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A B S T R A C T

Asthma is an inflammatory disorder of the conducting airways that has strong association with
allergic sensitization. The disease is characterized by a polarized Th-2 (T-helper-2)-type T-cell
response, but in general targeting this component of the disease with selective therapies has been
disappointing and most therapy still relies on bronchodilators and corticosteroids rather than
treating underlying disease mechanisms. With the disappointing outcomes of targeting individual
Th-2 cytokines or manipulating T-cells, the time has come to re-evaluate the direction of research
in this disease. A case is made that asthma has its origins in the airways themselves involving
defective structural and functional behaviour of the epithelium in relation to environmental
insults. Specifically, a defect in barrier function and an impaired innate immune response to
viral infection may provide the substrate upon which allergic sensitization takes place. Once
sensitized, the repeated allergen exposure will lead to disease persistence. These mechanisms
could also be used to explain airway wall remodelling and the susceptibility of the asthmatic
lung to exacerbations provoked by respiratory viruses, air pollution episodes and exposure to
biologically active allergens. Variable activation of this epithelial–mesenchymal trophic unit could
also lead to the emergence of different asthma phenotypes and a more targeted approach to the
treatment of these. It also raises the possibility of developing treatments that increase the lung’s
resistance to the inhaled environment rather than concentrating all efforts on trying to suppress
inflammation once it has become established.

INTRODUCTION

Asthma is an inflammatory disorder of the conducting
airways which undergo distinct structural and functional
changes, leading to non-specific BHR (bronchial hyper-
responsiveness) and airflow obstruction that fluctuates
over time. It is among the commonest chronic conditions
in Western countries affecting 1 in 7 children and
1 in 12 adults (equivalent to 5.1 million people in the
U.K.), and is responsible each year for 1500 avoidable
deaths, as well as 20 million lost working days. The
annual U.K. healthcare cost is estimated to be £2.5

billion. A recent assessment of asthma across Europe
(Brussels Declaration) has identified substantial unmet
clinical need which, in the 10 % of patients with
severe disease, accounts for approx. 50 % of the health
costs [1].

Most, but not all, asthma is associated with atopy
(the inherited predisposition to generate IgE against
common environmental allergens). This has led asthma
to be regarded largely as an allergic disorder along with
other atopic diseases. However, asthma prevention has
not been achieved with allergen-reduction strategies, once
established there is no cure and there are currently no
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Figure 1 Schematic representation of asthma over the life course
The arrows indicate exacerbations of asthma.

medications that can alter the natural history of the
disease [2].

Management is primarily directed towards suppressing
airway inflammation with inhaled corticosteroids and
relieving bronchoconstriction with bronchodilators.
Apart from corticosteroids, the only oral medications
in widespread use are cysteinyl LT (leukotriene)
receptor 1 antagonists that inhibit the bronchoconstrictor
and inflammatory actions of LTC4, LTD4 and LTE4

(previously known as slow-reacting substances of
anaphylaxis). All of these therapies exert their effect
downstream of the origins of asthma. There is an
urgent need to identify the underlying basis of asthma,
understand the complex genetic and environmental
influences, and develop appropriate treatment strategies.
Although asthma may start at any time in life, the
majority begins in early childhood [3], and, although
it may spontaneously remit, longitudinal studies reveal
that later relapses frequently occur [4]. Severe irreversible
airflow obstruction may develop despite apparently
appropriate use of controller therapy, as advocated by
international and national disease management guidelines
[4]. That is not to say that widespread adherence to
anti-inflammatory controller therapy does not influence
long-term outcomes of asthma; indeed, when treatment
adherence is high, as in Finland, asthma mortality and
morbidity can be dramatically reduced. The problem
is that, in most countries of the world, treatment
adherence is low, especially when inhaled drugs are
involved on account of perceived fear of systemic
side effects, addiction and concerns over acquisition of
drug resistance [5]. Many patients only take their anti-
inflammatory treatment when they are symptomatic and
stop when their symptoms abate [6]. There is some
evidence that this approach works well in mild asthma
[7], but not in those with more severe disease where
regular inhaled corticosteroids, often in large doses and
in combination with long-acting β2-bronchodilators,
are required for disease control [8]. In low- and
middle-income countries, inadequate diagnosis, the costs
of drugs and poor education all contribute to poor
disease management and overdependence on emergency

interventions with the consequence of high mortality and
morbidity [9].

THE EMTU (EPITHELIAL–MESENCHYMAL
TROPHIC UNIT) INTEGRATES THE
ASTHMATIC RESPONSE

The time has arrived to establish a new research approach
that will provide greater insight into the initiation of
the disease and its evolution over time into different
subphenotypes and lead to treatments that are upstream
of airway inflammation and its consequences. To achieve
this ‘high ground’, rather than viewing asthma as a
series of acute events, it is important to take a life-
course view initially focusing on young children and the
early-life factors that drive the origins of the disease,
and then to track the structural changes and functional
airway responses through childhood, adolescence and
into adults (Figure 1). On the basis of a large number
of converging observations, it is suggested that in asthma
a structurally and functionally defective lower airways
epithelium underlies abnormal responses to the inhaled
environment leading to enhanced signalling between
the airway epithelium and underlying structural (the
EMTU) and immune cells. This would promote a
microenvironment that facilitates allergic sensitization,
supports different types of inflammation and predisposes
the airways to exacerbations leading to persistence of
asthma during childhood. Activation of the EMTU might
also be responsible for driving tissue remodelling that
progressively leads to a loss of reversibility, reduced
lung function and refractoriness to treatment in adults
(Figure 2).

Although, at one time, considered to be a single
disease entity, asthma subphenotypes are now recognized
with differing pathology, clinical expression, response
to treatment and long-term outcomes [10]. Most
asthma exhibits a Th-2 (T-helper-2)-type inflammatory
response with the up-regulation of cytokines of the IL
(interleukin)-4 gene cluster linked to atopy; however,
overinterpretation of this pathway has led to a
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Figure 2 Chronic asthma is characterized by enhanced epithelial–mesenchymal communication with the release of a range
of different growth factors linked to remodelling
Ar, amphiregulin; EGF, epidermal growth factor; ET-1, endothelin-1; FGF, fibroblast growth factor; IGF, insulin-like growth factor; KGF, keratinocyte growth factor; PDGF,
platelet-derived growth factor; NGF, nerve growth factor; VEGF, vascular endothelial growth factor.

simplistic view that asthma is purely the result of
allergen exposure. Both in adults and children the
indistinguishable pathological features of non-allergic
and allergic asthma emphasizes that inflammation and
remodelling can occur independently of atopy [11].
Atopy affects up to half of the adult population in
developed countries; yet, the great majority do not
progress to develop asthma [12]. Although in most
patients allergen sensitization contributes to asthma,
attempts to intervene using allergen-reduction strategies
[13] or allergen-specific immunotherapy [14] have proved
disappointing, despite its proven efficacy in allergic
rhinitis [15]. In severe asthma, activated T-cells are
present in abundance, but the initial promise of T-cell
inhibitors [cyclosporin A, methotrexate, azathioprine,
or anti-CD4- or -CD25-blocking mAbs (monoclonal
antibodies)] and blockade of Th-2 cytokines (IL-4, -5, -9
and -13) and antibodies against the pleotropic cytokine
TNFα (tumour necrosis factor α), have so far failed to
translate into clinical use [16].

The asthma subphenotypes are illustrated well in
relation to the use of an IL-5-blocking mAb directed
to IL-5 (mepolizimab). Administration of this antibody
at two dose levels on three occasions 1 month apart
to moderate-to-severe asthmatic patients had a dramatic
effect in reducing circulating eosinophils, but had no
discernable effect on asthma outcomes [17] and, yet, in
both children [18] and adults [19] with hypereosinophilic
syndrome, this treatment is highly effective. Two

recent small clinical trials of mepolizumab in severe
asthmatic patients requiring high dose inhaled and
oral corticosteroids with persisting sputum eosinophilia
have reported efficacy especially in reducing asthma
exacerbations accompanied by considerable reductions
in both circulating and sputum eosinophils, but
interestingly no effect on BHR [20,21]. A further exciting
development related to IL-5 as a target is the development
of an antibody-dependent cell cytotoxic defucosylated
IgG1 monoclonal antibody (MEDI-563) directed to all
cells expressing IL-5Rα (IL-5 receptor α). Engineering
of mAbs by removing fucose residues from the Fc
fragment leads to greatly enhanced ADCC (antigen-
dependent cellular cytotoxicity) activity as compared
with a highly fucosylated conventional antibody [22].
Results from a completed Phase 1 study of MEDI-563
have demonstrated the antibody is well tolerated with
substantial and prolonged depletion of blood eosinophils,
thereby supporting its continued development (http://
clinicaltrials.gov/ct2/results?term=NCT00659659).

Beyond improvements in inhaled bronchodilators and
corticosteroids to enhance their efficacy, duration of
action and safety, the discovery of new anti-asthma
drugs has largely been driven by animal models of
allergen sensitization and challenge. However, despite
almost 50 years of investment by the pharmaceutical
and biotechnology industries, the only successful new
treatments to emerge from this are LT modifiers such
as cysteinyl LT receptor 1 antagonists (montelukast,
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Figure 3 Defect in asthmatic epithelium to eliminate common respiratory viruses leading to cytotoxicity, mediator release
and enhanced virus shedding associated with the asthma exacerbation
BEC, bronchial endothelial cell; LRT, lower respiratory tract; URT, upper respiratory tract.

accolate and pranlukast) and the IgG anti-human IgE
mAb omalizumab, both therapeutics directed at asthma
targets that were identified many years ago [23]. The
view that chronic airway inflammation and remodelling
in asthma is primarily caused by allergen sensitization
and exposure is being challenged.

In 2000, we first suggested that allergic-type inflam-
mation and aberrant epithelial injury/repair mechanisms
were parallel phenomena leading to different asthma
subtypes [24] involving activation of the EMTU, which
controls the local airway tissue microenvironment [25].
We proposed that epithelial damage by environmental
agents, such as viruses, air pollutants and ETS
(environmental tobacco smoke), results in the production
of signals that act on the underlying mesenchyme to
propagate and amplify inflammatory and remodelling
responses in the submucosa (Figure 2). In support of
this, we and others have recently reported defective
epithelial TJ (tight junction) formation both in asthmatic
biopsies and in the epithelium differentiated at an air–
liquid interface in vitro in association with impaired
barrier function [26]. The asthmatic epithelium is also
functionally abnormal in being more sensitive to oxidant
injury [27] and failing to generate IFN-β (interferon-
β) and IFN-λ in response to virus infection [28], both
deficiencies resulting in premature cell death (Figure 3).
Thus many of the chronic inflammatory and structural

responses that occur in chronic asthma (including airway
allergen sensitization) could follow from a defective epi-
thelium leading to a chronic wound response to repeated
environmental injury [29]. Similar mechanisms are now
known to operate in other allergic diseases, such as atopic
dermatitis, where loss-of-function polymorphisms in the
filaggrin gene encoded in the epidermal differentiation
complex on chromosome 1q21 greatly reduce skin barrier
function [30], and in food allergy [31] and rhinosinusitis
[32], leading to enhanced allergen sensitization.

The finding that many novel asthma-susceptibility
genes identified through application of hypothesis-
independent approaches, such as positional cloning and
genome-wide association, are expressed in the epithelium
and mesenchyme adds to the evidence that places the
EMTU at the centre of asthma pathogenesis [33,34].
Further evidence for a critical role of the epithelium
comes from showing that the most frequent risk factors
for developing, exacerbating and prolonging asthma
act through the EMTU, namely enzymatically active
allergens (e.g. from house mite, fungal, pollen and
occupational sources), ambient air pollutants (e.g. ozone,
oxides of nitrogen and particles), irritants (e.g. household
and industrial chemicals), ETS, and respiratory vir-
uses and certain bacteria (Chlamydia and Mycoplasma)
[35,36]. This wide range of interactions helps make the
case for a dynamic interaction between the epithelium
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and formed elements of the airways in the development
of different asthma subphenotypes [5].

ONSET OF ASTHMA IN EARLY LIFE

Although asthma may begin at any time in life, most
frequently it first expresses itself early in the first few
years of life, with suboptimal foetal growth, maternal
micronutrient deficiencies (e.g. vitamins E and D) and
maternal smoking all being associated with impaired
infant lung function and later development of asthma
[37,38]. Both BHR and asthma also have a strong genetic
basis independent of atopy. For example, polymorphism
of the asthma-susceptibility gene ADAM33 (a disintegrin
and metalloproteinase 33) is associated with reduced lung
function in infants and the later development of BHR
[39]. Birth cohort studies have also revealed that severe
asthma is predicted by impaired infant lung function
and BHR [40–42]; however, the central role of allergy
itself as the initiator of asthma is also being questioned.
Thus, in children who develop asthma, atopy has little
influence on disease expression until 5 years of age, after
which it predicts disease persistence [43,44] with those
destined for severe disease acquiring IgE-sensitization
earlier (3–4 years of age) [45]. In the case of food allergy
(e.g. peanut, milk and egg), high exposure in early life
induces immunological tolerance [46]. In contrast with
exposure via the gastrointestinal tract, continued allergen
exposure via the airways or skin facilitates persistence of
sensitization [47,48].

However, although allergen exposure is important as
a driver of ongoing asthma in children, its role as an
initiating factor is undermined by showing that prolonged
suppression of inflammation by inhaled corticosteroids at
the onset of disease in infants or later in childhood has no
influence over its natural history, despite effective control
of symptoms [49,50]. Other environmental factors are
now emerging as being important in initiating asthma.
A recent important discovery is that repeated infections
with RV (rhinovirus) during the first 3 years of life
increased the risk of developing asthma by age 6 years 26-
fold compared with 3-fold for allergen sensitization [51].
In a U.K. IoW (Isle of Wight) cohort study, the adjusted
risk of asthma at age 10 years was 4-fold in children
who had recurrent chest infection before 2 years of age
[52,53]. The key role of early-life virus infection also
extends into adult asthma in the European Community
Respiratory Health Survey [54]. In a U.S.A. 95 000 infant
cohort study, the timing of birth in relationship to the
winter virus season conferred a 30 % increased risk of
developing asthma by 6 years of age [55], whereas in
a Perth cohort respiratory virus infection [RV: 70 %,
and RSV (respiratory syncytial virus): 16%] positively
interacts with atopy to promote later asthma at 5 years
of age [56]. Importantly, the target for viruses and

environmental stimuli, such as ETS and other pollutants,
is the airway epithelium. Understanding why the airway
epithelium of these children is so susceptible to these
stimuli and how it affects allergic sensitization could
provide a potential novel route to prevent asthma.

ROLE OF THE AIRWAY EPITHELIUM IN THE
INCEPTION OF ASTHMA IN EARLY
CHILDHOOD

Several studies have highlighted the potential association
of early respiratory virus infections and the subsequent
risk of asthma. However, many children who wheeze
with viral infections during infancy will not progress to
asthma. Early-life exposure to pollutants such as ETS and
atopy [53,54] are also risk factors for persistent asthma,
suggesting a requirement for multiple environmental
interactions with locally expressed susceptibility genes.
Antigen-presenting cells, especially ADCs [airway DCs
(dendritic cells)], play a critical role in initiating
and regulating early inflammatory events at epithelial
surfaces. While in the first year of life, infants do not
typically exhibit ADCs in the absence of inflammation,
severe respiratory infection is associated with the
appearance in infant airways of mature ADCs [57].
Although the proteolytically active allergen Der p1 can
disrupt epithelial TJs to facilitate transport of allergen
across the epithelium [58], it has been suggested that
ADCs need a ‘danger signal’ to activate T-cells sufficiently
and thus avoid tolerance [59]. We suggest that respiratory
virus infection of the pre-asthmatic epithelium causes
ADC maturation with a preferential bias towards a
Th-2 response to the penetrating allergen. Thus a
structurally and functionally defective airway epithelium
could underlie the abnormally destructive responses to
respiratory viruses and other components of the inhaled
environment. It follows that these events could promote
a microenvironment which would facilitate allergic
sensitization, support different types of inflammation and
predispose the airways to the development of asthma
during childhood (Figure 4).

We have found that airway epithelial cells from adult
asthmatics have a deficient innate immune response to
RV infection [28,60], providing an explanation for the
tendency of asthmatic subjects to have lingering and more
severe lower respiratory tract problems as a consequence
of RV infection. House dust mite allergens can act
synergistically with either RV or short-term tobacco
smoke exposure to induce mediator release from air-
way epithelial cells [61,62]. When compared with airway
epithelial cells isolated from the conducting airways of
non-smoking adults, we have found that those from
smokers are much more susceptible to RV infection,
allowing more viral replication and triggering marked
cytopathic cell death, indicating that smoke exposure
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Figure 4 Two or multiple ‘hit’ theory of the induction of new asthma through an interaction between virus infection and
allergic sensitization

powerfully suppresses the innate immune response. In
view of the importance of respiratory viruses and other
environmental agents on the early-life origins of asthma,
it is likely that multiple triggers that include pollutants,
allergens and ETS attenuate the innate antiviral responses
of paediatric airway epithelial cells to RV, allowing viral
persistence and augmenting pro-inflammatory responses,
initiation and persistence of asthma.

Both at baseline in asthma [63], and to a greater
extent, after allergen [58], ETS [64] and RV infection
[65,66], epithelial TJs are disrupted. On the basis of the
observation of elevated TSLP (thymic stromal lymph-
opoietin) production by asthmatic airway epithelial cells,
we postulate that viral infection not only facilitates
allergen penetration, but also biases DC responses
towards allergen sensitization in asthma [67]. TSLP is
released in response to activation of Toll-like receptors in
the epithelium and directs T-cell differentiation towards
a Th-2 phenotype by up-regulating the co-stimulatory
molecule OX40 (CD134) on adjacent DCs [68] (Figure 5).

Asthma progression or remission in
children and young adults
Bronchial biopsies obtained from very young children
with early-life virus-associated wheezing reveal little
abnormal pathology, but, by the time they reach 3 years
of age, epithelial injury and thickening of the lamina
reticularis is evident, either in the absence or presence of
Th-2-type inflammation [11,70–72]. Although thickening
of the lamina reticularis is almost diagnostic of asthma in
children and adults, there is doubt over its significance
to airway remodelling since it does not relate to asthma
duration [73], although it may increase with severity
[74]. On the basis of its unique presence in asthma and
also its occurrence following lung transplantation [75],
the deposition of new matrix in the lamina reticularis

would seem to be indicative of a special type of
chronic epithelial injury. In adult and childhood asthma,
epithelial overexpression of EGFR (epidermal growth
factor receptor), reduced markers of cell proliferation
[Ki67 and PCNA (proliferating cell nuclear antigen)]
and increased nuclear translocation of the cell-cycle
inhibitor p21waf are consistent with impaired epithelial
repair responses [76,77]. Most recently, airway epithelial
cells cultured from atopic asthmatic compared with
atopic normal children impaired wound repair responses
following injury [78].

Growing out of asthma compared with
persistent asthma
Most asthma in children undergoes repeated remission
and relapse [79,80] with a high proportion ‘outgrowing’
their disease [43,45]. Factors predicting persistence of
asthma include early-onset persistent wheezing, disease
severity, reduced lung function and BHR, sensitization
to multiple allergens and allergic co-morbidity [81].
During adolescence, major changes occur in the natural
history of asthma, including gender reversal with female
preponderance [82] and remission in approx. 50 %,
although, in a proportion asthma, it returns later
in those presumed to be disease-free [4]. In many
asymptomatic teenagers, there is pathological evidence of
subclinical asthma, persistent BHR, airway inflammation
and thickening of the lamina reticularis [83–85]. Very
little is known about the factors that lead to persistent
or recurrent disease during adolescence, especially any
benefit of lung growth against deleterious effects of
airway remodelling. In persistent asthma, it is not known
whether the chronic wound response in the epithelium
and lamina reticularis is propagated into the deeper layers
of the submucosa which we propose is crucial for disease
progression, reduced lung function, loss of reversibility
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Figure 5 Potential role of TSLP in connecting epithelial activation to Th-2-type inflammation
GM-CSF, granulocyte/macrophage colony-stimulating factor; TLR, Toll-like receptor.

and refractoriness to treatment. By understanding the
factors underlying recurrent and persistent disease, we
believe new targets will be uncovered for modulating the
natural history of asthma.

Although the natural history of asthma is one of
remission and relapse, it is important to consider the
disease over the life-course (Figure 1). From early infancy
it is likely that, when subjected to appropriate environ-
mental exposures, epithelial injury results in remodelling
of a genetically susceptible mesenchyme to contribute to
the persistence of asthma during childhood exacerbated
by allergen sensitization and exposure. This concept is
supported by longitudinal studies showing that early
onset of severe disease and reduced lung function/BHR
in early childhood and infection/allergen sensitization
are both risk factors for persistent asthma [86]. Findings
from our IoW birth cohort suggest that those subjects
have ‘outgrown’ asthma at 18 years of age have a
significantly greater increase in FEV1 (forced expiratory
volume at 1 s) from 10 to 18 years compared with
new-onset or persistent asthma [53]. Since lung growth
continues into early adulthood, tissue plasticity during
the growth period may counteract the negative impact
of remodelling until maximum lung function is achieved,
providing an explanation for disease remission in some
children. Thereafter, remodelling is unchecked leading
to accelerated decline in lung function in adulthood
and recurrence of symptoms in those who remit in
adolescence. Thus, during the teenage years, subjects with
structurally and functionally defective epithelium and
earlier exposure to allergens, infections and pollutants
most probably have evidence of persistent activation

of EMTU with evidence of remodelling, leading to
persistent asthma.

Chronic persistent asthma in adults
Transient, persistent and late-onset wheezing in early
childhood have been shown to track into different asthma
phenotypes in adults, with early-onset and persistent
wheezing predicting severe asthma [87]. On the basis
of a range of measures, multiple asthma subtypes
with different clinical, physiological, inflammatory and
treatment responses are now being identified [88].
BHR is a fundamental abnormality in asthma which
increases in proportion to disease severity and is
functionally antagonized by β2-adrenoceptor agonists.
The mechanisms underlying BHR are still not known for
certain, but an increase in airway smooth muscle [89],
alterations to its physicochemical properties [90] and
mast cell infiltration [91,92] are considered important.
Cross-sectional studies reveal that many adult patients
with asthma have some evidence of persistent irreversible
airflow obstruction with an accelerated decline in lung
function over time and both are linked to airway wall
remodelling [93–95]. Moreover, the nature of the matrix
that surrounds the smooth muscle bundles does influence
the behaviour of the muscle [96]. The contractile scope
of airway smooth muscle cultured in the presence of
different matrix proteins was least when the cell was
adherent upon collagen V, followed by collagen IV,
laminin and collagen I, and greatest for fibronectin.
Although the early introduction and maintained use of
inhaled corticosteroid therapy may exert some modifying
effects on inflammation that is linked to matrix deposition
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[97], chronic aspects of asthma arise and progress despite
continuous use of corticosteroids, suggesting that, in part,
they occur independently of inflammation, possibly as a
consequence of repeated cycles of bronchoconstriction
[98,99].

To better understand structural changes of asthma
in vivo, we have used a radial EBUS (endobronchial
ultrasound) probe inserted into the airways at fibre-
optic bronchoscopy [100]. Even in non-corticosteroid-
treated asthma, the proximal airway wall is thicker
than in non-asthmatic healthy controls; the thick-
ness/diameter ratio being inversely related to BHR
(rs=0.71, P = 0.002). Studies using high-resolution CT
(computed tomography) have reported similar findings
in asthma in adult [101,102] and children [103], but
the discriminatory resolution of CT is limited to the
outer airway wall, whereas EBUS allows measurement
of the inner wall that is altered most in asthma [104].
Mechanical deformation of the airways from repeated
bronchoconstriction is a powerful stimulus for growth
factor release from epithelial and mesenchymal cells to
drive remodelling [105,106]. These growth factors include
TGF-β (transforming growth factor-β) which not only
drives differentiation of fibroblasts to myofibroblsts,
but also is capable of initiating epithelial–mesenchymal
transition [107]. Thus, what initially may be serving
as a protective mechanism to provide resistive load to
reduce bronchoconstriction associated with BHR, over
time may subsequently progress to limit bronchodilation.
From a mechanistic standpoint, TGF-β or asthmatic
BAL (broncho-alveolar lavage) fluid has been shown
to direct asthmatic fibroblasts more to adopting a
contractile and synthetic phenotype when compared with
the responses of fibroblasts cultured from normal airways
[106]. A detailed understanding of the factors that drive
progressive deposition of interstitial collagen in the inner
airway wall and their relationship with a decline in
lung function and poor response to standard therapy
may enable earlier or alternative interventions to be
developed.

Although asthma is classically defined as reversible
airflow obstruction, in the long-term airflow obstruction
may become increasingly difficult to reverse despite
optimal pharmacological therapy. On the basis of findings
that a thickened airway wall in asthma is associated
with limited bronchoconstrictor and bronchodilator
responses [108,109], we propose that the mechanical
strain, caused by repeated smooth muscle contraction,
leads to progressive extracellular matrix deposition both
in the large and small airways, which would serve
to increase ‘stiffness’ of the tissue to limit narrowing.
However, over time, excessive matrix deposition would
lead to progressive fixed airflow obstruction, a feature
characteristic of chronic steroid refractory asthma. Using
a Flexercell® Tension Plus system, cyclical stretch of a
lung fibroblast cell line induces expression of α-SMA

(smooth muscle α-actin), suggesting a switch to a
myofibroblast phenotype, as reported in other systems,
and also promotes smooth muscle and myofibroblast
differentiation [110]. This mechanism, as well as an
aberrant response to epithelial injury and pro-fibrotic
growth factor release from inflammatory cells, could
provide the basis for airway allergen remodelling
in chronic asthma, only a proportion of which is
corticosteroid-sensitive.

CONCLUSIONS

Asthma can no longer be considered simply in terms
as a single cellular and mediator response to inhaled
allergens, but a complex interaction between the inhaled
environment and the formed elements of the airways.
Of importance is the concept that the state of the airway
epithelium and underlying mesenchyme (EMTU) may be
crucial in translating the atopic phenotype into the lower
airways, and this may vary over time and between patients
giving rise to different subphenotypes with differing
responses to treatment and natural histories. Connecting
life-course studies with mechanistic research in well-
phenotyped patients should provide much needed new
insight into disease mechanisms and, hopefully, will lead
to the identification of new therapeutic targets for disease
prevention and treatment.
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Sandström, T., Lundbäck, B. and Rönmark, E. (2006)
Asthma during the primary school ages: prevalence,
remission and the impact of allergic sensitization. Allergy
61, 549–555

81 Stern, D. A., Morgan, W. J., Halonen, M., Wright, A. L.
and Martinez, F. D. (2008) Wheezing and bronchial
hyper-responsiveness in early childhood as predictors of
newly diagnosed asthma in early adulthood: a
longitudinal birth-cohort study. Lancet 372, 1058–1064

82 Postma, D. S. (2007) Gender differences in asthma
development and progression. Gend. Med. 4 (Suppl. B),
S133–S146

83 van den Toorn, L. M., Overbeek, S. E., de Jongste, J. C.,
Leman, K., Hoogsteden, H. C. and Prins, J. B. (2001)
Airway inflammation is present during clinical remission
of atopic asthma. Am. J. Respir. Crit. Care Med. 164,
2107–2113

84 Obase, Y., Shimoda, T., Kawano, T., Saeki, S., Tomari, S.,
Izaki, K., Fukushima, C., Matsuse, H. and Kohno, S.
(2003) Bronchial hyperresponsiveness and airway
inflammation in adolescents with asymptomatic
childhood asthma. Allergy 58, 213–220

85 Hara, J., Fujimura, M., Myou, S., Kita, T., Abo, M.,
Katayama, N., Furusho, S., Nobata, K., Oribe, Y.,
Kimura, H. et al. (2008) Sputum eosinophilia, airway
hyperresponsiveness and airway narrowing in young
adults with former asthma. Allergol. Int. 57,
211–217

86 Morgan, W. J., Stern, D. A., Sherrill, D. L., Guerra, S.,
Holberg, C. J., Guilbert, T. W., Taussig, L. M., Wright,
A. L. and Martinez, F. D. (2005) Outcome of asthma and
wheezing in the first 6 years of life: follow-up through
adolescence. Am. J. Respir. Crit. Care Med. 172,
1253–1258

87 Panettieri, Jr, R. A., Covar, R., Grant, E., Hillyer, E. V.
and Bacharier, L. (2008) Natural history of asthma:
persistence versus progression: does the beginning predict
the end? J. Allergy Clin. Immunol. 121, 607–613

88 Haldar, P., Pavord, I. D., Shaw, D. E., Berry, M. A.,
Thomas, M., Brightling, C. E., Wardlaw, A. J. and Green,
R. H. (2008) Cluster analysis and clinical asthma
phenotypes. Am. J. Respir. Crit. Care Med. 178, 218–224

89 James, A. L., Bai, T. R., Mauad, T., Abramson, M. J.,
Dolhnikoff, M., McKay, K. O., Maxwell, P. S., Elliot, J. G.
and Green, F. H. (2009) Airway smooth muscle thickness
in asthma is related to severity but not duration of asthma.
Eur. Respir. J. 34, 1040–1045

90 An, S. S. and Fredberg, J. J. (2007) Biophysical basis for
airway hyperresponsiveness. Can. J. Physiol. Pharmacol.
85, 700–714

91 Brightling, C. E., Bradding, P., Symon, F. A., Holgate,
S. T, Wardlaw, A. J. and Pavord, I. D. (2002) Mast-cell
infiltration of airway smooth muscle in asthma. N. Engl.
J. Med. 346, 1699–1705

92 Begueret, H., Berger, P., Vernejoux, J. M., Dubuisson, L.,
Marthan, R. and Tunon-de-Lara, J. M. (2007)
Inflammation of bronchial smooth muscle in allergic
asthma. Thorax 62, 8–15

93 Siddiqui, S., Mistry, V., Doe, C., Roach, K., Morgan, A.,
Wardlaw, A., Pavord, I., Bradding, P. and Brightling, C.
(2008) Airway hyperresponsiveness is dissociated from
airway wall structural remodeling. J. Allergy Clin.
Immunol. 122, 335–341

94 ten Brinke, A. (2008) Risk factors associated with
irreversible airflow limitation in asthma. Curr. Opin.
Allergy Clin. Immunol. 8, 63–69

95 Lange, P., Parner, J., Vestbo, J., Schnohr, P. and Jensen, G.
(1998) A 15-year follow-up study of ventilatory function
in adults with asthma. N. Engl. J. Med. 339, 1194–1200

96 An, S. S., Kim, J., Ahn, K., Trepat, X., Drake, K. J.,
Kumar, S., Ling, G., Purington, C., Rangasamy, T.,
Kensler, T. W. et al. (2009) Cell stiffness, contractile stress
and the role of extracellular matrix. Biochem. Biophys.
Res. Commun. 382, 697–703

97 Dijkstra, A., Vonk, J. M., Jongepier, H., Koppelman,
G. H., Schouten, J. P., ten Hacken, N. H., Timens, W. and
Postma, D. S. (2006) Lung function decline in asthma:
association with inhaled corticosteroids, smoking and sex.
Thorax 61, 105–110

98 Tschumperlin, D. J., Shively, J. D., Kikuchi, T. and
Drazen, J. M. (2003) Mechanical stress triggers selective
release of fibrotic mediators from bronchial epithelium.
Am. J. Respir. Cell. Mol. Biol. 28, 142–149

99 Choe, M. M., Sporn, P. H. and Swartz, M. A. (2006)
Extracellular matrix remodeling by dynamic strain in a
three-dimensional tissue-engineered human airway wall
model. Am. J. Respir. Cell. Mol. Biol. 35, 306–313

100 Shaw, T. J., Wakely, S. L., Peebles, C. R., Mehta, R. L.,
Turner, J. M., Wilson, S. J. and Howarth, P. H. (2004)
Endobronchial ultrasound to assess airway wall
thickening: validation in vitro and in vivo. Eur. Respir. J.
23, 813–817

C© The Authors Journal compilation C© 2010 Biochemical Society

D
ow

nloaded from
 http://portlandpress.com

/clinsci/article-pdf/118/7/439/440508/cs1180439.pdf by guest on 21 August 2022



450 S. T. Holgate and others

101 Wenzel, S. E. and Busse, W. W (2007) Severe asthma:
lessons from the Severe Asthma Research Program.
J. Allergy Clin. Immunol. 119, 14–21

102 Ueda, T., Niimi, A., Matsumoto, H., Takemura, M., Hirai,
T., Yamaguchi, M., Matsuoka, H., Jinnai, M., Muro, S.,
Chin, K. and Mishima, M. (2006) Role of small airways in
asthma: investigation using high-resolution computed
tomography. J. Allergy Clin. Immunol. 118,
1019–1025

103 de Blic, J., Tillie-Leblond, I., Emond, S., Mahut, B., Dang
Duy, T. L. and Scheinmann, P. (2005) High-resolution
computed tomography scan and airway remodeling in
children with severe asthma. J. Allergy Clin. Immunol.
116, 750–754
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