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A NEW LOOK AT SECRECY CAPACITY OF MIMOME USING

ARTIFICIAL NOISE FROM ALICE AND BOB WITHOUT

KNOWLEDGE OF EVE’S CSI

Reza Sohrabi, Student Member, IEEE, Yingbo Hua, Fellow, IEEE

Abstract—This study investigates a secure wireless communi-
cation scheme which combines two of the most effective strategies
to combat (passive) eavesdropping, namely mixing information
with artificial noise at the transmitter and jamming from a
full-duplex receiver. All nodes are assumed to possess multiple
antennas, which is known as a MIMOME network. The channel
state information (CSI) of Eve is known to Eve but not to
Alice and Bob. While such setup has been investigated in related
works, new and important insights are revealed in this work. We
investigate the design of optimal jamming parameters to achieve
higher secrecy, and in particular we focus on two important cases
corresponding to Bob using either a simple jamming or a smart
jamming. Furthermore, simulations are presented to highlight
the effectiveness of the proposed strategies.

Index Terms—Secrecy capacity, physical layer security, full-
duplex, MIMOME, jamming, artificial noise

I. INTRODUCTION

Physical layer security is increasingly important for wireless

networks as the computational power available for breaking

encryption at higher layers rapidly advances. Since the work

of Wyner [1], the secrecy capacity (or simply secrecy) of

wireless channel has been investigated from many different

aspects such as in [2]–[19]. These aspects include the analysis

of the secrecy of fading channels [2], the secrecy of multi-

antenna setups [3]–[5], the secrecy of cooperative jamming

with relays or helpers [6], [7], the investigation of secure

degrees of freedom [8] and so on. One prominent strategy

to enhance wireless secrecy was proposed in [9] in which the

authors propose the use of artificial noise from the transmitter

(Alice) in the null space of the legitimate channel along with

the information signal. Another effective strategy is to equip

the receiver (Bob) with the full-duplex radio capability so that

it can transmit jamming noise against Eve while Bob (and Eve)

is trying to receive the information from Alice [10]–[13].

In this study, we investigate an integration of the above

two jamming strategies to achieve higher levels of secrecy.

This integration was also investigated in [14] in which the

authors propose a joint optimization algorithm to derive the

best transmission parameters. They assume two separate sets

of antennas for transmission and reception for full-duplex. But

they did not take into full consideration the effect of residual

self-interference at Bob. There are also other works concerned

with similar setups in [15]–[19].

In this paper, we do not assume that Alice and Bob know

the CSI of Eve which is in contrast to [15]–[17]. The small-

scale-fading CSI of Eve is assumed to be Rayleigh distributed
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Figure 1: A MIMOME network with full-duplex receiver

(Bob)

like the prior works. But the large-scale-fading CSI of Eve is

based on the most harmful location of Eve subject to a radius

constraint, which is in contrast to the assumption of Poisson

distribution of Eves [14]. More importantly, we treat separately

the cases where Eve may perform the optimal matched filtering

(OMF) or a basic matched filtering (BMF) depending on

whether Bob uses a smart jamming. The above aspects are

examples of what make this work new and significant in light

of the prior works.

II. SYSTEM MODEL

Our network setup of multiple-input multiple-output

multiple-antenna eavesdropping (MIMOME) is shown in Fig.

1, where Alice (of L antennas) intends to send secret informa-

tion over the wireless channel to Bob (of M antennas) in the

presence of possibly many passive Eves (of N antennas each)

that may collude with each other at the network layer but not at

the physical layer. (Physical layer colluding among distributed

Eves is highly difficult in practice.) System parameters are

normalized [11] such that the large-scale-fading factor from

Alice to Eve is a = d−α
A = (

√

(x+ 0.5)2 + y2)−α, and that

from Bob to Eve is b = d−α
B = (

√

(x− 0.5)2 + y2)−α. Here,

α is the path-loss exponent. It is practical to assume that no

Eve is closer to Alice than a certain distance i.e., dA ≥ ∆. The

normalized large-scale-fading factor of Bob’s self-interference

is denoted by ρ. The small-scale-fading channel matrix from

Alice to Eve is denoted by A, that from Bob to Eve is B, and

that of the self-interference at Bob is G. The channel matrix

from Alice to Bob is denoted by H, and its SVD is denoted

by

H = U
√
ΛVH , (1)
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where U and V are unitary matrices, and
√
Λ is the di-

agonal matrix that contains the singular values
√
λi, i =

1, · · · ,min(M,L), of H in descending order on its main

diagonal. All the elements of all channel matrices are i.i.d.

circular complex Gaussian with zero mean and unit variance.

Alice sends the following signal containing secret informa-

tion and noise:

xA =
√

φPAv1s+

√

(1− φ)PA

L− 1
V1wA, (2)

where v1 and V1 are defined by V = [v1,V1], s is Alice’s

information symbol with unit variance (for convenience of

exposure of key idea, a single stream of data is studied),

and wA is an (L − 1) × 1 i.i.d. complex Gaussian noise

vector with zero mean and unit variance. Also, φ is the ratio

of Alice’s power PA allocated to information. While Bob

receives information from Alice, it also sends a jamming noise.

Although a smart jamming will be mentioned later, a simple

form of this noise is

xB =

√

PB

M
wB , (3)

where wB is an M × 1 i.i.d. complex Gaussian noise vector

with zero mean and unit variance. PA and PB are powers that

are normalized with respect to the path loss from Alice to Bob.

The background noises at all nodes are normalized to have the

unit variance. Then Bob and Eve receive the following signals,

respectively

yB =
√

φλ1PAu1s+

√

(1− φ)PA

L− 1
U1

√

ΛΛΛ1wA + ñB (4)

yE =
√

aφPAa1s+

√

a(1− φ)PA

L− 1
A1wA

+

√

bPB

M
BwB + nE ,

(5)

where AV = [Av1,AV1] = [a1,A1], U = [u1,U1], ñB =
√

ρPB

M
GwB+nB which could be modeled as CN (0, (ρPB+

1)I) [18],
√
ΛΛΛ1 is an (M − 1)× (L− 1) matrix with

√
λi, i ∈

{2, . . . ,min(M,L)} on the main diagonal. Furthermore, nE

is an N × 1 i.i.d. complex Gaussian noise vector with zero

mean and unit variance.

Since Bob knows the covariance matrix of the noise plus

interference in its received signal yB in (4), Bob can perform

OMF. But due to the orthogonality between u1 and U1, the

OMF at Bob is equivalent to the BMF at Bob, i.e., uH
1 yB is the

sufficient statistic of s given yB . Since uH
1 yB =

√
φλ1PAs+

uH
1 ñB , the optimized SNR for Bob is

SNRAB =
φλ1PA

1 + ρPB

. (6)

III. EVE USING OMF

If Bob uses the simple jamming noise as shown in (3),

Eve may have the full knowledge to determine the covariance

matrix RE of the noise plus interference in its received signal

yE in (5), i.e.,

RE = I+
a(1− φ)PA

L− 1
A1A

H
1 +

bPB

M
BBH . (7)

Then Eve can perform the OMF of yE by pre-multiplying it

by aH1 R−1
E , and the optimized SNR at Eve is

SNRAE = aφPAa
H
1 R−1

E a1. (8)

Then the secrecy capacity 1 of the channel from Alice to Bob

against all Eves that may collude at the network layer but not

at the physical layer is

S = min
Eves

(log(1 + SNRAB)− log(1 + SNRAE))
+
, (9)

where (.)+ , max(0, .).

A. Most harmful position of Eve

Although the small-scale-fading CSI of Eve can be reason-

ably modeled statistically within a period of time of interest

(corresponding to a sequence of packets in multiple channel

coherent periods in mobile environment), the large-scale-

fading CSI of Eve is dependent on the large-scale position

of Eve relative to Alice and Bob. For the time of interest

in most practical situations (e.g., in the order of seconds or

even minutes), the distribution of Eves should typically be

considered as unknown and deterministic (but not stochastic

and definitely not Poisson distributed). In this case, the best

way to handle the unknown large-scale-fading CSI of Eve

is to consider the most harmful position of Eve [11]. The

notion of average as mentioned later only refers to the average

over small-scale-fading. Since SNRAB is invariant to Eve’s

location, the most harmful Eve is the one whose position

maximizes SNRAE . We can write (8) as

SNRAE =φPAa
H
1 (

1

a
I+

(1− φ)PA

L− 1
A1A

H
1

+
bPB

aM
BBH)−1a1.

(10)

For a fixed a = d−α
A , SNRAE is maximized when b is

minimum i.e., b = (1 + dA)
−α. With this b, we have

SNRAE =φPAa
H
1 (dαAI+

(1− φ)PA

L− 1
A1A

H
1

+
dαAPB

(1 + dA)αM
BBH)−1a1.

(11)

Conditioned upon dA ≥ ∆, SNRAE is maximized if dA = ∆.

Therefore, the most harmful position of Eve is at x∗ = −0.5−
∆, y∗ = 0. From now on, we will drop minEves in (9) and

refer to a and b as corresponding to the position (x∗, y∗). In

all simulations, we will use ∆ = 0.1.

B. Optimization

It is easy to prove that S is an increasing function of PA, but

the dependency of S on φ and PB is not trivial. To determine

the optimal φ and PB , we are interested to maximize the

following objective function:

SL(φ, PB) = (log(1 + SNRAB)− EA,B[log(1 + SNRAE)])
+

(12)

1Assuming a Gaussian input alphabet, achievable secrecy rate is a better
term to be used here [18].
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where Ex[.] denotes expectation with respect to x, and

SL(φ, PB) ≤ EA,B[S] which follows from the fact (E[x])+ ≤
E[(x)+].

We will perform a stochastic maximization of SL(φ, PB),
for which we adopt the method proposed in [20]. Our approach

is as the following. First, define

−SL(φ, PB |A,B) = − log(1 + ρPB + φλ1PA)

− log|RE |+ log(1 + ρPB) + log|RE + aφPAa1a
H
1 |

=f1(x) + f2(x,A,B) + f3(x) + f4(x,A,B),
(13)

where f1, f2, f3, and f4 are defined in the obvious way. With

respect to the jamming parameters x = [φ, PB ]
T , the first two

terms are convex and the last two are concave functions. The

last two terms can be approximated and upper bounded by

their first-order Taylor series expansion iteratively. At iteration

t, a random realization of A and B is obtained, then given

xt = [φt, P t
B ]

T , and At, Bt, let

x̂t , argmin
x ∈X

f̂ t(x), (14)

where X , {x|0 ≤ φ ≤ 1, 0 ≤ PB ≤ Pmax
B } and with

βt ∈ (0, 1] being a sequence to be properly chosen,

f̂ t(x) , βt
(

f1(x) + f2(x,A
t,Bt)

)

+ βt(x− xt)TΠt

+ (1− βt)(x− xt)T (f t−1) + τ‖x− xt‖2 (15)

in which

Πt = ∇x

(

f3(x) + f4(x,A
t,Bt)

)

|x=xt , (16)

and f t is a vector that is iteratively updated as

f t = (1−βt)f t−1+βt(Πt+∇x

(

f1(x) + f2(x,A
t,Bt)

)

|x=xt).
(17)

The first term in (15) is the convex part of (13), while the

second term is the effect of linearizing the non-convex part.

The third term is included to estimate the unknown gradient of

SL(φ, PB) (provided SL(φ, PB) > 0) by its samples collected

over the iterations, which becomes more accurate with each

iteration. The last term in (15) is a regularization term. Finally

given x̂t, xt is updated as follows with γt ∈ (0, 1] being a

sequence to be properly chosen,

xt+1 = (1− γt+1)xt + γt+1x̂t (18)

It is worth mentioning that the objective function in (14)

is strongly convex and can be optimized easily. Based on

conditions stated in [20] for the parameters, the following

parameters guarantee convergence in our problem: β0 = β1 =
γ1 = 1, βt = 2

(t+2)0.6 ∀ t ≥ 2, γt = 2
(t+2)0.61 ∀ t ≥ 2, τ =

10−4. The optimization steps are summarized in Algorithm

1. For more details about the theory behind this stochastic

optimization and its convergence, please refer to [20]. In Fig.

2, a comparison of EA,B[S] based on optimal and non-optimal

jamming parameters is presented. The figure shows that in this

particular case, the benefit from using full-duplex jamming

only (φ = 1, PB = P ∗
B) is significantly greater than that from

using artificial noise from Alice only (φ = φ∗, PB = 0), and

the combination of the two results in much more improvement

of secrecy.

Algorithm 1: Algorithm to perform stochastic optimiza-

tion

1 Initialize φ0, P 0
B , assign φ−1 = 0, P−1

B = 0, and choose

proper βt, γt, τ , ǫ. set t = 0.

2 while
|φt−φt−1|

φt +
|P t

B
−P

t−1

B
|

P t

B

> ǫ do

3 Make a random realization of A,B.

4 Compute x̂t from (14) .

5 Update xt+1 using (18).

6 Update f t using (17).

7 t = t+ 1.
8 end

9 Return φ∗ = φt, P ∗
B = P t

B .

Figure 2: Effect of the optimal jamming parameters on

EA,B[S] when Eve uses OMF and each node has 4 antennas.

10,000 realizations of A and B are used for the simulations.

IV. EVE USING BMF

If Bob applies a smart jamming as follows (instead of that

in (3))

xB =

√

PB

n
Yw̃B , (19)

where w̃B is an n× 1 vector of i.i.d. complex Gaussian noise

with unit variance, and Y is a random M × n matrix with

M > n and the property that YHY = I, then Eve is unable

to obtain the covariance matrix of the noise plus interference

in its received signal. In this case, Eve cannot apply the OMF

but the BMF as follows:

aH1 yE =
√

aφPA‖a1‖2s+
√

a(1− φ)PA

L− 1
aH1 A1wA

+

√

bPB

n
aH1 BYw̃B + aH1 nE , (20)

and the SNR of this statistics is

SNRAE =
φaPA‖a1‖2

1 + (1−φ)
L−1 aPA‖AH

1 ã1‖2+ bPB

n
‖B̂H ã1‖2

, (21)

where ã1 = a1

‖a1‖
, and B̂ = BY. If v1 , ‖a1‖2, it

can be proven that 2v1 is distributed as χ2(2N). Also if

v2 , ‖AH
1 ã1‖2, 2v2 is distributed according to χ2(2(L− 1)).

Finally, v3 , ‖B̂H ã1‖2, and 2v3 is distributed according to

χ2(2n). The most harmful position of Eve in this scenario

still is (x∗, y∗) = (−0.5−∆, 0). Also, SNRAB in (6) is not

affected by the smart jamming from Bob.
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A. CDF of S

Assuming S > 0, the cumulative distribution function

(CDF) of S conditioned on λ1 is FS(s) = P{S ≤ s|λ1} =
P{log2(1 + SNRAB) − log2(1 + SNRAE) ≤ s|λ1} =
P{v1 −W1v2 −W2v3 −W3 ≥ 0|λ1}, where

W1 =
(1− φ)( φλ1PA

1+ρPB
− 2s + 1)

(L− 1)(2sφ)
, (22)

W2 =
bPB(

φλ1PA

1+ρPB
− 2s + 1)

n(2sφPAa)
, (23)

W3 =
( φλ1PA

1+ρPB
− 2s + 1)

(2sφPAa)
. (24)

It follows that

FS(s) =
e−W3

(1 +W2)n(1 +W1)L−1(n− 1)! (L− 2)!

×
N−1
∑

k=0

k
∑

i=0

i
∑

j=0

1

k!

(

k

i

)(

i

j

)

(k − i+ L− 2)! (i− j + n− 1)!

×
(

W1

1 +W1

)k−i (
W2

1 +W2

)i−j

W
j
3 . (25)

Note that for the case of Eve using OMF, a closed form of

the CDF of S is not available.

B. Optimization

In order to find the optimal φ and PB , we consider a

reference secrecy level s0 and minimize FS(s0). To guarantee

some quality of service, we constrain the rate from Alice to

Bob not to be less than c. Then our optimization problem is

min
φ, PB

FS(s0) (26)

subject to 0 ≤ PB ≤ Pmax
B , 0 ≤ φ ≤ 1, and φ− (2c−1)ρ

PAλ1

PB ≥
(2c−1)
PAλ1

which comes from Alice to Bob rate constraint. All

these constraints are linear, and hence we can apply the

projected gradient descent method. At each step of the gradient

descent, the search direction is projected into a direction

tangent to the constraints that may be violated by taking the

update step.

Unless mentioned otherwise later, assume N = L = M =
8, PA = 20 dB, ρ = 3×10−4, s0 = 4, c = 6, and Pmax

B =
40 dB. Fig. 3 shows FS(s) with the optimal and non-optimal

φ. Fig. 4 shows FS(s) with the optimal and non-optimal PB .

Fig. 5 compares the averaged secrecy capacity versus PA

against the most harmful Eve using OMF or BMF and using 4,

12, or 90 antennas while Alice and Bob each have 4 antennas.

If Eve has the same number of antennas as Alice and Bob and

performs OMF, we have considerable secrecy, but if Eve has

3 times that number of antennas (N = 12), secrecy decreases

substantially, and goes to zero if Eve has more than 20 times

that number of antennas (N = 90). However, if Eve is unable

to use OMF but BMF, there is still a substantial secrecy even

for a large number of antennas at Eve. This makes the smart

jamming from Bob an important idea. More details will be

shown in a full paper.

Figure 3: The CDF FS(s) using optimal φ = 0.15 or non-

optimal φ with s0 = 4. P ∗
B is used for all the curves.

Figure 4: The CDF FS(s) using optimal PB = 29.5 dB or

non-optimal PB with s0 = 4. φ∗ is used for all the curves.

V. CONCLUSION

In this paper, we have examined the secrecy capacity of a

MIMO channel from Alice to Bob against multiple-antenna

Eves at unknown locations. We have focused on the worst

case of Eves who may collude at the network layer (but not at

the physical layer) subject to a secured zone around Alice. We

have treated two important cases where Eve either uses OMF

or BMF, the former of which is not applicable by Eve if Bob

uses a smart jamming. For the two cases, different methods

are needed, and hence have been developed, to optimize

the jamming parameters used by Alice and Bob. Simulation

results show significant improvements of the secrecy capacity

with the optimized jamming parameters. Future work includes

comparison with the anti-eavesdropping channel estimation

based approach [12].

Figure 5: Comparison of averaged secrecy in four scenarios

based on N and Eve’s filtering method.
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