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Abstract Boros and Füredi (for d = 2) and Bárány (for arbitrary d) proved that there
exists a positive real number cd such that for every set P of n points in Rd in general
position, there exists a point of Rd contained in at least cd

(
n

d+1

)
d-simplices with

vertices at the points of P . Gromov improved the known lower bound on cd by topo-
logical means. Using methods from extremal combinatorics, we improve one of the
quantities appearing in Gromov’s approach and thereby provide a new stronger lower
bound on cd for arbitrary d . In particular, we improve the lower bound on c3 from
0.06332 to more than 0.07480; the best upper bound known on c3 being 0.09375.

Keywords Flag algebras · Covering points by simplicies · Cofilling profiles ·
Boros–Füredi–Bárány–Pach–Gromov theorem

1 Introduction

We study an extremal graph theory problem linked to a classical geometric problem
through a recent work of Gromov [8]. The geometric result that initiated this work is
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a theorem of Bárány [2], which extends an earlier generalization of Carathéodory’s
theorem due to Boros and Füredi [4].

Theorem 1 (Bárány [2]) Let d be a positive integer. There exists a positive real num-
ber c such that for every set P of points in Rd that are in general position, there is a
point of Rd that is contained in at least

c ·
( |P |

d + 1

)
− O

(|P |d)
(1)

d-dimensional simplices spanned by the points in P .

Define cd to be the supremum of all the real numbers that satisfy (1) in Theorem 1
for the dimension d .

Bukh, Matoušek and Nivasch [6] established that

cd ≤ (d + 1)!
(d + 1)d+1

by constructing suitable configurations of n points in Rd . On the lower bound side,
Boros and Füredi [4] proved that c2 ≥ 2/9, which matches the upper bound; so c2 =
2/9 (another proof was given by Bukh [5]). Bárány’s proof [2] yields cd ≥ (d +1)−d .
Wagner [18] improved this lower bound to

cd ≥ d2 + 1

(d + 1)d+1
.

Further improvements of the lower bound for c3 were established by Basit et al. [3]
and by Matoušek and Wagner [15].

Gromov [8] developed a topological method for establishing lower bounds on cd

(Matoušek and Wagner [15] provided an exposition of the combinatorial components
of his method, while Karasev [13] managed to simplify Gromov’s approach). His
method yields a bound that matches the optimal bound for d = 2 and is better than
that of Basit et al. [3] for d = 3. We need several definitions to state Gromov’s lower
bound. Fix a positive integer d and a finite set V . A d-system E on V is a family
of d-element subsets of V . The density of the system E is ‖E‖ := |E|/(|V |

d

)
. The

coboundary δE of a d-system E on V is the (d + 1)-system composed of those (d +
1)-element subsets of V that contain an odd number of sets of E. The coboundary
operator δ commutes with the symmetric difference, i.e., δ(A�B) = (δA)�(δB). It
is not hard to show that δδE = 0 for any d-system E where 0 is the empty (d + 2)-
system. In fact, the converse also holds: a d-system E is a coboundary of a (d − 1)-
system if and only if δE = 0.

A d-system E on V is minimal if ‖E‖ ≤ ‖E′‖ for any d-system E′ on V with
δE = δE′. This is equivalent to saying that ‖E‖ ≤ ‖E�δD‖ for every (d −1)-system
D on V . Let Md(V ) be the set of all minimal d-systems on V and define the follow-
ing function:

ϕd(α) := lim inf|V |→∞ min
{‖δE‖ | E ∈ Md(V ) and ‖E‖ ≥ α

}
.
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It is easy to observe that the functions ϕd are defined for α ∈ [0,1/2] and ϕ1(α) =
2α(1 − α). It can also be shown that ϕd(α) ≥ α.

Gromov’s lower bound on the quantity cd is given in the next theorem.

Theorem 2 (Gromov [8]) For every positive integer d , we have

cd ≥ ϕd

(
1

2
ϕd−1

(
1

3
ϕd−2

(
· · · 1

d
ϕ1

(
1

d + 1

)
· · ·

)))
. (2)

Plugging ϕ1(α) = 2α(1 − α) and the bound ϕd(α) ≥ α in (2), we obtain

cd ≥ 2d

(d + 1)!(d + 1)
. (3)

Improvements of the bound in (3) can be obtained by proving stronger lower
bounds on the functions ϕd . The first step in this direction has been done by Ma-
toušek and Wagner.

Theorem 3 (Matoušek and Wagner [15])

• For all α ∈ [0,1/4], we have

ϕ2(α) ≥ 3

4

(
1 − √

1 − 4α
)
(1 − 4α).

• For all sufficiently small α > 0, we have

ϕ3(α) ≥ 4

3
α − O

(
α2).

Our main result asserts a stronger lower bound on ϕ2(α) for α ∈ [0,2/9], which
are the values appearing in Theorem 2.

Theorem 4 For all α ∈ [0,2/9], we have

ϕ2(α) ≥ 3

4
α
(
3 − √

8α + 1
)
.

When plugged into Theorem 2, our bound yields c3 > 0.07433. For comparison,
the earlier bounds of Wagner [18], Basit et al. [3], Gromov [8] and Matoušek and
Wagner [15] are c3 ≥ 0.03906, c3 ≥ 0.05448, c3 ≥ 0.0625 and c3 ≥ 0.06332, respec-
tively. However, the bound on c3 can be further improved as we now explain.

Matoušek and Wagner [15] improved the bound on c3 through a combinatorial ar-
gument, which uses bounds on ϕ2 and ϕ3 as black-boxes. The proof employs a struc-
ture called pagoda (of dimension 3) consisting of a 4-system G (which is referred to
as the top of the pagoda), 3-systems Fijk (with 1 ≤ i < j < k ≤ 4), 2-systems Eij

(with 1 ≤ i < j ≤ 4) and 1-systems Vi (with 1 ≤ i ≤ 4). For a precise definition of
these sets and their interplay, we refer the reader to [15, Sect. 6]. Any lower bound
on the density of G in a pagoda is also a lower bound on c3. Gromov’s approach is
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applicable to pagodas and it yields ‖G‖ ≥ 1
16 = 0.0625 (using the trivial bounds on

ϕ2 and ϕ3). Matoušek and Wagner investigated pagodas with ‖G‖ = 0.0625 + ε and
they obtain a contradiction for ε ≤ 0.00082; this proves that ‖G‖ ≥ 0.06332.

We can improve the bound using our Theorem 4 on ϕ2 by investigating pagodas
with density 3(3 − √

2)/64 + ε. This leads to the following system of inequalities:

ϕ2(0.125 + 2 · ε0) ≤ 2 ·
(

3(3 − √
2)

64
+ ε

)

ϕ1(0.25 + ε1) ≤ 3 · (0.125 + 2ε0)

4 · ϕ1(0.25 − 3ε1) ≥ 4

(
3

8
− ε2

)

2 ·
(

3(3 − √
2)

64
+ ε

)
≥ −6ε0 + 24ε2

1 + 2ε1ε2 − 27

4
ε1 − 3

2
ε2 + 3

16
.

This system of inequalities together with the exact value of ϕ1, Theorem 4 and the
trivial (linear) bound on ϕ3 yields a contradiction for every ε ≤ 0.00047. This leads
to the lower bound c3 ≥ 0.07480.

The definition of the function ϕ2 can naturally be cast in the language of graphs.
A cut of a graph G is a partition of the vertices of G into two (disjoint) parts; a
(non-)edge that crosses the partition is said to be contained in the cut. A graph is
Seidel-minimal if no cut contains more edges than non-edges. It is straightforward
to see that a graph G with vertex set V is Seidel-minimal if and only if its edge-set
viewed as a 2-system is minimal. Let Sn(α) be the set of all Seidel-minimal graphs
on n vertices with density at least α, i.e., with at least α

(
n
2

)
edges. Further, let S(α)

be the union of all Sn(α).
A triple T of vertices of a graph G is odd if the subgraph of G induced by T

contains precisely either one or three edges. Finally, let ϕg(G) for a graph G be the
density of odd triples in G, i.e.,

ϕg(G) = |{T ∈ (
V (G)

3

) | T is odd}|
(|V (G)|

3

) .

It is not hard to show that for every α ∈ [0,1/2],
ϕ2(α) = lim inf

n→∞ min
{
ϕg(G) | G ∈ Sn(α)

}
.

Using this reformulation to the language of graph theory, we show that ϕ2(α) ≥
3
4α(3 − √

8α + 1) for α ∈ [0,2/9]. Our proof is based on the notion of flag algebras
developed by Razborov [16], which builds on the work of Lovász and Szegedy [14]
on graph limits and of Freedman et al. [7]. The notion was further applied, e.g., in
[1, 9–12, 17]. We do not use the full strength of this notion here and we survey
the relevant parts in Sect. 2 to make the paper as much self-contained as possible.
In Sect. 3, we establish a weaker bound ϕ2(α) ≥ 9

7α(1 − α) using just some of the
methods presented in Sect. 2. The purpose of Sect. 3 is to get the reader acquainted
with the notation. Our main result is proved in Sect. 4.
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2 Flag Algebras

In this section, we review some of the theory related to flag algebras, which were
introduced by Razborov [16]. We focus on the concepts that are relevant to our proof.
The reader is referred to the seminal paper of Razborov [16] for a complete and
detailed exposition of the topic.

Fix α > 0 and consider a sequence of graphs (Gi)i∈N from S(α) such that

lim
i→∞

∣∣V (Gi)
∣∣ = ∞ and lim

i→∞ϕg(Gi) = ϕ2(α).

Let p(H,H0) be the probability that a randomly chosen subgraph of H0 with
|V (H)| vertices is isomorphic to H . The sequence Gi must contain a subsequence
(Gij )j∈N such that limj→∞ p(H,Gij ) exists for every graph H . Define qα(H) :=
limj→∞ p(H,Gij ). Observe that the definition of qα implies that qα(K2) ≥ α and
qα(P3) + qα(K3) = ϕ2(α) where P3 is the complement of the 3-vertex path.

The values of qα(H) for various graphs H are highly correlated. Let F be the set
of all graphs and F� the set of graphs with � vertices. Extend the mapping qα(H) from
F to RF by linearity, where RF is the linear space of formal linear combinations of
the elements of F with real coefficients. Next, let K be the subspace of RF generated
by the elements of the form

H0 −
∑

H∈F�

p(H0,H)H

for all graphs H0 and all � > |V (H0)|. Since the quantity p(H0,G) and the sum∑
H∈F�

p(H0,H)p(H,G) are equal for any graph G with at least � vertices, K is a
subset of the kernel of qα , i.e., qα(F ) = qα(F + F ′) for every F ∈ RF and F ′ ∈ K.

Let p(H1,H2;H0) be the probability that two randomly chosen disjoint subsets V1

and V2 with cardinalities |V (H1)| and |V (H2)| induce in H0 subgraphs isomorphic
to H1 and H2, respectively. For two graphs H1 and H2, define their product to be

H1 × H2 :=
∑

H0∈F�

p(H1,H2;H0)H0

where � = |V (H1)|+|V (H2)|. The product operator can be extended to RF ×RF by
linearity. Since the product operator defined in this way is consistent with the equiv-
alence relation on the elements of RF induced by K, we can consider the quotient
A := RF /K as an algebra with addition and multiplication. Since qα is consistent
with K, the function qα naturally gives rise to a mapping from A to R, which is
in fact a homomorphism from A to R. In what follows, we use qα for this homo-
morphism exclusively. To simplify our notation, we will use qα(F ) for F ∈ RF but
we also keep in mind that F stands for a representative of the equivalence class of
RF /K.

A homomorphism q : A → R is positive if q(F ) ≥ 0 for every F ∈ F . Positive
homomorphisms are precisely those corresponding to the limits of convergent graph
sequences. We write F ≥ 0 for F ∈ A if q(F ) ≥ 0 for any positive homomorphism q .
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Such F ∈ A form the semantic cone Csem(A). Razborov [16] developed various gen-
eral and deep methods for proving that F ≥ 0 for F ∈ A. Here, we will use only one
of them, which we now present. The reader may also check the paper [17] for the
exposition of the method in a more specific context.

Consider a graph σ and let F σ be the set of graphs G equipped with a mapping
ν : σ → V (G) such that ν is an embedding of σ in G, i.e., the subgraph induced by
the image of ν is isomorphic to σ . We can extend the definitions of the quantities
p(H,H0) and p(H1,H2;H0) to this “labeled” case by requiring that the randomly
chosen sets always include the image of ν and preserve the mapping ν. In particular,
p(H1,H2;H0) is the probability that two randomly chosen supersets of the image
of σ in H0 with sizes V (H1) and V (H2) that intersect exactly on σ induce sub-
graphs of H0 isomorphic to H1 and H2; Similarly as before, one can define Kσ ,
Aσ = RF σ /Kσ as an algebra with addition and multiplication, positive homomor-
phisms, etc.

The intuitive interpretation of homomorphisms from Aσ to R is as follows: for a
fixed embedding ν of σ , the value qν(F ) for F ∈ F σ is the probability that a ran-
domly chosen superset of the image of ν induces a subgraph isomorphic to F . A pos-
itive homomorphism q from A to R gives rise to a unique probability distribution on
positive homomorphisms qσ from Aσ to R such that this probability distribution is
the limit of the probability distributions of homomorphisms qν from Aσ to R given
by random choices of ν in the graphs in any convergent sequence corresponding to
q , see [16, Sect. 3.2] for details.

Consider a graph H with an embedding ν of σ in G. Define �H �σ to be the
element p · H of A where p is the probability that a randomly chosen mapping
ν from V (σ) to V (H) is an embedding of σ in H . Hence, the operator �·�σ maps
elements of F σ to A and it can be extended from F σ to Aσ by linearity. For a positive
homomorphism q from A to R, the value of q(�H �σ ) for H ∈ Aσ is the expected
value of qσ (H) with respect to the probability distribution on qσ corresponding to q .
In particular, if qσ (H) ≥ 0 with probability one, then q(�H �σ ) ≥ 0.

2.1 Example

As an example of the introduced formalism, we prove that ϕ2(α) ≥ α. The following
notation is used: Kn is the complete graph with n vertices, Pn is the n-vertex path
and Kn and P n are their complements, respectively. We also use 1 for K1 to simplify
the notation. The following elements of A1 will be of particular interest to us: P

1,b
3

is P3 with 1 embedded to the end vertex of the path and P
1,c
3 is P3 with 1 embedded

to the central vertex; P3
1,b

and P3
1,c

are their complements, respectively. See Fig. 1
for an illustration of this notation.

Consider the homomorphism qα from A to R. Recall that α ≤ qα(K2). Since we
have

K2 − 1

3
P3 − 2

3
P3 − K3 ∈ K,

we obtain

α ≤ qα

(
1

3
P3 + 2

3
P3 + K3

)
. (4)
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Fig. 1 Four elements of A1

We now use that the graphs in the sequence defining qα are Seidel-minimal. Let Gi be
a graph in this sequence, n the number of its vertices and v an arbitrary vertex of Gi .
Let A be the neighbors of v and B its non-neighbors. Since G is Seidel-minimal, the
number of edges between A and B does not exceed the number of non-edges between
A and B (increased by O(n) for the inclusion of v in one or the other side of the cut;
however, this term will vanish in the limit). So, if σ = 1 is an embedding of K1, we

have q1
α(P3

1,b − P
1,b
3 ) ≥ 0 with probability one (the term q1

α(P3
1,b

) represents the
number of non-edges between neighbors and non-neighbors of the target vertex of σ

and q1
α(P

1,b
3 ) the number of edges). Therefore, we obtain

0 ≤ qα

(�
P3

1,b − P
1,b
3

�
1

)
. (5)

Applying the operator �·�1 in (5) yields

0 ≤ qα

(
2

3
P3 − 2

3
P3

)
. (6)

Summing (4) and (6) (recall that qα is a homomorphism from A to R), we obtain

α ≤ qα(P3 + K3) = ϕ2(α).

This completes the proof.
A similar argument applied to the algebra based on d-uniform hypergraphs yields

ϕd(α) ≥ α. However, since we do not want to introduce additional notation not nec-
essary for the exposition in the rest of the paper, we omit further details.

3 First Bound

To become more acquainted with the method, we now present a bound that is
both weaker and simpler than our main result. Fix the enumeration of 4-vertex
graphs as in Fig. 2. To simplify our formulas, qα(

∑11
i=1 ξiFi) shall simply be written

qα(ξ1, . . . , ξ11).

Theorem 5 For every α ∈ [0,2/9], it holds that qα(P3 + K3) ≥ 9
7α(1 − α).

Proof We first establish three inequalities on the values taken by qα for various
elements of A. The choice of the graphs in the sequence defining qα implies that
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Fig. 2 The eleven non-isomorphic graphs with 4 vertices

α ≤ qα(K2). As qα(K2) = 1 − qα(K2) and qα(K2) ∈ [0,1/2], we infer that

α(1 − α) ≤ qα(K2)qα(K2) = qα(K2 × K2) = qα

(
0,

1

6
,0,

1

3
,

1

2
,

1

6
,

1

2
,0,

1

3
,

1

6
,0

)
.

(7)
The other two inequalities follow from the Seidel-minimality of graphs in the se-
quence defining qα . Consider a graph Gi and two non-adjacent vertices v1 and v2

(the target vertices of an embedding of K2 in elements of F K2 are marked by the
numbers 1 and 2). Let A be the set of their common neighbors and B the set of the
remaining vertices. Applying the Seidel-minimality to the cut given by A and B , we

obtain the following inequality in the limit (the elements of F K2
4 with a non-edge be-

tween a common neighbor of 1 and 2 and a vertex that is not their common neighbor
appear with the coefficient +1, those with an edge between two such vertices with
the coefficient −1).

0 ≤ qα

(�

+ + − − −
�

K2

)

.

Evaluating the operator �·�K2
yields

0 ≤ qα

(
0,0,0,

1

6
,0,

1

3
,−1

2
,0,−1

3
,0,0

)
. (8)

Now, let A′ be the neighbors of v2 and B ′ its non-neighbors. The Seidel-minimality

of cuts of this type (the elements of F K2
4 with a non-edge between a neighbor of 2

and a non-neighbor of 2 appear with the coefficient +1 and those with an edge with
the coefficient −1) yields

0 ≤ qα

(�

+ + + − − − −
�

K2

)

,

which subsequently implies that

0 ≤ qα

(
0,

1

3
,

2

3
,0,0,0,−1

2
,0,−1

6
,0,0

)
. (9)

The sum of (7), (8) and (9) with coefficients 9/7, 3/7 and 6/7 is the following in-
equality:

9

7
α(1 − α) ≤ qα

(
0,

1

2
,

4

7
,

1

2
,

9

14
,

5

14
,0,0,

1

7
,

3

14
,0

)
. (10)
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Since qα is positive, we infer from (10) that

9

7
α(1 − α) ≤ qα

(
0,

1

2
,1,

1

2
,1,

1

2
,0,0,

1

2
,

1

2
,1

)
= qα(P3 + K3). �

4 Improved Bound

This section is devoted to the proof of Theorem 4. We equivalently prove the follow-
ing.

Theorem 6 For every α ∈ [0,2/9], it holds that qα(P3 + K3) ≥ 3
4α(3 − √

8α + 1).

Proof Let β := qα(K2). Note that β ∈ [α,1/2]. We first derive two equalities us-
ing the fact that qα is a homomorphism from A to R. The first equation is a trivial
corollary of this fact.

1 = qα(K1) = qα(1,1,1,1,1,1,1,1,1,1,1). (11)

The choice of β implies that

β = qα(K2) = qα

(
0,

1

6
,

1

3
,

1

3
,

1

2
,

1

2
,

1

2
,

2

3
,

2

3
,

5

6
,1

)
. (12)

The next equality is little bit more tricky. We use that qα(K2) − β = 0.

0 = (
qα(K2) − β

)
qα(K2) = qα(K2 × K2 − βK2). (13)

Again, we express (13) in terms of the four-vertex graphs:

0 = qα

(
−β,

1 − 5β

6
,
−2β

3
,

1 − 2β

3
,

1 − β

2
,

1 − 3β

6
,

1 − β

2
,
−β

3
,

1 − β

3
,

1 − β

6
,0

)
.

(14)
The next inequality is the inequality (9) established in the proof of Theorem 5. We
copy the inequality to ease the reading.

0 ≤ qα

(
0,0,0,

1

6
,0,

1

3
,−1

2
,0,−1

3
,0,0

)
. (15)

The final inequality is obtained by considering random homomorphisms q
K2
α . Since

q
K2
α is a homomorphism, it holds for every choice of q

K2
α and every ξ ∈ R that

0 ≤ qK2
α

(

− ξ × − ξ ×
)2

= qK2
α

((

− ξ × − ξ ×
)2)

. (16)
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Hence,

0 ≤ qα

(�(

− ξ × − ξ ×
)2 �

K2

)

= qα

(�

+

+ ξ2 ·
(

+ + + + +
)

− ξ ·
(

+ + +
)�

K2

)

. (17)

Evaluating the operator �·�K2 yields the following inequality:

0 ≤ qα

(
0,

1

6
,

1

3
,
−ξ

3
,0,

ξ2 − 2ξ

6
,
ξ2

2
,

2ξ2

3
,
ξ2

6
,0,0

)
. (18)

As an example of the evaluation, consider the third coordinate: the only four-vertex
graph with two non-incident edges appears with the coefficient one in the sum. The
probability that a randomly chosen pair of vertices in the four-vertex graph formed
by two non-incident edges shows that this term of the sum is 1/3 which is the third
coordinate of the final vector.

Now, let us sum the equations and inequalities (11), (12), (14), (15) and (18) with
coefficients 3β√

1+8β
, 3

4 ·(3− 5+8β√
1+8β

), 3√
1+8β

, 3√
1+8β

and 3
4 ·(1+ 1+4β√

1+8β
), respectively,

and substitute ξ =
√

1+8β−1
2β

− 1. Note that the coefficients for the inequalities (15)
and (18) are non-negative. So, we eventually deduce that

3

4
β
(
3 − √

8β + 1
)

≤ qα

(
0,

1

2
,1 − 1√

1 + 8β
,

1

2
,

9

8
− 3 + 12β

8
√

1 + 8β
,

1

2
,

0,0,
9

8
− 15 + 12β

8
√

1 + 8β
,

15

8
− 21 + 20β

8
√

1 + 8β
,

9

4
− 15 + 12β

4
√

1 + 8β

)
. (19)

Finally, since qα is positive, we derive from (19) (the fifth, ninth, tenth and eleventh
coordinates are decreasing for β ∈ [0,1] since their derivates are positive in this
range) that

3

4
β
(
3 − √

8β + 1
) ≤ qα

(
0,

1

2
,1,

1

2
,1,

1

2
,0,0,

1

2
,

1

2
,1

)
= qα(P3 + K3). (20)
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Observe that the function x �→ 3
4x(3 − √

8x + 1) is increasing on the interval
[0,2/9] and that

3

4
x
(
3 − √

8x + 1
) ≥ 2/9 = 3

4
· 2

9

(
3 − √

8 · 2/9 + 1
)

for x ∈ [2/9,1/2]. Hence, the left hand side of (20) is at least 3
4α(3 − √

8α + 1) for
α ∈ [0,2/9] as asserted in the statement of the theorem. �

5 Conclusion

Using more sophisticated methods, we have been able to further improve the bounds
on ϕ2(α). However, the proof becomes extremely complicated and since we have not
been able to prove that

ϕ2(α) = 3α(1 + √
1 − 4α)

4
,

which is the bound given by the best known example, we have decided not to further
pursue our work in this direction. To show the limits of our current approach, let
us mention that Theorem 4 asserts that ϕ2(1/12) ≥ 0.10681 and we can push the
bound to ϕ2(1/12) ≥ 0.11099; the simple bound is 0.08333 and the expected bound
is 0.11353 for this value.

We have also attempted together with Andrzej Grzesik to apply this method for
improving bounds on ϕ3. Though we have been able to obtain some improvements,
e.g., we can show that ϕ3(1/20) ≥ 0.05183, the level of technicality of the argument
seems to be too large for us to be able to report on our findings in an accessible way
at this point.
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