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ABSTRACT 

 
This paper presents a new dynamic model of a three-phase, 
three-switch, three-level, fixed-frequency Pulse-Width-
Modulated (PWM) rectifier. The modeling approach uses the 
state-space averaging technique in continuous current mode. 
The averaging process is applied on two time intervals: the 
switching period for average current evaluation, and the 
mains period for average voltage computation. A basic 
mathematical model of the converter is first established. A 
simplified time-invariant model is then deduced using 
rotating Park transformation. The steady-state regime is 
analyzed on the basis of the obtained model, and converter 
design criteria are consequently discussed. Numerical 
simulations are carried out in order to demonstrate the 
effectiveness of the proposed modeling approach. 
 

I – INTRODUCTION 
 

AC-to-DC three-phase converters are increasingly required to 
provide high input power factor, low line current distortion, 
fixed output voltage and robustness to load and utility voltage 
unbalances. Several topologies that satisfy these requirements 
have been proposed recently [1]. Among these structures, the 
three-switch, three-level AC-to-DC converter, known as the 
Vienna rectifier, is characterized by a low number of high-
frequency switches, high efficiency, low design costs and low 
voltage stresses, which make it suitable for high or medium 
power applications [2]. Besides its topological advantages, 
this converter is also known for its low control complexity 
and its low sensing effort regarding the control system design 
and implementation [3]. 
In this paper, a new mathematical model of a three-phase, 
three-switch, three-level, fixed-frequency Pulse-Width-
modulated (PWM) rectifier, operating in continuous current 
mode, is developed from a control design perspective. The 

model is elaborated using the state-space averaging technique 
commonly used in PWM DC-DC converters modeling 
problems [4]. This modeling approach is so far valid as long 
as the input and state variables of the converter vary slowly in 
time. Other modeling techniques have already been proposed 
in the literature, such that the averaging technique that is 
based on equivalent circuit manipulation [4], and the Fourier 
analysis based modeling approach [5]. Although their 
differences, they all yields at the same low-frequency 
representation of the converter. 
The basic model firstly obtained for the converter is a 
nonlinear fifth-order time-varying system, and the elaboration 
and implementation of a corresponding suitable control law 
seem highly difficult. Thus, in order to simplify the eventual 
control design procedure, a fourth-order time-invariant model 
is elaborated by applying to the former one two 
transformations: a three-axis/two-axis frame transformation 
[5], known as Park transformation, and an input vector 
nonlinear transformation. The effectiveness of the proposed 
modeling approach is highlighted through numerical 
simulation using the Power System Blockset tool of 
Matlab/Simulink. 
This paper is  divided into five sections. In section II, a brief 
description of the converter topology and operation is 
presented. In section III, the reduced nonlinear time-invariant 
low-frequency model of the converter is elaborated. All the 
corresponding theoretical developments are indicated, 
including the three-axis/two-axis frame transformation and 
the proposed input vector nonlinear transformation. Based on 
the obtained model, the steady-state operating mode of the 
converter is analyzed in section IV. Design criteria allowing a 
suitable choice of the converter parameters, namely the 
reactive elements, are then enumerated in the section V. 
Finally, the numerical results showing the effectiveness of the 
proposed modeling approach are presented in section VI. 
 



II – CONVERTER TOPOLOGY AND OPERATING 
MODE 

 
The converter topology is presented in Fig. 1. It consists of 
three single-switch legs associated to each phase. Q1 , Q2 and 
Q3 are four-quadrants switches. They are controlled in order 
to ensure line current shaping at the input, DC voltage 
regulation and middle point stabilization at the output. From 
an operational view, the converter can be seen as an 
association of three identical bi-directional boost converters, 
as the one presented in Fig. 2 for phase 1. Referring to this 
figure, we may write the following equation for phase 1: 
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where vs,1n is the phase-to-neutral voltage, is,1 the phase 
current, vM,n the middle point voltage with respect to the 
mains neutral, and vAM the switch voltage defined as: 
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v0,h and v0,l being respectively the upper and lower output 
voltages. Hence, we may express vAM as follows: 
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where sgn is the signum function, and s1 the switching 
function defined as: 
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In the same way, we can write for the other two phases the 
following equations: 
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and: 

CMnM
s

ns vv
dt

di
Lv ++= ,

3,
3,   (6) 

where: 
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and: 
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s2 and s3 being the switching functions corresponding to Q2 
and Q3 respectively. 
In the nominal steady-state regime with a balanced load, v0,h 
and v0,l are equal to v0/2, where v0 = v0,h + v0,l is the overall 
output voltage. We may thus rewrite equations (3), (7) and 
(8) as follows: 
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Fig. 1. Three-phase, three-switch, three-level rectifier
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Fig. 2. Single-phase equivalent circuit  
 

Furthermore, assuming that the utility voltages are balanced 
sine waves, and that the neutral is disconnected, it follows: 
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Using equalities (10) and (11) in equations (1), (5) and (6) 
yields: 
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which can be rewritten using expressions (9): 
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The values of vM,n are given in Tab. 1 with respect to the 
switching states sk and the sign of line currents is,k , k∈{1, 2, 
3}. Thus, the value of vM,n depends only on the output voltage 
v0 . Referring to equations (1), (5) and (6), it is noticed that, 
in order to ensure line current waveshaping, the following 
two conditions must be always respected: 
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Conditions (14) and (15) limit the choice of the output 
voltage value in the range: 
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i.e., between 3.68VS and 7.34VS , where VS is the RMS-value 
of the phase-to-neutral mains voltage. 
 

III – STATE-SPACE AVERAGE MODELING OF THE 
CONVERTER 

 
3.1. Basic model 
 
The modeling approach applied to the converter in Fig. 1 is 
based on the state-space averaging technique [4]. In this 
method, all variables are averaged on a sampling period TS . 
Including equations (3), (7), (8) and (12) in the system 
equations (1), (5) and (6), the equivalent average mo del of the 
converter, viewed on the AC side, is as follows: 
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where: 
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∆v0 = v0,h - v0,l , and I3 is the third-order identity matrix. d1 , d2 
and d3 are the duty cycles of switches Q1 , Q2 and Q3 
respectively. Note that system (17) is a time-varying model 
that depends on the sign of the line currents is,1 , is,2 and is,3 . 

 
 

Switching functions s1 , s2 and s3 
Conditions 111 110 101 011 100 001 010 000 

is,1 > 0 , is,2 < 0 , is,3 > 0 0 - v0 /6 v0 /6 - v0 /6 0 0 - v0 /3 - v0 /6 
is,1 > 0 , is,2 < 0 , is,3 < 0 0 v0 /6 v0 /6 - v0 /6 v0 /3 0 0 v0 /6 
is,1 > 0 , is,2 > 0 , is,3 < 0 0 v0 /6 - v0 /6 - v0 /6 0 - v0 /3 0 - v0 /6 
is,1 < 0 , is,2 > 0 , is,3 < 0 0 v0 /6 - v0 /6 v0 /6 0 0 v0 /3 v0 /6 
is,1 < 0 , is,2 > 0 , is,3 > 0 0 - v0 /6 - v0 /6 v0 /6 - v0 /3 0 0 - v0 /6 
is,1 < 0 , is,2 < 0 , is,3 > 0 0 - v0 /6 v0 /6 v0 /6 0 v0 /3 0 v0 /6 

 
Tab. 1. Values of vM,n with respect to the switching states and the sign of line currents 



Therefore, it is not suitable for a stationary control design 
process. In order to overcome this drawback, the following 
input transformation is proposed: 
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Adding equation (18) to equation (17) gives: 
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where vs = [vs,1n , vs,2n , vs,3n]T is the input voltage vector, is = 
[is,1 , is,2 , is,3]T the input current vector and d’ = [d’1 , d’2 , 
d’3]T the new control vector. 
Furthermore, at the load level, the average model of the 
converter is viewed as: 
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where i0,h and i0,l are the upper and lower output currents, i+ 
and i- the DC side currents of the diode bridge. Introducing 
the overall output voltage v0 , the output voltage unbalance 
∆v0 and transformation (18) into equations (20) yields: 
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In the derivation of equations (21), it was assumed that ∆v0/v0 
<< 1. Equations (19) and (21) represent the basic low-
frequency model of the converter in the stationary frame. 
Although equation (19) is time-invariant, the sub-system (21) 
is not. Nevertheless, knowing that the output voltages 
variations are relatively slow with respect to the mains 

frequency, it seems more convenient, from a control design 
perspective, to consider their average on a mains period T0 
instead of the one computed on a sampling period TS . 
Furthermore, the basic model can be significantly reduced by 
applying Park’s transformation, as discussed in the next sub-
section. 
 
3.2. Frame transformation 
 
The model defined by equations (19) and (21) can be 
expressed in a new rotating frame using Park’s 
transformation. The Park’s matrix is defined as [5]: 
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where ω0 is the mains angular frequency. Defining the new 
vectors vs

r , is
r and d’r as follows: 
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equations (19) and (21) can be arranged as given in (24). 
The voltage and current zero sequence components vs,0 and 
is,0 are eliminated, as shown by (10) and (11). A time-
invariant equivalent model of the converter can be elaborated 
by averaging the term [K SGN -1 KT] –1 over the mains period 
T0 , as mentioned above. Furthermore, the generality of the 
modeling approach would not be lost if we assume balanced 
sine wave line currents. It follows: 
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where ϕ denotes the phase shift between the phase voltage 
and the corresponding line current. The parameter α is 
estimated by: 
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Note that 

0T
x  is the average of x over T0 . In a unity power 

factor operating mode, ϕ equals zero and, hence, we may 
rewrite system (24) as follows: 
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As shown by equations (27), the converter in Fig. 1 may thus 
be represented in low-frequency domain by a fourth-order 
nonlinear dynamic system, having is,d , is,q , v0 and ∆v0 as state 
variables, d’d , d’q and d’0 as control inputs, vs,d and vs,q as 
disturbance inputs. 
 

IV – STEADY-STATE OPERATING REGIME 
 

In the following, the theoretical expressions and waveforms 
of all system variables are established in the steady-state 
regime assuming: 
 
- a balanced three-phase voltage source, i.e.: 
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where VS

* is the steady-state RMS-value of the mains phase-
to-neutral voltage, 
 
- a unity power factor operating condition, i.e.: 
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IS

* being the steady-state RMS-value of the line currents, 
 

- and balanced output voltages , i.e.: 
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V0

* denotes  the steady-state fixed value of the overall output 
voltage. The asterisks in expressions (28) to (30) characterize 
the steady-state regime. Applying Park’s transformation to 
the voltage and current expressions (28) and (29) yields time-
invariant vectors expressed in the rotating frame as: 
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Substituting expressions (31) into system (27), the steady- 
state values of the control inputs are obtained as follows: 
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It follows from equations (32) that *

dd ′ , *
qd ′  and *

0d ′  control 

respectively the output voltage, the input current and the load 
unbalance. Furthermore, the power conservation law is 
verified: 
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Referring to the stationary frame, the steady-state control 
inputs are expressed as follows: 
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Using equation (18), we may set therefore expression (37) (in 
the bottom of this page), for k∈{1, 2, 3}. This expression 
shows that the duty cycles d1

*, d2
* and d3

* vary periodically, 
with a T0/2 period. It also emphasizes the control saturation 
phenomenon, which takes place periodically. Its maximum 
duration angle is given by: 
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or, using equations (32), (33) and (35): 
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. It is noticed from expressions (36) 

and (39) that, in order to reduce the undesirable effects of the 
control saturation, the load unbalance must be limited and the 
inductor value L has to be minimized. 
Furthermore, following equations (13) and (18), the averaged 
middle point voltage may be expressed as: 
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Using equation (34), it follows in steady state regime: 
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Concerning the steady-state expressions of DC-side currents 
i+ and i- , they could be easily established as: 
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Substituting equations (29) and (34) into (42.a), it yields after 
some manipulation to the expressions given (in the bottom of 
this page) by (43) for current i+

*. Similar expressions are 
obtained for current i-

*, but their corresponding intervals are 
shifted by π . Note that currents i+

* and i-
* have practically a 

third harmonic sine wave shape. 
 

V – DESIGN CRITERIA 
 
5.1. Inductors design 
 
In order to ensure current waveshaping in steady-state 
regime, the common value of mains series inductors have to 
satisfy the following conditions, as described in Fig. 3: 
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for each k∈{1, 2, 3}. The value of vM,n , corresponding to 
each case, is given in Tab.1. After some mathematical 
developments, we obtain the following condition: 
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The range of the inductor value L is thus maximized if: 
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Furthermore, the inductors are also designed for current 
ripple limitation. In this perspective, reasoning around the 
peak value of the line currents yields: 
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where fS is the switching frequency and (∆iS)max the 
acceptable current ripple. Finally, the inductors value is 
chosen accordingly to conditions (45) and (47). 
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Fig. 3. Line current waveshaping 
 

5.2. Capacitors design 
 
The two DC side capacitors of the converter are designed in 
the case of a balanced load (i.e., ∆i0

* = 0). Referring to the 
expression (43), the magnitude of the DC side upper current 
ripple can be obtained as: 
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It follows: 
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where (∆v0)max is the admissible output voltage ripple. 
 

VI – SIMULATION RESULTS 
 

In order to verify the theoretical development in sections III 
and IV, a simulation work is carried out using 
Matlab/Simulink tool. A numerical version of the converter 
in Fig. 1 is implemented in low-frequency domain, as 
indicated in Fig. 4. The numerical values of the converter 
parameters and steady-state operating point are given in the 
appendix. The load is purely resistive. The design of the 
control system is not presented in this paper. The simulation 
results are presented in Fig. 5. As shown in Fig. 5.a, the 
converter operates under a unity power factor condition. 
Furthermore, as indicated in Fig. 5.b, the upper and lower 
output voltages are practically equal at V0

*/2, with a relatively 
low voltage ripple, despite the load unbalance. In addition, 
referring to Fig. 5.c and 5.d, one may easily notice that the 
DC currents i+ and i- have practically the shape of two 
opposite-phase third-harmonic sine waves, as discussed in 
section IV. Furthermore, the control saturation angle γ 
noticed in Fig. 5.e is equal to 24 degrees and, therefore, 
satisfies equation (39). Finally, the estimated parameter α , 
presented in Fig. 5.f, oscillates around 0.53, which is slightly 
different from the theoretical value given in (26). 
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Fig. 4. Numerical implementation of the converter 
 

VII – CONCLUSION 
 

A new low-frequency time-invariant model of a three-phase, 
three-switch, three-level rectifier has been established in this 
paper. The steady-state unity power factor operating mode 
was analyzed, and design criteria concerning the choice of the 



output voltage and the reactive components were also 
presented. The proposed modeling approach has been verified 
numerically using Matlab/Simulink. The model thus obtained 
would be suitable for control design implementation. 
 

APPENDIX 
 
Phase-to-neutral voltage RMS-value VS

* = 120 V 
Overall output voltage   V0

* = 700 V 
Utility frequency    f0 = 60 Hz 
Switching frequency   fS = 50 kHz 
Mains series inductors   L = 1 mH, each 
Output capacitors   C0 = 1 mF, each 
Upper load resistor   R0,h = 9.8 Ω  
Lower load resistor   R0,l = 19.6 Ω  
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Fig. 5. Simulation results for the steady-state regime. a) Mains voltage and currents, b) Upper and lower output voltages, c), d) Upper and lower DC side 
currents, e) Duty cycle of switch Q1 , f) Estimated parameter α 


