
A New Look at Hardware Maze Routing
John A. Nestor
ECE Department
Lafayette College

Easton, Pennsylvania 18042
(610) 330-5411

nestorj@lafayette.edu

ABSTRACT
This paper describes a new design for a hardware accelerator to
support grid-based Maze Routing. Based on the direct mapped
approach of Breuer and Shamsa [3], this work refines their
design to substantially reduce the hardware requirements of
each processing element while at the same time adding support
for mulitilayer routing and fast iterative routing. An RTL
implementation has been developed for this design in VHDL,
and initial results show promise for its realization using ASIC,
custom, or FPGA technology.

1. INTRODUCTION
Wire routing is a key problem in electronic design automation.
While routing has been studied extensively over the years and
many different algorithms have been explored, the classic grid-
based Lee algorithm for Maze Routing [1] remains popular as a
basic ingredient of many approaches.

Figure 1 shows the basic operation of the Lee Algorithm, as
modified by Akers [2]. The routing surface is represented as a
grid, where each gridpoint is connected to adjacent gridpoints
to the north, south, east, and west. Given source “S” and
target “T” gridpoints, the goal of the Lee Algorithm is to find
the shortest existing connection between these points, while
avoiding any obstacles. It operates in two phases, commonly
known as expansion and traceback.

During the expansion phase, the algorithm searches outward
from the source terminal in a breadth-first fashion, labeling each
visited node with a direction that indicates the direction of the
shortest path back to the source. Each time a node is labeled,
its unlabeled neighbors are placed at the end of a queue for
later processing, so that the search expands outward until the
target is reached. The exhaustive nature of this search
guarantees that a shortest path will be found if any path exists,
but is computationally expensive - O(d2) for a connection of
distance d.

When expansion is complete, each node between the source
and target is labeled with the direction of the shortest path
from that node to the source. The traceback phase simply
follows these labeled nodes from the target to the source to find

a shortest-path connection. This requires exactly d steps for a
connection of distance d.

The ability of the Lee Algorithm to find the shortest path
connection makes it very attractive in spite of its
computational cost. It remains popular in grid-based routers,
often as a “fall-back” that is applied when faster methods fail.

S

T

S

T

S

T

S

T

S

T

S

T

Initialization Expand 1

 Obstacle

Expand 2

Expand 3 Expand 4 Expand 5 / TB

 Obstacle

 Obstacle

 Obstacle

 Obstacle Obstacle

Figure 1 – The Lee Algorithm

Because of the Lee Algorithm’s popularity, there have been
several attempts to use hardware to reduce its time complexity.
In grid-based hardware accelerators, an array of addressable
processing elements directly represents the gridpoints and
performs routing in a single-instruction multiple-data (SIMD)
fashion. Grid-based accelerators can be characterized as Direct
Grid accelerators, in which each processing element is mapped
to a single gridpoint, and Virtual Grid accelerators, in which
each processing element is mapped to several gridpoints.

The first proposal for a Direct Grid accelerator was Breuer and
Shamsa’s L-Machine [3]. Each processing element in the L-
Machine, known as an L-Cell, is a small FSM attached to a
labeling register. Neighboring processing elements are
connected, allowing expansion and traceback to be performed
by the elements in SIMD mode. Decoder hardware attached to
the array allows individual processing elements to be
addressed, initialized, and queried. Similarly, encoder
hardware allows processing elements to identify themselves to
an attached control unit by their address when a significant
event occurs (for example, when the target is reached). The key
advantage of the L-Machine is that it reduces the time
complexity of the Lee Algorithm from O(d2) to O(d). Its
obvious disadvantage is its hardware requirement of N2

processing elements for an N X N grid. Even worse,
supporting multiple layers in a straightforward way requires
N2 processing elements for each layer, which quickly becomes
impractical.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

GLSVLSI’02, April 18-19, 2002, New York, New York, USA.

Copyright 2002 ACM 1-58113-462-2/02/0004…$5.00.

Virtual Grid [4-6] routing accelerators use a smaller number of
processing elements by mapping more than one grid point to
each processing element. This reduces the size of the array and
allows support for multiple layers but substantially increases
the complexity of the processing elements, since they must now
keep track of multiple gridpoints and the mappings of adjacent
gridpoints.

This paper proposes a return to the Direct Grid approach for
routing accelerators. A new processing element design has
been developed that focuses primarily on the expansion phase,
producing a simpler implementation. When combined with
recent advances in integrated circuit technology, the
construction of large arrays of processing elements becomes
much more feasible. An extension to this design supports
multiple layers by time-multiplexing a single array of
processing elements over each layer. This trades off routing
time to save area, but does so in the smallest dimension of the
routing problem. Additional extensions support rapid
initialization of multiple processing elements in parallel,
which can be used to support iterative routing schemes that are
popular in many modern routers.

The feasibility of this approach is demonstrated through
implementations of the processing element design using a
standard-cell ASIC gate library and an FPGA. The initial
success demonstrated here favors further research to develop
more detailed designs and to evaluate the performance of these
designs; this work is ongoing.

This paper is organized as follows. Section 2 describes the
general approach of the new accelerator design. Section 3
describes the specific design of a single-layer accelerator,
while Section 4 describes the extension of this approach to
support multi-layer routing. Section 5 presents the current
results of this project, and Section 6 offers conclusions and
directions for future research.

2. THE GENERAL APPROACH
To design an effective hardware accelerator for maze routing, it
is important to understand how it is used in routing tools.

First, these routing tools must wire a large number of
connections. Since the Lee algorithm can only make one
connection at a time, it is used iteratively – starting with an
empty or partially complete routing surface, the algorithm is
applied to successive nets until all nets are routed. This
brings up a related issue: while the Lee algorithm is
guaranteed to find a shortest path connection for a single net,
the connections placed on the routing surface for each net form
obstacles for later nets. These obstacles may make the routing
of later nets longer than optimal, and sometimes impossible to
complete. This requires the use of a “rip-up-and-reroute” [7]
strategy in which the connections for some nets are removed
and re-routed in a different order in an attempt to improve the
routing.

Second, modern design technologies require the use of several
layers of interconnect. Current VLSI processes provide up to 6
layers, while multilayer printed circuit boards may use more
than 30 layers. Thus to be effective, any attempt to accelerate
maze routing must accommodate multiple layers efficiently.

To meet these needs, we propose a new architecture for a
hardware routing accelerator. It is based on Breuer and
Shamsa’s L-Machine, with some key modifications that reduce
its implementation cost, support multi-layer routing and speed

up rip-up-and-reroute. To acknowledge its legacy, we refer to
our design as the “New L-Machine” or NL-Machine.

Figure 2 shows the general organization of the NL-Machine.
Like the L-Machine, it consists of an array of processing
elements (called “NL-Cells”) and an attached control unit (not
shown). Each NL-Cell is a finite state machine that represents
the status of the gridpoint during routing. Local connections
between adjacent cells allow the expansion process to proceed
in parallel, reducing the worst-case performance of expansion
from O(d2) to O(d). The control unit communicates with NL-
cells using global signals CMD and STATUS. The CMD
signal broadcasts commands from the control unit to all cells in
parallel. Some commands are SIMD commands that specify an
action to be performed by all cells, while others apply only to
cells selected using row select and column select lines that are
attached to decoders on the periphery of the array. The
STATUS signal connects all cells to the control unit via a
tristate/wired-NOR bus.

column decoder

column address in

NL-cell

status
(global)

cmd
(global)

(a) Overall Array

ca1 ca2

ra1

ra2

clock
(global)

row
address
in

2

3

row
select

clock
(global)

cmd
(global)

status
(global)

“north” neighbor

“south” neighbor

column
select

(b) NL-Cell Detail

C

S

XO XO

XO

XO

A

EI

NI

WI

SI

Figure 2 – NL-Machine Organization

While based on the L-Machine, the NL-Machine has several
key differences:

a. Reduced complexity of Processing Element. In the
original L-Machine, the L-Cell processing element
supported both the expansion and traceback phases in
SIMD mode. This has great advantage for the expansion
phase, since it reduces execution time from O(d2) to O(d).
However, there is no similar advantage for the traceback
phase, which requires d steps whether it is done by the
processing elements or the attached control unit. Moving
this responsibility to the control unit significantly
reduces the complexity of the NL-Cell, which is replicated

N2 times in an N X N array, while increasing the cost of
the single control unit. Additional changes further reduce
the complexity of the NL-Cell by reducing the number of
states in the FSM.

b. Reduced complexity of supporting hardware. In the
original L-Machine, cell outputs were connected to both
row and column decoders and row and column encoders.
The decoders allowed the control unit to address and
initialize individual cells, while the encoders allowed
individual cells to indicate their address to the control
unit during expansion (when the target was reached), and
during traceback (to indicate the path of the connection).
In contrast, the NL-Machine uses only row and column
decoders. The tasks requiring the encoders in the original
L-machine are performed instead by addressing and
polling cells using the decoders and the STATUS signal.

c. Support for multiple nets, iterative routing, and “rip-up-
and-reroute”. Because most modern routers repeatedly
apply the Lee algorithm for successive nets, our design
provides support to rapidly initialize multiple processing
elements in parallel. For example, during a “rip-up” step
several cells must be initialized to reflect the removal of a
net. In the original L-machine, this step would require
repeated individual accesses to initialize each cell
assigned to that net. The NL-Machine uses a modified
decoder design that can select a range of rows or columns,
as shown in Figure 3. Each modified decoder accepts an
upper and lower address, and selects all rows or columns
in this range. Combining row and column decoders
allows the selection of an arbitrary rectangular region of
cells, as shown in Figure 4. Using this approach, ripping
up a net can be reduced to one operation for each
horizontal segment in the connection, reducing the time of
this common operation.

d. Cost-effective support for multiple layers. Multiple
layers are essential in modern routers. The straightforward
approach to supporting multiple layers in the L-Machine
is to extend array cells to connect in the vertical as well as
horizontal directions and add an additional array of cells
for each layer. Thus supporting L layers of an N X N grid
would require N X N X L processing elements, each with
connections between adjacent cells. Such an approach is
not feasible even with today’s technology. Instead, the
NL-Machine time-multiplexes each NL-Cell over a number
of layers, storing the state of each layer stored in a shift
register that circulates the data. While this increases the
execution time by a factor of L, we believe that this is a
reasonable tradeoff given that the major direction of
expansion will be in the horizontal direction. More detail
about this feature is given in Section 4.

The next two sections discuss the detailed operation of the
NL-Machine for the single-layer and multiple-layer cases,
respectively.

3. THE SINGLE-LAYER NL-MACHINE
The processing element of the NL-Machine is called the NL-
Cell and is analogous to the L-Cell processing element in the
original L-Machine. Like the L-Cell, it performs expansion by
communicating with neighboring cells in SIMD mode.
However, there are a number of differences in the NL-CELL
design which significantly reduce its implementation cost. As
mentioned earlier, the NL-Cell does not directly participate in

the traceback phase, which reduces the cost significantly. In
addition, storage elements are reduced by eliminating states,
using a binary encoding when storing the traceback direction,
and combining state variable storage with traceback direction
storage. Finally, the single bidirectional connection between
adjacent cells has been replaced by two connections: an
output connection labeled “XO” that is true when the cell is
in an expanded state, and an input connection that is true when
the neighboring cell is in an expanded state.

==i

==i

seli

lower
upper

ci

ci+1

sel0

sel1

seli

selN

•
•
•

•
•
•

upper

lower

ci

ci+1

Figure 3 – Extended Decoder Design

column decoder

0

1

2

3

0 1 2 3

lower = 1 upper = 2

lower = 1

upper = 3

Figure 4 – Selecting Multiple Cells with Extended Decoder

The resulting design is a FSM with 6 states: B (blank), BL
(blocked), expanded east (XE), expanded west (XW), expanded
north (XN) and expanded south (XS). The function of the NL-
Cell is controlled by four commands: CLEAR, SET, EXPAND,
and TRACE along with row and column select inputs RSEL
and CSEL, as summarized in Table 1.

To initialize the array of NL-cells for routing, the control unit
asserts the CLEAR command, which operates in two modes. In
SIMD mode, all cells in an expanded state (XE, XW, XN, or XS)
are set to the blank state B. This has the effect of clearing the
expanded cells while leaving cells in the blocked (BL) state
unchanged. This is used to prepare to route a new net while
preserving existing obstacles and previously routed
connections. In the second mode, the CLEAR command sets
all selected cells (i.e., cells where RSEL=CSEL=1) to the blank
state B, regardless of their current state. This is used to remove
obstacles and rip-up previous connections and can be
performed on several cells in parallel using the modified
decoder design.

Next, the control unit specifies source terminals for a desired
connection using the SET command, which sets selected cells
to an arbitrary expand state (currently XE). Note that the XE
state is used instead of an explicit “Source” state as in the
original L-machine to reduce the cell’s implementation cost,
since the control unit keeps track of the source location
anyway. The SET command has no effect when cells are not
selected, allowing it to double as a “no-op” in SIMD mode.

The control unit then starts the expansion process using the
EXPAND command in SIMD mode over several successive
clock cycles. During each clock cycle a cell in the blank (B)
state enters an expansion state if an adjacent cell is asserting
inputs EI, WI, NI, or SI. The direction from which expansion
occurs is encoded into each of the four states XE, XW,XN, or
XS. Each of these states is assigned a 3-bit state code with a 1
in the most significant bit and a 2-bit direction code in the two
least significant bits.

When a cell is entering an expansion state, it asserts status bit
S1, which is connected to a wired-NOR status bus, as in the
original L-Machine. This provides a “watchdog” function
since it indicates that expansion has terminated when no nodes
“pull down” S1. A cell entering an expansion state will also
assert status bit S0 when it is selected by the RSEL and CSEL
inputs. This is used by the control unit to address and poll the
status of the cell at the target of the connection - when S0 is
asserted, this signals the control unit that the target has been
found and that the expansion phase has completed
successfully.

Table 1 – NL-Cell State Sequencing

CMD RSEL
*

CSEL

N
I

S
I

W
I

E
I

PS NS S
1

S
0

CLEAR 0 – – – – XN
+
XS
+

XE
+

XW

B - -

CLEAR 1 – – – – – B - -

SET 1 – – – – – XE - -

TRACE 1 – – – – – BL D
1

D
0

EXPD. 0 1 – – – B XN 1 0

EXPD. 1 1 – – – B XN 1 1

EXPD. 0 0 1 – – B XS 1 0

EXPD. 1 0 1 – – B XS 1 1

EXPD. 0 0 0 1 – B XW 1 0

EXPD. 1 0 0 1 – B XW 1 1

EXPD. 0 0 0 0 1 B XE 1 0

EXPD. 1 0 0 0 1 B XE 1 1

The traceback phase is performed explicitly by the control unit.
It starts by addressing the target cell and applying the TRACE
command. This has two effects: (1) it returns the encoded
traceback direction to the control unit via status signals S1
and S0, and (2) it sets the target cell to the BL (blocked) state
to indicate that it has been used for a connection. The control
unit then uses the traceback direction from the status signal to
select an adjacent cell that is closer to the source, and again
applies the TRACE command to repeat the process. This
continues until source node is reached, and a full connection
has been specified. While this process requires the explicit
cooperation of the control unit, it completes in the same
number of steps as the original L-machine. However, it

accomplishes this with significantly less hardware since the
traceback hardware is not duplicated in each cell.

The TRACE command is also used during the initialization
phase to mark cells as obstacles by placing them in the BL
(blocked) state. In this case, the direction code asserted on
signals S1 and S0 is ignored. This may be applied to arbitrary
rectangular regions of cells using the extended decoder
described previously, which speeds up the initialization
process.

Multiple-point nets are routed using a procedure similar to
that in the L-machine, where an initial pair of points is chosen
as source and target and connected using the above procedure.
Next, all points on the path between these point are set to be
the source of a new search using the SET command. This will
take multiple clock cycles since each straight-line segment
must be initialized separately. Next, another point on the net
is selected as a target, and expansion proceeds as before. This
process is repeated until all points in the net are connected
together.

4. THE MULTI-LAYER NL-MACHINE
Full-grid hardware routers like the L-machine are normally
limited to a single layer of interconnect. Since current IC
processes use up to 7 layers of interconnect and printed circuit
boards use more than 30 layers, this limitation is unacceptable
for practical applications.

Extending a full-grid hardware router to multiple layers is not
difficult in concept. Each routing cell can be easily modified to
expand in vertical as well as horizontal directions. For
example, the cell design described above can be extended with
two additional expansion inputs for vertical directions (up and
down) and additional “layer select” input so that each layer
can be selected separately, and two additional expansion
states. However, since the N X N array must be duplicated for
each layer this approach is impractical.

In this section, we propose a different approach which is based
on the observation that although the number of layers
supported in modern manufacturing processes is growing, this
number remains much smaller than the dimensions of the
horizontal routing grid. Moreover, local communication
between vertical layers is limited to two directions, rather than
four between the horizontal gridpoints. This suggests an
approach where the single layer gridpoint processor is
extended to process points on more than one layer using time-
division multiplexing.

Figure 5 shows the architecture of a single processing element
which implements this idea. Each of these NLM-cells
implements routing for one horizontal position on multiple
layers. It accomplishes this by storing state information for
each layer in a 3-bit wide shift register which circulates
information to a shared state sequencer. The shift register has a
number of stages that is equal to the number of layers
supported by the router. The bottom stage of the shift register
is attached to a state sequencer which determines the next state
of that layer. The states in the state sequencer are identical to
those in the NL Cell except that two additional expansion
states XU and XD are added to represent the “up” and “down”
traceback directions, respectively. During each clock cycle,
the new state is loaded into the top stage of the shift register,
while the additional layers are shifted down one position, so
that during the next clock cycle the layer above the previous
layer is processed.

DQXL

XH

/TOP

/BTM

CLK

SEQUENCERST0

ST1

ST2

ST3

NSCS

HI

LI NI SI EI WI

RSEL CSEL CMD

ST

to adjacent
cells

from row, column
decoders

from global
CMD bus

to global
STATUS bus

layer
state
storage

Figure 5 – Multilayer NLM-Cell Design

As in the previous cell design, the next state depends on the
value of the CMD input from the control unit, the RSEL and
CSEL inputs that specify when a cell is selected, and the NI,
SI, EI, and WI inputs from horizontally adjacent cells. In
addition, the next state depends on inputs that indicate that
vertically adjacent cells are in the expansion state, shown as
inputs HI and LI. Input HI is true when the cell above the
current is in an expansion state. For the layer above the layer
being processed, this condition is detected by the logic block
labeled XH, which is true when the state in that layer is an
expansion state. The output of the XH block is ANDed with
external signal /TOP, an active low signal that indicates that
the top layer is being processed when it is asserted low. Thus
when /TOP is a logic low, the XH input will always be zero,
since there is no layer above the top layer. The output of the
XL block determines whether the cell being processed by the
state sequencer is in an expansion state. It is ANDed with an
external signal /BOT which asserted low when the bottom
layer is being processed – this indicates that the bottom layer
is being processed and so the LI input should be zero. The
result of this AND is stored in a flip-flop for use during the
next clock cycle, when processing the layer “above” the
current layer.

Layers are processed one at a time during the expansion phase.
Extra complexity is added to the control unit, since it must
generate the /TOP and /BOTTOM signals. In addition, it must
keep track of which layer is currently being processed when it
applies commands to change the status of specific cells.

The execution time of the resulting design during the
expansion phase will be O(L*d), where L is the number of
layers in the router and d is the distance between the source
and target, including vertical distance. The traceback phase
also requires O(L*d) steps, since the shift register processes
one layer at a time. Traceback time can be further reduced by
modifying the shift register to “freeze” at a particular level.
This would allow traceback to proceed in a horizontal
direction without waiting for L clock cycles between steps.
Freezing can be accomplished by adding 2-1 multiplexers to
the input of each shift register stage, so that data recirculates in
a “hold” mode, or by adding a single 2-1 multiplexer to the

stage being processed and gating the clock of the other shift
register stages.

5. RESULTS
The single-layer (NL) and multilayer (NLM) architectures have
been designed as a collection of parameterized VHDL files
which can be synthesized to different array sizes and
implementation technologies. In this section we discuss our
preliminary results implementing the NL-Cell and NLM-Cell
designs using both an ASIC standard-cell library and an
FPGA.

5.1 Gate-Level Implementation
The gate-level implementation is useful because it provides a
comparison to the original L-Machine and also gives insight
into the practicality of implementing the NL-Machine as a
semi-custom or custom chip. Gate-level implementations were
generated for both the NL-Cell and NLM-Cell (with 4 layers)
using the Synopsys Design Compiler and the MSU SCMOS
Standard Cell Library (chosen because it is non-proprietary).
A schematic diagram of the synthesized NLM-Cell is shown in
Figure 6.

The first two rows of Table 2 summarize the gate count and flip-
flop count of the NL-Cell design and the original L-Cell
presented in [3]. Since the original L-Cell was implemented
without AND/OR/INVERT (AOI) gates, the rightmost column
shows the gate count with AOI gates converted to simple
gates. This allows a rough comparison showing that the NL-
Cell required 36% fewer gates and 57% fewer flip-flops – a
significant reduction in cost.

The second two rows show the implementation costs of the
NLM-CELL synthesized for four layers and the general cost for
N layers. Note that the gate count stays constant as layers are
added, with only the number of flip-flops in the shift register
increasing.

Table 2. Gate-Level Implementation

Design FFs Gates w/AOI Smpl. Gates

NL CELL 3 37 48

L Cell [2] 7 - 75

NLM CELL
(4 layer)

13 45 53

NLM CELL
(N-layer)

3*N + 1 45 53

Designing a full ASIC or custom implementation of a routing
accelerator is a major task. To justify whether such an effort
would be worthwhile, some simple estimates can be used to
predict the size of a large routing array implemented in a
modern deep-submicron technology. For example, ASIC
vendors currently claim gate densities of 75-100K gates/mm2

in 0.18µm technology standard cell libraries. Assuming that
each flip-flop has an area equivalent to four logic gates and that
gate density is 75K gates/mm2, then the density of a 6-layer
NLM-cell array can be predicted at 619 cells/mm2. Thus a 100
X 100 array of NLM-cells could be implemented in a chip that
is approximately 4mm X 4mm. Area could be reduced much
further using a custom layout.

5.2 FPGA Implementation
The availability of large FPGA devices and their low
nonrecurring engineering cost makes them attractive as a
possible implementation technology for the NL-Machine.
Moreover, the grid-based structure of the NL-Machine maps
well into the structure of many FPGA families.

Table 3 shows results of FPGA implementations for two Xilinx
[8] FPGA families – the XC4000 series, and the newer Spartan
2/Virtex 2 families. The XC4000 series is based on
Combinational Logic Blocks (CLBs), each of which contains
two 4-input lookup tables (LUTs) and two flip-flops. Spartan
2 and Virtex 2 CLBs consist of slices that each contain two
LUTs and two registers. Spartan 2 devices have two slices in
each CLB, while Virtex 2 devices have four slices in each CLB
and are available in very large sizes. Since XC4000 series
CLBs and Spartan 2/Virtex 2 Slices both contain two LUTs
and two flip-flops, they are roughly comparable. However,
Spartan 2/Virtex 2 LUTs can also be configured as shift
registers of up to 16-bit length. Thus the Spartan 2/Virtex 2
implementations can accommodate a much larger number of
layers than the XC4000 style, which would require extra CLBs
to accommodate more than 9 layers. An added advantage of the
shift-register implementation in the Spartan 2/Virtex 2 is that it
places a much lower demand on the routing resources of the
FPGA.

Table 3. FPGA Implementation

Design XC40xx (CLBs) XC2S/XC2V
(Slices)

NL Cell 8 8

NLM Cell
14

(≤9 layers)
19

(≤17 layers)

As in the previous section, these measurements can be used for
rough estimates of the capacity of FPGAs to implement large
arrays of cells. For example, the largest Virtex 2 part currently
announced is the XC2V10000 [8], an array of 128 X 120 CLBs
containing 61,440 slices. This part could therefore
accommodate approximately 3,200 NLM-cells, or enough for a
56 X 56 array of processing elements, providing that the
interconnection resources in the FPGA are sufficient for such a
high-density circuit. To test the feasibility of such high-
density circuits, a full design of an 8 X 8 single layer NL-
Machine was synthesized into a low-end Spartan XC2S100

device. This design could be successfully placed and routed
even though it utilized more than 90% of the available cells in
the chip.

6. CONCLUSIONS
This paper has explored the feasibility of a new approach for
hardware acceleration of maze routing. The new architecture
provides an efficient processing element design that supports
multiple layers and iterative routing. When combined with
advances in integrated circuit technology, we believe that this
approach shows much promise.

The next step in this research is to create full implementations
of the NL-Machine and evaluate its performance compared to
software maze routers. Additional areas for future work include
the development of arrays that support nonuniform grids as
well as specialized routing architectures like FPGAs.

7. REFERENCES
[1] Lee, C. Y. “An Algorithm for Path Connections and its

Applications,” IRE Transactions on Electronic
Computers vol. EC-10, no. 2, pp. 346-365, 1961.

[2] Akers, S. “A Modification of Lee’s Path Connection
Algorithm,” IEEE Trans. Electronic Computers vol. EC-
16, no. 2, pp. 97-98, 1967.

[3] Breuer, M., and Shamsa, K. “A Hardware Router,” Journal
of Digital Systems, vol. IV, no. 4, pp. 393-408, 1981.

[4] Suzuki, K., et. al., “A Hardware Maze Router with
Application to Interactive Rip-Up and Reroute,” IEEE
Trans. CAD, vol. CAD-5, no. 4, pp. 466-476, 1986.

[5] Watanabe, T., et. al., “A Parallel Adaptable Routing
Algorithm and its Implementation on a Two-Dimensional
Array Processor”, IEEE Trans. CAD, vol. CAD-6, no. 2,
1987.

[6] Ventkateswaran, R., and Mazumder, P., “Coprocessor
Design for Multilayer Surface-Mounted PCB Routing,”,
IEEE Trans. VLSI Systems, vol. 1, no. 1, 1993.

[7] Dees, W., and Karger, P., “Automated Rip-Up and
Reroute Techniques”, Proceedings 19th Design
Automation Conference, pp. 432-439, 1982.

[8] Xilinx, Inc., Xilinx Databook, 2001. Available online at
http://www.xilinx.com.

Figure 6 – Gate-Level Implementation of the 4-Layer NLM Cell

