs with DF relaying.

Proposition 2: Suppose ρi is an independent non-negative

random variable with cdf Fρi(·) for i = 1, 2. The OP with DF

relaying and non-ideal hardware is

P DF,ni
out (x) =







1−
2
∏

i=1

(

1− Fρi

(

Nix
Pi(1−κ2

ix)

))

, x < 1
δ
,

1, x ≥ 1
δ
,
(25)

with δ , max(κ21, κ
2
2). In the special case of ideal hardware,

(25) reduces to

P DF,id
out (x) = 1−

2
∏

i=1

(

1− Fρi

(

Nix

Pi

))

. (26)

Proof: For a set of independent random variables ξi with

marginal cdfs Fξi(x), the random variable mini(ξi) has cdf

1 − ∏i(1 − Fξi(x)). The proof follows by combining this

standard property with Lemma 2 and (17)–(18).

Note that the OP expressions in Propositions 1 and 2

allow the straightforward computation of the OP for any

channel fading distribution, either directly (for DF) or by a

simple numerical integration (for AF). In Section III-B, we

particularize these expressions to the cases of Nakagami-m
and Rayleigh fading to obtain closed-form results.

Interestingly, Propositions 1 and 2 show that the OP,

Pout(x), is always 1 for x ≥ 1
d

when using AF and 1 for x ≥ 1
δ

when using DF. Note that these results hold for any channel

fading distribution and SNR; hence, there are certain SNDR

thresholds that can never be crossed. This has an intuitive

explanation since the SNDRs derived in Section II are upper

bounded as γAF
ni

≤ 1
d

and γDF
ni

≤ 1
δ

. We elaborate further on

this fundamental property in Section V.

B. Nakagami-m and Rayleigh Fading Channels

Under ideal hardware, the OPs with fixed and variable gain

AF relaying were obtained in [3, Eq. (9)] and [30, Eq. (14)],

respectively. These prior works considered Rayleigh fading,

while closed-form expression for the case of Nakagami-m
fading were obtained in [4], [31], [32] under ideal hardware.

Unfortunately, the OP in the general AF relaying case with

non-ideal hardware cannot be deduced from these prior results;

for example, the general analysis in [32] does not handle

cases when ρ1ρ2 appears in the denominator of the SNDR

expression, which is the case in (13)–(14).

The following key theorem provides new and tractable

closed-form OP expressions in the presence of transceiver

hardware impairments.

Theorem 1: Suppose ρ1, ρ2 are independent and ρi ∼
Gamma(αi, βi) where αi ≥ 1 is an integer and βi > 0 for
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i = 1, 2. The OP with AF relaying and non-ideal hardware is

P AF,ni
out (x) = 1−2e

− x
1−dx

(

b1
β2

+
b2
β1

) α1−1
∑

j=0

α2−1
∑

n=0

j
∑

k=0

C(j, n, k)

×
(

x

1− dx

)α2+j (

b1b2 +
c(1− dx)

x

)

n+k+1
2

×Kn−k+1

(

2

√

b1b2x2

β1β2(1− dx)2
+

cx

β1β2(1− dx)

)

(27)

for x < 1
d

and P AF,ni
out (x) = 1 for x ≥ 1

d
. The νth-order

modified Bessel function of the second kind is denoted by

Kν(·), while

C(j, n, k) ,
bα2−n−1
1 bj−k2 β

k−n−1−2j
2

1 β
n−k+1−2α2

2
2

k! (j − k)!n! (α2 − n− 1)!
. (28)

The parameters a, b1, b2 depend on the choice of the AF proto-

col and are given in Proposition 1, while d , κ21+κ
2
2+κ

2
1 κ

2
2.

In the special case of Rayleigh fading (αi = 1, βi = Ωi), the

OP becomes

P AF,ni
out (x) = 1− 2e

− x
1−dx

(

b1
Ω2

+
b2
Ω1

)

√
Ω1Ω2

√

b1b2x2

(1− dx)2
+

cx

(1− dx)

×K1

(

2√
Ω1Ω2

√

b1b2x2

(1− dx)2
+

cx

(1− dx)

)

(29)

for x < 1
d

and P AF,ni
out (x) = 1 for x ≥ 1

d
.

Proof: This results follows by combining Proposition 1

with Lemma 3 in Appendix A.

Theorem 1 generalizes the prior works mentioned above,

which all assume ideal hardware. Note that OP expressions

equivalent to those in prior works, can be obtained by setting

κ1 = κ2 = 0 in Theorem 1, which effectively removes the

possibility of x ≥ 1
d

since 1
d
= ∞.

Next, closed-form OP expressions for DF relaying are

obtained in the general case of non-ideal hardware.

Theorem 2: Suppose ρ1, ρ2 are independent and ρi ∼
Gamma(αi, βi) where αi ≥ 1 is an integer and βi > 0 for

i = 1, 2. The OP with DF relaying and non-ideal hardware is

P DF,ni
out (x) = 1−

2
∏

i=1

(

αi−1
∑

j=0

e
−

Nix

Piβi(1−κ2
i
x)

j!

(

Nix

Piβi(1− κ2ix)

)j
)

(30)

for x < 1
δ

where δ , max(κ21, κ
2
2) and P DF,ni

out (x) = 1 for x ≥
1
δ

. In the special case of Rayleigh fading (αi = 1, βi = Ωi),
the OP becomes

P DF,ni
out (x) =







1− e
−

2
∑

i=1

Nix

PiΩi(1−κ2
i
x) , 0 ≤ x < 1

d
,

1, x ≥ 1
d
.

(31)

Proof: By plugging the respective cdfs of Nakagami-m
and Rayleigh fading into Proposition 2, we obtain the desired

results.

We stress that Theorem 2 generalizes the classical results

of [33, Eq. (21)] and [2], [34], which were reported for the

case of DF relaying with ideal hardware. We also note that

Theorem 2 can be straightforwardly extended to multi-hop

relaying scenarios with M > 2 hops. The only difference

would be to let the index i ∈ {1, . . . ,M} account for all M
hops.

IV. ERGODIC CAPACITY ANALYSIS

In the case of ergodic channels, the ultimate perfor-

mance measure is the ergodic channel capacity, expressed in

bits/channel use. Similar to [35]–[37], the term channel refers

to the end-to-end channel with a fixed relaying protocol (e.g.,

AF or DF). When compared to the ergodic capacity with

arbitrary relaying protocols, as in [38], the results for the AF

and DF relaying channels should be interpreted as ergodic

achievable rates. This section provides tractable bounds and

approximations for the ergodic capacities of AF and DF

relaying.

A. Capacity of AF Relaying

While the capacity of the AF relaying channel with ideal

hardware has been well investigated in prior works (see e.g.,

[35]–[37] and references therein), the case of AF relaying

with hardware impairments has been scarcely addressed. In

the latter case, the channel capacity can be expressed as

CAF

ni
,

1

2
E
{

log2
(

1 + γAF
ni

)}

(32)

where the factor 1/2 accounts for the fact that the entire

communication occupies two time slots. The ergodic capacity

can be computed by numerical integration, using the fact that

the pdf of γAF
ni

can be deduced by differentiating the cdf in

Theorem 1. However, an exact evaluation of (32) is tedious,

if not impossible, to obtain in closed-form.

To characterize the ergodic capacity of the AF relaying

channel with fixed or variable gain, an upper bound is derived

by the following theorem.

Theorem 3: For Nakagami-m fading channels, the ergodic

capacity CAF

ni
(in bits/channel use) with AF relaying and non-

ideal hardware is upper bounded as

CAF

ni
≤ 1

2
log2

(

1 +
J

J d+ 1

)

(33)

with

J ,

α1−1
∑

n=0

α2−1
∑

k=0

k
∑

m=0

n+m+2
∑

q=0

(n+ 1)β
n−m+2−2α1

2
1 β

m−n−2k
2

2

(k −m)!(α1 − n− 1)!

×

(

b1
b2

)

n−m+2+2k
2

(

c
b1

)q

c(−1)α1+k−q+1

(

n+m+ 2

q

)

dα1+k−q+1

dtα1+k−q+1

{

e
ct
2b1

×W−n+m+2
2 ,n−m+1

2

(

c

2b1

(

t−
√

t2− 4b1
b2β1β2

))

×W−n+m+2
2 ,n−m+1

2

(

c

2b1

(

t+

√

t2− 4b1
b2β1β2

))}∣

∣

∣

∣

∣

t= 1
β1

+
b1

b2β2

(34)

where W·,·(·) denotes the Whittaker W function [39,

Ch. 9.22]. The parameters b1, b2, c take different values for

fixed and variable gain relaying and are given in Proposition 1.
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Proof: For brevity, the proof is given in Appendix B.

Although the expression in (34) is complicated, we note that

analytical expressions for the derivatives of arbitrary order are

known for the Whittaker W function [32]; thus, the upper

bound in Theorem 3 can be analytically evaluated in an

efficient way. For the purpose of numerical illustrations in

Section VI, we implemented the upper bound in Theorem 3

using the Symbolic Math Toolbox in MATLAB [40].

Nevertheless, a simpler closed-form expression for the er-

godic capacity is achieved by applying the approximation

E

{

log2

(

1 +
x

y

)}

≈ log2

(

1 +
E{x}
E{y}

)

(35)

to (32). For Nakagami-m fading channels, we obtain

CAF

ni
≈ 1

2
log2

(

1+
α1α2β1β2

α1α2β1β2d+ α1β1b1 + α2β2b2 + c

)

(36)

where the parameters b1, b2, c were defined in Proposition 1

for fixed and variable gain relaying. Despite the approximative

nature of this result, we show numerically in Section VI that

(36) is an upper bound that is almost as tight as the one in

Theorem 3. In addition, both expressions are asymptotically

exact in the high-SNR regime.

B. Capacity of DF Relaying

Next, we consider the ergodic capacity of the DF relaying

channel which is more complicated to analyze than the AF

relaying channel; the decoding and re-encoding at the relay

gives additional constraints and degrees-of-freedom to take

into account [38]. For example, an information symbol must be

correctly decoded at the relay before re-encoding, and different

symbol lengths and transmit powers can then be allocated

to the two hops to account for asymmetric fading/hardware

conditions.

For brevity, we consider a strict DF protocol with fixed

power and equal time allocation. Based on [38, Eq. (45)], [35,

Eq. (11a)], and the effective SNDR expression in (17), the

ergodic channel capacity under hardware impairments can be

upper bounded as

CDF

ni
≤ min
i=1,2

1

2
E

{

log2

(

1 +
Piρi

Piρiκ2i +Ni

)}

. (37)

The intuition behind this expression is that the information

that can be sent from the source to the destination is upper

bounded by the minimum of the capacities of the individual

channels. A closed-form upper bound, which holds for any

channel fading distributions, is derived in the new theorem.

Theorem 4: The ergodic capacity CDF

ni
(in bits/channel use)

with DF relaying and non-ideal hardware is upper bounded as

CDF

ni
≤ min
i=1,2

1

2
log2

(

1 +
SNRi

SNRiκ2i + 1

)

. (38)

Proof: For brevity, the proof is given in Appendix B.

This theorem shows clearly the impact of hardware impair-

ments on the channel capacity: the distortion noise shows up

as an interference term that is proportional to the SNR. The

upper bound will therefore not grow unboundedly with the

SNR, as would be the case for ideal hardware [35], [38]. The

next section elaborates further on the high-SNR regime.

V. FUNDAMENTAL LIMITS: ASYMPTOTIC SNR ANALYSIS

To obtain some insights on the fundamental impact of

impairments, we now elaborate on the high-SNR regime.

Recall the SNR definition, SNRi =
PiEρi

{ρi}

Ni
for i = 1, 2,

in (9) and the corresponding Remark 1 on the SNR scaling.

For the ease of presentation, we assume that SNR1, SNR2
grow large with SNR1 = µSNR2 for some fixed ratio 0 < µ <
∞, such that the relay gain remains finite and strictly positive.

Corollary 1: Suppose SNR1, SNR2 grow large with a finite

non-zero ratio and consider any independent fading distribu-

tions on ρ1, ρ2 that are strictly positive (with probability one).

The OP with AF relaying and non-ideal hardware satisfies

lim
SNR1,SNR2→∞

Pout(x) =

{

0, x ≤ 1
κ2
1+κ

2
2+κ

2
1κ

2
2
,

1, x > 1
κ2
1+κ

2
2+κ

2
1κ

2
2
,

(39)

while the OP with DF relaying and non-ideal hardware satis-

fies

lim
SNR1,SNR2→∞

Pout(x) =

{

0, x ≤ 1
max(κ2

1,κ
2
2)
,

1, x > 1
max(κ2

1,κ
2
2)
.

(40)

Proof: Referring back to (14), observe that we can rewrite

the SNDR in terms of SNR1, SNR2 by extracting out the average

fading power as ρi = Eρi{ρi}ρ̃i (where ρ̃i represents a nor-

malized channel gain). By taking the limit SNR1, SNR2 → ∞
(with SNR1 = µSNR2), we can easily see that the end-to-end

SNDR, for variable gain AF relaying, converges to

lim
SNR1,SNR2→∞

γAF-v
ni

=
1

d
=

1

κ21 + κ22 + κ21κ
2
2

(41)

for any non-zero realization of ρ̃1, ρ̃2. Since this happens with

probability one, the OP in (39) is obtained in this case. The

proofs for the cases of fixed gain AF relaying and DF relaying

follow a similar line of reasoning.

A number of conclusions can be drawn from Corollary 1.

First, an SNDR ceiling effect appears in the high-SNR regime,

which significantly limits the performance of both AF and

DF relaying systems. This means that for x smaller than

the ceiling, Pout(x) goes to zero with increasing SNR (at

the same rate as with ideal hardware; see Section VI) while

the OP always equals one for x larger than the ceiling.

This phenomenon is fundamentally different from the ideal

hardware case, in which an increasing SNR makes the end-

to-end SNDR grow without bound and Pout(x) → 0 for any

x. Note that this ceiling effect is independent of the fading

distributions of the two hops. Similar behaviors have been

observed for two-way relaying in [20], although the exact

characterization is different in that configuration.

The SNDR ceiling for dual-hop relaying is

γ∗ ,

{

1
κ2
1+κ

2
2+κ

2
1κ

2
2

for AF protocol,

1
max(κ2

1,κ
2
2)

for DF protocol,
(42)

which is inversely proportional to the squares of κ1, κ2. This

validates that transceiver hardware impairments dramatically

affect the performance of relaying channels and should be

taken into account when evaluating relaying systems. The

ceiling is, roughly speaking, twice as large for DF relaying as
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for AF relaying;8 this implies that the DF protocol can handle

practical applications with twice as large SNDR constraints

without running into a definitive outage state. Apart from this,

the impact of κ1 and κ2 on the SNDR ceiling is similar for

both relaying protocols, since γ∗ is a symmetric function of

κ1, κ2.

We now turn our attention to the ergodic capacity in the

high-SNR regime. In this case, the following result is of

particular importance.

Corollary 2: Suppose SNR1, SNR2 grow large with a finite

non-zero ratio and consider any independent fading distribu-

tions on ρ1, ρ2 that are strictly positive (with probability one).

The ergodic capacity with AF relaying and non-ideal hard-

ware satisfies

lim
SNR1,SNR2→∞

CAF

ni
= log2

(

1 +
1

κ21 + κ22 + κ21κ
2
2

)

. (43)

The ergodic capacity with DF relaying and non-ideal hard-

ware satisfies

lim
SNR1,SNR2→∞

CDF

ni
≤ log2

(

1 +
1

max(κ21, κ
2
2)

)

. (44)

Proof: For AF relaying, the instantaneous SNDR is

upper bounded as γAF
ni

≤ 1
d

for any realizations of ρ1, ρ2.

The dominated convergence theorem therefore allows us to

move the limit in (43) inside the expectation operator of the

ergodic capacity expression in (32). The right-hand side of

(43) now follows directly from (41). For DF relaying, we see

directly from Theorem 4 that CDF

ni
≤ mini log2(1 + 1/κ2i ), as

SNRi → ∞, which gives (44).

Similar to the asymptotic OP analysis, Corollary 2 demon-

strates the presence of a capacity ceiling in the high-SNR

regime. This implies that transceiver hardware impairments

make the ergodic capacity saturate, thereby limiting the per-

formance of high-rate systems. Similar capacity ceilings have

previously been observed for single-hop multi-antenna systems

in [9], [10], [18]. We finally point out that the approximate

capacity expression in (36) becomes asymptotically exact and

equal to (43), for the case of Nakagami-m fading.

A. Design Guidelines for Relaying Systems

Recall from Lemma 1 that κi is the aggregate level of

impairments of the ith hop, for i = 1, 2. The parameter can

be decomposed as

κi =
√

κ2i,t + κ2i,r (45)

where κi,t, κi,r are the levels of impairments (in terms of

EVM) in the transmitter and receiver hardware, respectively.

The hardware cost is a decreasing function of the EVMs,

because low-cost hardware has lower quality and thus higher

EVMs. Hence, it is of practical interest to find the EVM

combination that maximizes the performance for a fixed cost.

To provide explicit guidelines, we define the hardware

cost as
∑2
i=1 ζ(κi,t) + ζ(κi,r), where ζ(·) is a continuously

decreasing, twice differentiable, and convex function. The

8This is easy to see when κ1, κ2 have the same value κ > 0, which gives
γ∗ = 1

κ2 for DF relaying and γ∗ = 1

2κ2+κ4 < 1

2κ2 for AF relaying.

convexity is motivated by diminishing returns; that is, high-

quality hardware is more expensive to improve than low-

quality hardware. The following corollary provides insights

for hardware design.

Corollary 3: Suppose
∑2
i=1 ζ(κi,t) + ζ(κi,r) = Tmax for

some given cost Tmax ≥ 0. The SNDR ceilings in (42) are

both maximized by κ1,t = κ1,r = κ2,t = κ2,r = ζ−1
(

Tmax

4

)

.

Proof: The proof goes by contradiction. Assume

κ∗1,t, κ
∗
1,r, κ

∗
2,t, κ

∗
2,r is the optimal solution and that these

EVMs are not all equal. The hardware cost is a Schur-convex

function (since it is convex and symmetric [41, Proposition

2.7]), thus the alternative solution κ1,t = κ1,r = κ2,t =

κ2,r =
∑2

i=1 κ
∗

i,t+κ
∗

i,r

4 reduces the cost [41, Theorem 2.21].

To show that the alternative solution also improves the SNDR

ceilings, we first note that κ2i = κ2i,t + κ2i,r is a Schur-convex

function, thus it is maximized by κi,t = κi,r for any fixed

value on κi,t + κi,r [41, Theorem 2.21]. In addition, for

any fixed value A = κ21 + κ22, γ∗ in (42) is maximized by

κ21 = κ22 = A
2 , which is easily seen from the structure of

γ∗ = 1
A+Aκ2

1−κ
4
1

for AF and γ∗ = 1
max(κ2

1,A−κ2
1)

for DF. The

alternative solution decreases cost and increases (42), thus the

EVMs must be equal at the optimum.

Corollary 3 shows that it is better to have the same level

of impairments at every9 transceiver chain, than mixing high-

quality and low-quality transceiver chains. In particular, this

tells us that the relay hardware should ideally be of the same

quality as the source and destination hardware.

As a consequence, we provide the following design guide-

lines on the highest level of impairments that can theoretically

meet stipulated requirements.

Corollary 4: Consider a relaying system optimized accord-

ing to Corollary 3. To support a given SNDR threshold, x, it

is necessary to have κ2i ≤
√

1
x
+ 1 − 1 for AF relaying and

κ2i ≤ 1
x

for DF relaying for i = 1, 2.

Proof: Corollary 3 prescribes that κ1 = κ2. Plugging this

fact into (42), we obtain equations that give the expressions

stated in this corollary.

This corollary shows that hardware requirements are looser

for DF than for AF, which is also illustrated in Section VI. If

the SNDR threshold is substituted as x = 22R − 1, then we

achieve the corresponding necessary conditions for achieving

an ergodic capacity of R bits/channel use.

Observe that the guidelines in Corollary 4 are necessary,

while the sufficiency only holds asymptotically in the high-

SNR regime. Thus, practical systems should be more con-

servatively designed to cope with finite SNRs and different

channel fading conditions.

VI. NUMERICAL ILLUSTRATIONS

In this section, the theoretical results are validated by a set of

Monte-Carlo simulations. Furthermore, the concepts of SNDR

and capacity ceilings and the practical design guidelines of

Section V are numerically illustrated.

9There are four transceiver chains: transmitter hardware at the source,
receiver and transmitter hardware at the relay, and receiver hardware at the
destination.
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Fig. 2. Outage probability Pout(x) for AF relaying with ideal hardware and
with hardware impairments of κ1 = κ2 = 0.1.
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Fig. 3. Outage probability Pout(x) for DF relaying with ideal hardware and
with hardware impairments of κ1 = κ2 = 0.1.

A. Different Channel Fading Conditions

First, we consider the impact of hardware impairments on

the OP, Pout(x), for two different thresholds: x = 22 − 1 = 3
and x = 25 − 1 = 31. Keeping in mind that the relay

communication occupies two time slots, these correspond to

rates of 1 and 2.5 bits/channel use, respectively. We consider

a symmetric scenario with fixed levels of impairments of

κ1 = κ2 = 0.1, independent Nakagami-m fading channels

with α1 = α2 = 2, and the same average SNR at both

channels. Recall that the average SNRs are defined in (9) and

note that we will not specify β1, β2, P1, P2 in this section since

these parameters are implicitly determined by the average

SNR.10 Increasing the SNR is interpreted as decreasing the

propagation distance; see Remark 1.

Fig. 2 and Fig. 3 show the OP as a function of the average

SNR for AF and DF relaying, respectively. The curves in Fig. 2

and Fig. 3 were generated by the analytical expressions in

Theorems 1 and 2 and show perfect agreement with the marker

symbols which are the results of Monte-Carlo simulations. As

10Observe that while the shape parameters α1, α2 affect the SNR distribu-
tions of SNR1 and SNR2, respectively, any selection of the scaling parameter
βi and the transmit power Pi that gives the same value of the product Piβi

will give exactly the same performance and SNR distribution.
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Fig. 4. Outage probability Pout(3) for fixed gain AF relaying with ideal
hardware and with hardware impairments of κ1 = κ2 = 0.1. Different shape
parameters α1, α2 are considered in the fading distributions and different
asymmetric SNRs: SNR1 = µSNR2. The strongest channel has an SNR of 20
dB.

shown in these figures, there is only a minor performance

loss caused by transceiver hardware impairments in the low

threshold case of x = 3. However, there is a substantial

performance loss when the threshold is increased to x = 31.

More precisely, AF relaying (with either variable or fixed gain)

and DF relaying experience losses of around 5 dB and 2 dB in

SNR, respectively, for x = 31. The DF protocol is thus more

resilient to hardware impairments, which was expected since

the distortion noise of the first hop does not carry on to the

second hop in this protocol. Nevertheless, the OP curves for

AF and DF relaying with non-ideal hardware have the same

slope as with ideal hardware; hence, hardware impairments

cause merely an SNR offset that is manifested as a curve

shifting to the right in Figs. 2 and 3. We also note that variable

gain relaying outperforms the fixed one in most scenarios of

interest, which is in line with the observations in [3].

Next, we illustrate the impact of the shape parameters

α1, α2 of the Nakagami-m fading distributions. We also

consider different asymmetric setups where SNR1 = µSNR2,

for µ ∈ { 1
5 , 1, 5}, while the largest of the SNRs is fixed

as max(SNR1, SNR2) = 20 dB. Fig. 4 shows the OP for

x = 3 with ideal hardware and with hardware impairments

characterized by κ1 = κ2 = 0.1. We only show the result for

fixed gain AF relaying for brevity. Observe that increasing the

shape parameters will monotonically decrease the OP and thus

improve the system performance. This is because the variance

of the channel gain ρi decreases when increasing αi, while we

keep the average SNR fixed. Moreover, we note that it is far

better to have the same SNR at both hops than asymmetries.

In asymmetric cases, we note from Fig. 4 that it is better

to have a strong first hop and a weak second hop than vice

versa. This is explained by the amplification of noise in the

AF protocol; however, this effect disappears for variable gain

AF relaying and DF relaying, which is easily seen from the

symmetric SNDR expressions in (14) and (17).



10 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNDR Threshold x [dB]

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

 (
O

P
)

 

 

AF (Fixed Gain)

AF (Variable Gain)

DF

SNDR Ceilings

Ideal

Hardware

Hardware

Impairments:

κ1 = κ2 = 0.15

Fig. 5. Outage probability Pout(x) for AF and DF relaying for different
thresholds x. As proved in Corollary 1, there exist SNDR ceilings under
transceiver hardware impairments.

B. SNDR and Capacity Ceilings

Next, we illustrate the existence of SNDR ceilings. To this

end, we consider a fixed average SNR of 30 dB at both

channels and independent Nakagami-m fading channels with

α1 = α2 = 2. Fig. 5 shows the OP, Pout(x), as a function

of the threshold x (in dB) using either ideal hardware or

hardware with impairments of level κ1 = κ2 = 0.15. For

low thresholds, the OPs for AF (with fixed or variable gain)

and DF are only slightly degraded by hardware impairments.

The behavior is, however, very different as x increases; the

ideal hardware case gives a smooth convergence towards 1,

while the practical case of hardware impairments experiences

a quick convergence to the respective SNDR ceilings. The

value of these ceilings were derived in Corollary 1. As noted

earlier, DF relaying is more resilient to hardware impairments

and its SNDR ceiling is roughly twice as large as that of AF

relaying.

The similar concept of an ergodic capacity ceiling is il-

lustrated in Fig. 6, which shows the capacity of variable

gain AF relaying as a function of the average SNR. Both

channels are modeled as independent Nakagami-m fading

with α1 = α2 = 2. The capacity is shown for ideal

hardware and for hardware with impairments characterized

by κ1 = κ2 ∈ {0.05, 0.15}. Fig. 6 confirms that hardware

impairments have small impact at low SNRs, but are very

influential at high SNRs. More precisely, the ergodic capacity

saturates and approaches log2(1+
1

κ2
1+κ

2
2+κ

2
1κ

2
2
), as proved by

Corollary 2. As the capacity ceiling is determined by the level

of impairments, it increases when κ1, κ2 are decreased. Fig. 6

also shows the upper capacity bound from Theorem 3 and

the simplified capacity approximation from (36). The former

gives a somewhat tighter result, but both are asymptotically

exact in the high-SNR regime. Although the expression (36)

was derived in an approximative manner, we observe that it

can indeed be considered as an upper bound on the ergodic

capacity and, more importantly, is far easier to evaluate.

C. Design Guidelines

We conclude this section by illustrating some of the guide-

lines for designing practical relaying systems that were ob-
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As proved in Corollary 2, there exist capacity ceilings under transceiver
hardware impairments.
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Fig. 7. Outage probability Pout(15) for AF and DF relaying for different
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at each curve is marked with a ring.

tained in Section V-A. For simplicity, we set ζ(κ) = κ and

thus limit the hardware cost by having a total EVM constraint

of
∑2
i=1 κi,t+κi,r = Tmax. Corollary 3 proved that the SNDR

ceilings are maximized by setting all κ-parameters equal to
Tmax

4 . It is intuitively clear that we should have κ1,t = κ1,r
and κ2,t = κ2,r (see Lemma 1), but it is less obvious that

the aggregate κ-parameters κ1 and κ2 should take the same

value. To validate this property we consider an asymmetric

setup where the first hop is twice as strong: SNR1 = 2SNR2.

The channels are modeled as independent Nakagami-m fading

with α1 = α2 = 2.

Fig. 7 shows the OP Pout(15) for two different average

SNRs on the first hop: SNR1 ∈ {20, 30} dB. The horizontal

axis shows the level of impairments of the first hop, κ1,

while the parameter of the second hop is selected to yield

κ1 + κ2 = 0.3. Despite the asymmetric SNRs, we observe

that the OP with AF relaying (with either fixed or variable

gain) is minimized by setting κ1 = κ2 = 0.3
2 . This shows that

the design guideline in Corollary 3, which was obtained by

high-SNR analysis, can be applied successfully at finite SNRs.

We also observe that the OP with DF relaying is minimized

by having a slightly higher hardware quality on the weakest
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Fig. 8. Outage probability Pout(15) for AF and DF relaying for different
symmetric levels of impairments κ1 = κ2.

hop than on the strongest hop. This indicates that our general

guideline should not be seen as the true optimum, but as

a starting point for further adjustments. Furthermore, in the

extreme cases when one of the hops is ideal (κ1 = 0 or

κ2 = 0) the system is in full outage; thus, having one ideal

hop does not help if the other hop has poor hardware quality.

Based on these insights, we now elaborate on the case

with symmetric levels of impairments: κ1 = κ2. Suppose

our system should operate using x = 24 − 1 = 15 (i.e.,

2 bits/channel use) and we want to achieve a certain value

on the outage probability Pout(15). Fig. 8 shows the OPs

for AF and DF relaying at two different average SNRs:

SNR1 = SNR2 ∈ {20, 30} dB. Focusing on the 30 dB case

and requiring that Pout(15) ≤ 10−2, we can identify three

possible hardware operating regimes from Fig. 8:

1) Fixed gain AF relaying with κ1 = κ2 ≤ 0.091;

2) Variable gain AF relaying with κ1 = κ2 ≤ 0.149;

3) DF relaying with κ1 = κ2 ≤ 0.218.

The different acceptable levels of impairments show that

sophisticated protocols (AF with variable gain relaying or,

preferably, DF relaying) are more robust to hardware impair-

ments and, thus, can operate with hardware of lower quality.

Fig. 8 also shows the necessary conditions of Corollary 4,

which act as upper bounds on the level of impairments that

can possibly achieve an OP below 1. Although not sufficient,

these necessary conditions provide a rough estimate of where

the level of impairments must lie.

VII. CONCLUSIONS

Physical transceiver hardware introduces impairments that

distort the emitted and received signals in any communication

system. While the impact of individual hardware impairments

(e.g., phase noise, I/Q imbalance, and HPA non-linearities)

have been well investigated in the corresponding literature, it

is the aggregate impact of all hardware impairments and the

respective compensation algorithms that determine the prac-

tical system performance. Motivated by this, we considered

a generalized impairment model that has been validated in

prior works for single-hop communications and applied it on

flat-fading dual-hop relaying, considering both AF and DF

protocols. Our analytical and numerical results manifested that

the performance of dual-hop relaying is notably affected by

these hardware impairments, particularly when high achievable

rates are required. Closed-form expressions for the exact

and asymptotic OPs were derived under Nakagami-m fading,

along with tractable upper bounds and approximations for the

ergodic capacities. These expressions effectively characterize

the impact of impairments and demonstrate the existence

of fundamental SNDR and capacity ceilings that cannot be

crossed by increasing the signal powers or changing the fading

conditions. Note that even very small hardware impairments

will ultimately limit the performance. These observations also

hold true for every individual subcarrier in dual-hop OFDM

systems.

We finally derived some useful design guidelines for op-

timizing the performance of hardware-constrained relaying

systems: 1) Use the same hardware quality on all transceivers;

2) Follow the necessary conditions in Corollary 4 to find

hardware qualities that can achieve the required system per-

formance; and 3) More sophisticated relaying protocols (e.g.,

DF) are also more robust to hardware impairments.

APPENDIX A

USEFUL LEMMAS

This appendix contains some useful lemmas. The first

lemma derives the cdf of SNDR-like expressions and is used

to obtain the OPs under Nakagami-m fading.

Lemma 3: Suppose ρ1, ρ2 are independent non-negative

random variables with cdfs Fρi(·) and pdfs fρi(·) for i = 1, 2.

Let b1, b2, c, d be some positive scalars. The random variable

Λ ,
ρ1ρ2

ρ1ρ2d+ ρ1b1 + ρ2b2 + c
(46)

has a cdf FΛ(x) = 0 for x < 0, FΛ(x) = 1 for x ≥ 1
d

, and

FΛ(x) =

1−
∫ ∞

0

(

1−Fρ1
(

b2x

(1−dx) +
b1b2x

2

1−dx +cx

z(1−dx)

))

fρ2

(

z+
b1x

1−dx

)

dz

(47)

for 0 ≤ x < 1
d

. Next, let ρ1 ∼ Gamma(α1, β1) and ρ2 ∼
Gamma(α2, β2), where α1, α2 are strictly positive integers.

Then, (47) becomes

FΛ(x) = 1−2e
− x

1−dx

(

b1
β2

+
b2
β1

) α1−1
∑

j=0

α2−1
∑

n=0

j
∑

k=0

C(j, n, k)

×
(

x

1− dx

)α2+j (

b1b2 +
c(1− dx)

x

)

n+k+1
2

×Kn−k+1

(

2

√

b1b2x2

β1β2(1− dx)2
+

cx

β1β2(1− dx)

)

(48)

where Kν(·) denotes the νth-order modified Bessel function

of the second kind and

C(j, n, k) ,
bα2−n−1
1 bj−k2 β

k−n−1−2j
2

1 β
n−k+1−2α2

2
2

k! (j − k)!n! (α2 − n− 1)!
. (49)
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Proof: The cdf of Λ is defined as FΛ(x) = Pr{Λ ≤ x}.

Since Λ in (46) is a function of both ρ1 and ρ2, we apply the

law of total probability to condition on ρ2. This gives

Pr{Λ ≤ x} =

∫ ∞

0

Pr{Λ ≤ x|ρ2}fρ2(ρ2)dρ2 (50)

= 1−
∫ ∞

0

(

1− Pr{Λ ≤ x|ρ2}
)

fρ2(ρ2)dρ2

= 1−
{

∫∞
b1x

1−dx

(

1− Fρ1

(

(b2ρ2+c)x
ρ2(1−dx)−b1x

))

fρ2(ρ2)dρ2, x <
1
d
,

∫∞

0
(1− 1)fρ2(ρ2)dρ2 = 0, x ≥ 1

d
,

where the third equality follows from evaluating the condi-

tional probability Pr{γ ≤ x|ρ2} using Lemma 2. This proves

that FΛ(x) = 1 for x ≥ 1
d

. For x < 1
d

, we further note that

∫ ∞

b1x

1−dx

(

1− Fρ1

(

(b2ρ2 + c)x

ρ2(1−dx)− b1x

))

fρ2(ρ2)dρ2

(a)
=

∫ ∞

0

(

1−Fρ1
(

b2x

(1−dx) +
b1b2x

2

1−dx +cx

z(1−dx)

))

fρ2

(

z+
b1x

1−dx

)

dz

(b)
=

α1−1
∑

j=0

e
−
(

b2x

β1(1−dx)
+

b1x

β2(1−dx)

)

j!βj1β
α2
2 Γ(α2)

∫ ∞

0

(

b2x

(1−dx) +
b1b2x

2

1−dx +cx

z(1−dx)

)j

×
(

z+
b1x

1−dx

)α2−1

e
− 1

z

(

b1b2x2

β1(1−dx)2
+ cx

β1(1−dx)

)

− z
β2 dz

(51)

where (a) follows from a change of variables z = ρ2 − b1x
1−dx

and gives (47). Furthermore, (b) follows by plugging in the

cdf and pdf from (7)–(8). The remaining integral is of the form

in Lemma 4. The final expression in (48) follows from that

lemma and some algebraic simplifications.

The following lemma summarizes an approach from [32].

Lemma 4: For any constants c1, c2, c3, c4 with ℜ(c3) > 0,

ℜ(c4) > 0 and some positive integers p1, p2, we have

∫ ∞

0

(

x+ c1
)p1
( 1

x
+ c2

)p2
e−(

c3
z
+zc4)dx = 2

p1
∑

n=0

p2
∑

k=0

(

p1
n

)

×
(

p2
k

)

cp1−n1 cp2−k2

(

c3
c4

)

n−k+1
2

Kn−k+1 (2
√
c3c4) .

(52)

Note that ℜ(·) denotes the real part of a complex number.

Proof: The binomial formula gives the expansions

(

x+ c1
)p1

=

p1
∑

n=0

(

p1
n

)

xncp1−n1 (53)

( 1

x
+ c2

)p2
=

p2
∑

k=0

(

p2
k

)

x−kcp2−k2 (54)

which transform the left-hand side of (52) into

p1
∑

n=0

p2
∑

k=0

(

p1
n

)(

p2
k

)

cp1−n1 cp2−k2

∫ ∞

0

xn−ke−(
c3
z
+zc4)dx.

(55)

Finally, (55) is transformed into the right-hand side of (52) by

using the integral identity

∫ ∞

0

xn−ke−(
c3
z
+zc4)dx = 2

(

c3
c4

)

n−k+1
2

Kn−k+1 (2
√
c3c4)

(56)

from [39, Eq. (3.471.9)].

APPENDIX B

PROOF OF THEOREMS

Proof of Theorem 3

The end-to-end SNDRs for non-ideal hardware in (13)–(14)

are of the form

ρ1ρ2
ρ1ρ2d+ ρ1b1 + ρ2b2 + c

=

ρ1ρ2
ρ1b1+ρ2b2+c
ρ1ρ2

ρ1b1+ρ2b2+c
d+ 1

. (57)

By defining ψ ,
ρ1ρ2

ρ1b1+ρ2b2+c
, it means that the ergodic

capacity in (32) is of the form 1
2E

{

log2

(

1 + ψ
ψd+1

)}

. We

note that the function log2

(

1 + ψ
ψd+1

)

is concave of ψ for

ψ ≥ 0, since its second derivative is

−(2d2ψ + 2d(ψ + 1) + 1)

(loge(2)(dψ + 1)2(dψ + ψ + 1)2)
< 0. (58)

We can therefore apply Jensen’s inequality to obtain

CAF

ni
=

1

2
E

{

log2

(

1 +
ψ

ψd+ 1

)

}

≤ 1

2
log2

(

1+
E{ψ}

E{ψ}d+ 1

)

.

(59)

Finally, the expectation

J , E{ψ} =
1

b2
E

{

ρ1ρ2

ρ1
b1
b2

+ ρ2 +
c
b2

}

(60)

equals (34) by using the moment generating function derived

in [32, Theorem 3].11

Proof of Theorem 4

It was shown in the proof of Theorem 3 above that

E

{

log2

(

1 +
ψ

ψd+ 1

)}

≤ log2

(

1 +
E{ψ}

E{ψ}d+ 1

)

(61)

due to Jensen’s inequality and the fact that log2(1 + ψ
ψd+1 )

is a concave function of ψ for ψ ≥ 0. In our case, we set

ψ = Piρi
Ni

, for i = 1, 2, thus E{ψ} =
PiEρi

{ρi}

Ni
= SNRi. By

applying this on each expectation in (37), we obtain (38).
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