
 

 

 

 

 

A New Machine Learning Model based on Induction of Rules 

for Autism Detection 

 
Fadi Thabtah 

School of Health, Psychology Dept. 

University of Huddersfield  

Queensgate, Huddersfield HD1 3DH, UK 

Corresponding  

 

 

David Peebles 

School of Health, Psychology Dept. 

University of Huddersfield  

Queensgate, Huddersfield HD1 3DH, UK 

 

 

 

  

 

 

 

 

Telephone Number: +64 211597399 

 

Email address: f.thabtah2@hud.ac.uk 

 

Address: School of Health, Psychology Dept. 

University of Huddersfield  

Queensgate, Huddersfield HD1 3DH, UK 

  

 

 

 

 



 

 

 

 

A New Machine Learning Model based on Induction of Rules 

for Autism Detection 

 

 

Abstract-  

Autism Spectrum Disorder (ASD) is a developmental disorder that describes certain challenges 

associated with communication (verbal and non-verbal), social skills, and repetitive behaviors. 

Typically, ASD is diagnosed in a clinical environment by licensed specialists using procedures which 

can be lengthy and cost-ineffective. Therefore, scholars in the medical, psychology and applied 

behavioral science fields have in recent decades developed screening methods such as the Autism 

Quotient (AQ) and Modified Checklist for Autism in Toddlers (M-CHAT) for diagnosing autism and 

other Pervasive Development Disorders (PDDs). The accuracy and efficiency of these screening 

methods relies primarily on the experience and knowledge of the user, as well as the items designed 

in the screening method. One promising direction to improve the accuracy and efficiency of ASD 

detection is to build classification systems using intelligent technologies such as Machine Learning 

(ML). Machine Learning offers advanced techniques that construct automated classifiers that can be 

exploited by users and clinicians to significantly improve sensitivity, specificity, accuracy, and 

efficiency in diagnostic discovery. This paper proposes a new ML method called Rules-Machine 

Learning (RML) that not only detects autistic traits of cases and controls, but also offers users 

knowledge bases (rules) that can be utilized by domain experts in understanding the reasons behind 

the classification. Empirical results on three datasets related to children, adolescents, and adults show 

that RML offers classifiers with higher predictive accuracy, sensitivity, harmonic mean, and specificity 

than those of other ML approaches such as Boosting, Bagging, decision trees, and rule induction.  

 

Keywords: Autism Diagnosis, Classification, Decision Making, Predictive Models, Rule-based 

Classifiers, Machine Learning 

1. Introduction 

Instances of Autism Spectrum Disorder (ASD) are rapidly increasing. One in every 68 children is 

diagnosed with ASD, a developmental condition that presents with certain challenges associated with 

communication (verbal and non-verbal), social skills, and repetitive behaviors. It is estimated that 1.5% 

of the entire world population is classified with autism (Towle & Patrick, 2016; Centers for Disease 

Control and Prevention (CDC), 2014). Unfortunately, the process of officially diagnosing individuals 

with autism is tedious, requiring clinical resources and diagnosis methods such as Autism Diagnostic 

Interview (ADI) and Autism Diagnostic Observation Schedule (ADOS) (Lord, et al., 1994; Lord, et al., 

2000). Consequently, it is believed that many more people who are on the spectrum remain 

undetected (Fitzgerald, 2017).  



Moreover, the time spent waiting for a formal diagnosis is lengthy; for instance, the average waiting 

time in the UK is over 3 years (Crane, et al., 2016). Therefore, scholars in psychiatric health, 

psychology, and the behavioral science fields have developed self-administered and parent-

administered screening methods that at a preliminary phase provide individuals with the recognition 

of possible autistic traits. Examples of screening methods are: Screening Tool for Autism in Toddlers 

and Young Children (STAT), Childhood Autism Rating Scale (CARS-2), and Autism Spectrum Quotient 

(AQ) (Stone et al., 2000; Schopler & Bourgondien, 2010; Schopler et al., 1980; Baron-Cohen, 2001). 

The accessibility and use of ASD screening tools are vital, as they may reduce waiting time for formal 

clinical evaluation and provide individuals on the spectrum, and their families, better understanding 

of the resources and services needed for support (special education, speech therapy, work 

environment, etc.). However, most existing screening tools are based on diagnostic methods that 

contain large numbers of items that the parent, caregiver, or the individual (in case of adult with an 

average Intelligence Quotient) are required to check. Therefore, these methods have been criticized 

as being too time-consuming (Allison et al., 2012; Wall et al., 2012b; Bone et al., 2014; Duda et al., 

2016; Bone et al., 2016; Thabtah, 2017a).  

ASD traits are often screened using recognizable and measurable behavioral indicators (e.g., social 

skills, engagement in age-appropriate play and leisure, behavior excesses, communication skills, etc.). 

These indicators are usually represented by items given in a questionnaire format for most current 

screening methods (i.e. AQ, STATS, CARS-2, etc.) The screening processes for individuals mainly rely 

on simple human rules with a scoring function that adds scores associated with the items in the 

questionnaire to calculate the outcome. Therefore, the quality of the classification outcome for 

individuals undergoing such screening is primarily based on a) the items designed in the method, b) 

the experience and knowledge of the user who is administering the screening, and more crucially c) 

the handcrafted rules linked with the scoring function.   

Designing rules to compute the scores of the questionnaire components requires extensive knowledge 

and experience. Replacing the human rule with knowledge derived from previous cases and controls 

to improve the diagnostic outcome and classification process seems advantageous. Automated 

knowledge is not subjective, as are handcrafted human rules, because they are discovered using 

advanced learning approaches such as ML or data mining. Consequently, boosting specificity, 

sensitivity, and predictive accuracy as well as classification efficiency. There is an urgent need for some 

advanced intelligent methods that can offer automatic classification of ASD as well as the reason(s) 

for the classification. These intelligent methods can be utilized by clinicians, parents, teachers, 

caregivers, and family members, among others, to understand the outcome of the screening. In 

addition, the clinician can use that outcome to verify the result of the screening using his/her own 

knowledge and experience. 

Recently, a few scholars in the ASD research field have investigated ML to either improve the 

classification time of an ASD diagnosis or to detect the most influential items in ASD diagnosis, e.g. 

Wall et al., 2012b; Pratap et al., 2014; Bone et al., 2014; Pancer & Derkacz, 2015; Kosmicki et al., 2015; 

Duda et al., 2016; Levy et al., 2017; Al-Diabat, 2018). ML is a research area based around statistics, 

probability, artificial intelligence, databases, and other computer science areas that aims to 

intelligently discover hidden knowledge from datasets (Mohammed, et al., 2014; Thabtah 2007). ML 

techniques, including support vector machines (Chan & Lin, 2011), decision trees (Quinlan, 1986), rule 

induction (Cohen, 1995), Boosting (Freund & Schapire, 1997), Bagging (Breiman, 1996), neural 

network (Mohammed, et al., 2016) and Covering (Qabajeh, et al., 2015), seldom involve users in the 

processes of classification or model learning (Thabtah, 2017c).  

Since the ASD diagnostic process encompasses predicting whether individuals are on the spectrum, 

i.e. with or without ASD, using predefined features including a class (ASD classification) and a historical 

dataset, this problem can be treated as a classification task in supervised learning. In this context, the 

clinician will utilize labelled cases of individuals with and without ASD (training dataset) to construct a 



classification system (model) using an ML technique. The model is then employed to automatically 

forecast the class of a new case (cases that are not yet classified) as accurately as possible. 

In this paper, a new classification method based on the Covering approach, called Rules-Machine 

Learning (RML), is proposed. This method offers automatic classifications systems (classifiers) 

represented as rule sets. The rule sets inside the classifiers can be used by health professionals to 

assist in the diagnosis process or to advise individuals and their families whether they should seek 

further evaluation. The rules offered by the proposed method can be easily interpreted by novice 

users as well as parents, teachers, caregivers, and family members.   

The RML was evaluated against real datasets collected using a mobile application called ASDTests 

(Thabtah, 2017b) and recently published at the University of California Irvine Repository (UCI) 

(Lichman, 2013). The experimental tests showed that the RML derives classifiers that are highly 

competitive when compared to other existing learning approaches in ML such as Boosting, Bagging, 

decision trees, and rule induction (Section 4 provides further details on the results and analysis). The 

performance evaluation of ML algorithms was based on common metrics such as predictive accuracy, 

sensitivity, harmonic mean, knowledge derived, and specificity. 

This paper is structured such that Section 2 discusses the problem, aims, and critically analyses related 

works on ML that are linked with ASD, while Section 3 presents the rule-based architecture and details 

related to the learning method.  Finally, conclusions are presented in Section 4. 

2. The Problem and Literature Review  

2.1. The Problem and Aims  

Official ASD diagnosis is typically conducted by specialist physicians in a clinical environment using a 

Clinical Judgment (CJ) procedure and based on observable and measurable behavioral indicators (Al-

Diabat, 2018). Existing paradigms seem to subscribe to the idea that more questions translate to a 

more accurate classification. Current standardized diagnostic tools take a very long time to conduct 

due to the large number of items that the specialist must check while relying on static human 

embedded rules (Lopez Marcano, 2016; Thabtah, 2018). This has necessitated a change in the way 

diagnostics are coded and behave within ASD clinical tools in the process of classifying cases.  

There is a need to re-examine features within ASD diagnostic tools to fulfil smaller item sets while 

maintaining the sensitivity and validity of the test. However, very limited examination of the ML 

perspective on autism has been previously conducted regarding the classification and validation 

processes of autism (Bone et al., 2016; Levy et al., 2017;). This new paradigm of utilizing ML will not 

only make pre-diagnostic tools faster and more accessible but will also dramatically change the 

prospective of designing clinical diagnostic tools. When the ML algorithm is embedded in self-

assessment tools, it will provide users with valuable concealed knowledge and guide the process of 

correct classification selection decisions in a more efficient manner (Duda et al., 2016; Thabtah, et al., 

2018). 

To address this global dilemma, the proposed research paper will take a new direction in the 

development of an ASD screening tool that incorporates rule-based architecture. Furthermore, the 

current study aims to better understand what components contribute to an efficient and accessible 

data-based ASD screening tool such that may be used by health professionals and other stakeholders 

seeking to understand whether they should seek an autism diagnosis by a professional. More 

specifically, we seek to establish a method that can be embedded within a self-administered ASD 

screening method to reliably and accurately provide feedback to patients, caregivers, and medical 

professionals regarding the potential need for professional diagnostic services. This investigation is 

vital for the standardization of efficient ASD diagnostic tools worldwide, serving to support long-term 

research goals and potentially impacting society directly. 



This study also aims to limit the role of human-derived rules embedded within current assessment 

tools by using ML technology to increase classification accuracy, sensitivity, and specificity. This is 

particularly necessary for cases that are difficult to classify (e.g., cases unclearly associated with an 

ASD type). Results obtained from the proposed ASD pre-diagnostic tool are expected to be initially 

utilized by medical professionals for more efficient referrals to comprehensive evaluations. The main 

research questions that this study will answer are: 

1) Is Machine Learning applicable to self-administered screening methods for ASD? 

and more specifically,  

2)  Can rule-based ML methods help ASD screening and diagnosis in terms of the efficiency, 

accuracy, and knowledge presented to the user? 

 

2.2. Literature Review  

There have been a few studies investigating ML in autism screening research in recent years, e.g. 

Thabtah 2017c; Bone, et al., 2016; Duda et al., 2016;  Lopez Marcano, 2016; Pratap, et al., 2014; Bone 

et al., 2014; Ruzich, et al., 2015; Wolfers, et al., 2015; Wall et al., 2012a; Wall et al., 2012b. These 

studies have concentrated mainly on the following two aspects of ASD diagnosis:  

1) Accelerating the diagnostic process by identifying the least number of items required to be 

checked during the screening 

2) Improving the sensitivity and specificity of the diagnostic decision by adopting a ML 

algorithm (neural network or decision tree) instead of the scoring function embedded in the 

diagnostic methods.  

Wall et al., (2012a; 2012b) conducted a comparative study using several ML algorithms, particularly 

decision tree-based, on a dataset that contained cases and controls collected using the ADOS-Revised-

Module 1 diagnostic method (Lord et al., 2000). The dataset was imbalanced with respect to class 

labels and contained many missing values and was stored in the Autism Genetic Resource Exchange 

(AGRE) repository (Geschwind, 2001). The aim of the study was to calculate the most influential items 

in the ADOS-Revised-Module 1 that can be utilized by clinicians to reduce the time associated with the 

diagnosis. The authors utilized the WEKA platform to conduct the experiments of the different ML 

algorithms (Hall et al., 2009).  

Results obtained claimed that the ADOS-R-Revised can be replaced with merely eight items. The eight 

items were identified in classifiers generated by the Alternating Decision Tree algorithm (ADTree) by 

simply looking at what items appeared in the classifiers. A more suitable approach is to investigate the 

impact of feature selection methods such as wrapping or filtering on the ASD dataset and then analyze 

common features. A later study by Bone et al., 2014, reported serious conceptual and implementation 

issues associated with the Wall et al., (2012a; 2012b) studies.      

Duda et al., (2014) reported conceptualization and implementation issues linked with the Wall et al., 

(2012a; 2012b) studies. The authors stressed that ASD prediction based on ML requires careful 

investigation especially when dealing with diagnostic methods that strictly follow procedures within a 

clinical environment. The claim that the ADOS-Revised diagnostic method can be minimized to eight 

items is misleading since to produce the decision, the entirety of activities must be conducted by the 

clinician on a test case before the classification system is constructed.. Consequently, there is no time 

saving.  

More importantly, the activities of the ADOS-Revised must be performed in a clinical setup and not 

self-administered, as claimed by Wall et al., (2012a; 2012b). Therefore, the eight items proposed by 

Wall et al., cannot replace the original items of ADOS-Revised. The full ADOS-R test must be conducted 

before building a classifier using the ADTree algorithm in WEKA. Lastly, discarding, by the authors, 



data that is on the border between ASD and No ASD simplified the problem. This is because these 

cases are hard to detect by the ML algorithms. Therefore, including them prior to the data processing 

phase will impact the sensitivity, specificity, and accuracy of the results. 

Duda et al., (2016) conducted an empirical analysis comparing several intelligent algorithms to 

discriminate between ASD and attention deficit hyperactivity disorder (ADHD). Six algorithms have 

been contrasted on a dataset with 65 items adopted from the Simplex Simon Collection (SSC) version 

15 (Fischbach & Lord, 2010). The dataset was collected using a parent administered questionnaire 

diagnostic method called Social Responsiveness Scale (SRS) (Rutter et al., 2003). A preprocessing 

phase was applied by the authors to a) discard instances that had four or more missing values, b) 

balance the dataset using under sampling technique, and c) reduce the data dimensionality using 

feature selection methods. Empirical results reported that Logistic Regression produced classifiers 

with almost 95% classification accuracy. 

Chu et al., (2016) investigated efficient ways to differentiate between ADHD and obstructive sleep 

apnea (OSA). The authors utilized the information of 217 children who had been classified by 

physicians as having ADHD, OSA, and a mixture of ADHD and OSA according to DSM IV standards 

(American Psychiatric Association, 2000). The data was collected using different diagnostic tools. 

Three ML algorithms were adopted to derive classifiers that could assist clinicians and physicians in 

improving the diagnostic decision. Reported results indicated that 17 features show substantial 

difference among three classes of Pervasive Developmental Disorders (PDDs,) particularly in the Child 

Behavior Checklist (CBCL) (Achenbach, 1991). A decision tree algorithm called CART was faster to 

derive the classifiers than the neural network and CHAID algorithms  

Wolfers et al., (2015) investigated issues related to PDDs including small sample sizes, external validity, 

and ML algorithmic challenges without a clear focus on ASD. Lopez Marcano (2016) reviewed the 

applicability of different algorithms such as neural network and decision tree methods (Random 

Forest) to shorten the time of the ASD diagnostic process. Maenner et al., (2016) investigated the 

Random Forest algorithm (Breiman, 2001) on an autism dataset from Georgia Autism and 

Developmental Disabilities Monitoring (ADDM) Network utilizing phrases and words obtained in 

children’s developmental evaluations. The dataset consists of 5,396 evaluations for 1,162 children of 

whom 601 are on the spectrum. The Random Forest classifiers were evaluated on an independent test 

dataset that contained 9,811 evaluations of 1,450 children. The results reported that Random Forest 

achieved around 89% predictive value and 84% sensitivity.  

Thabtah, (2017c) critically analyzed pitfalls associated with experimental studies that adopted ML for 

ASD classification. The authors pinpointed issues related to datasets and learning algorithm 

methodologies used. These issues included: interpreting the classifiers content derived by the learning 

algorithm, noise in autism datasets, feature selection process, missing values, class imbalance, and 

embedding the classification algorithm within an existing screening method. 

 

3. Proposed ASD Classification System 

3.1 Rule-based Architecture for Detecting ASD (RML) 

One of the least studied classification approaches in ML is Covering. Covering techniques normally 

discover simple chunks of information from historical datasets structured in the If-Then format, which 

makes their outcome highly favorable to novice users. In this section, we propose a new ASD detection 

method based on the architecture shown in Figure 1. Our method (RML) is based on Covering 

classification which employs a search method for rule discovery. The RML then evaluates the 

discovered rule and discards any redundancies. Hence, only rules that have been classified as training 

instances are kept. The evaluation phase performed not only reduces the number of discovered rules 

but also shrinks the search space of data items, which improves the efficiency of the training process.  



In Figure 1, data is collected by a mobile application called ASDTests (Thabtah, 2017b) that implements 

four different ASD screening methods (AQ-Adult-10, AQ-Adolescent-10, AQ-Child-10, Q-CHAT-10) 

(Allison, et al., 2012). For the purposes of this research project, focus was on the child, adolescent, 

and adult modules and researchers utilized three datasets collected between September 2017 and 

January 2018. Once the raw data was obtained, several pre-processing operations were applied, 

including missing values replacement and discretization for certain continuous attributes such as the 

age of individuals.  

Feature selection was used to remove features that were redundant and may have created biased 

results. Two features were eliminated, including the final score obtained by the screening method and 

the scoring method type (See Section 4 for further details on data features).  

Once the raw data is preprocessed, then a learning algorithm is applied to discover rules sets that 

represent correlations between the variables in the training dataset and the class variables (ASD or 

No ASD). The datasets are then evaluated to remove useless and redundant rules, storing only rules 

that have classified training instances.  

The outcome of the rule evaluation phase is the classification system (classifier) that will be used to 

predict the value of the class for unseen cases (individuals who have not yet been classified). When 

the classifier is tested, various evaluation metrics are derived to reveal the effectiveness of the rules 

in predicting cases and controls. These metrics, as well as the rules in the classifier, are shared with 

the health professional and the users involved in the screening. Therefore, not only does the new 

architecture provide users with decisions related to ASD detection, it also offers rich information on 

the reasons behind that decision as well as the quality of the outcome.  

 

  

3.2 The Learning Covering Algorithm  

Researchers here developed a new learning mechanism based on the Covering approach called RML. 

The learning method pseudocode is shown in Algorithm 1. The algorithm utilizes two thresholds 

named the Minimum Frequency (Min_Freq) and Rule Strength (R_S) as other Covering approaches 

such as Dynamic Rule Induction (DRI) (Qabajeh et al., 2015; Thabtah et al., 2016) to find and extract 

 

Figure 1: The Proposed ML Architecture for ASD Classification  
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the rules (Definitions 2 and 3 respectively). The Min_Freq threshold is used as a cutoff point for 

variables and class values in the training data (items).  

An item is represented as (Variable Value, class Value) (Definition 1), and any item in the training data 

with a frequency equal to or above the Min_Freq threshold is qualified to be part of the rule’s body 
during the process of building a rule. On the other hand, each rule is linked with a calculated strength 

(Rule Strength), which denotes the rule’s items plus class frequency divided by the items frequency 

(see Definition 5).  

A rule is represented as  
nkk CvAvAvA  ),(...),(),(

2211
where the antecedent is a conjunction 

of variables values (rule body), and the consequent is a class value (ASD, NO ASD). When the computed 

rule strength for a rule such as R is larger than or equal to the R_S threshold, R can then be generated, 

otherwise R will be removed. The computed rule strength for any given rule acts as a quality assurance 

metric that ensures only mathematically fit rules (that have proper data representation) are 

generated.  

 

The Min_Freq and R_S thresholds are like minimum support and minimum confidence parameters in 

association rule mining (Agrawal et al., 1993). However, minimum support and minimum confidence 

are used to differentiate frequent items from infrequent items by considering the items’ frequencies 
in the transactional data, whereas Min_Freq and R_S thresholds consider the target class when 

counting attribute values. More importantly, whenever the rule is derived by RML, the dataset is 

amended and therefore the frequency of rules is updated. 

 

Definition 1: 1-Item in the training dataset (T), i.e.  nCvA ),,(
11

is an attribute plus a class. K-Item is 

a combination of attributes values plus a class, i.e.   ),),(),...,,(),,((
2211 nkk CvAvAvA .    

Definition 2: Min_Freq is a user threshold used to separate weak items from strong items.  

Definition 3: R_S is a user threshold used to form rules.  

Definition 4: A strong item, i.e   nCvA ),,(
11

, is recognized when 
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Definition 5: A rule such as r is formed when 
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The Learning algorithm initially scans the training dataset and discards any 1-item that has failed the 

Min_Freq threshold test (Lines 4-5). All remaining items with computed frequencies above the 

Min_Freq threshold are considered and saved into a data structure. To build a rule such as R, the 

algorithm attaches the best item in terms of computed frequency to the rule’s body and repeats the 

process until the rule’s accuracy cannot improve any further (Lines 6-7). When this occurs, the rule is 

then saved into the classifier (Line 9) and all training instances linked with R are erased from the 

original training dataset (Lines 10-11). When this happens, the strong items’ frequencies are updated 

in the data structure. Consequently, some items may become weak and thus discarded by the learning 

algorithm.  

 

In other words, items that share training instances with R are affected by ’’s data removal, therefore 

frequencies of these items are normally reduced. The update procedure ensures that rules learnt are 

indeed non-redundant and often cover a larger portion of the training dataset. Continuing, this 



procedure can be considered as a quality measure, as items’ frequencies are continuously updated 

since the training dataset is shrinking whenever a rule is generated.  Resulting from this repetitive 

learning process, some manageable models with small yet effective rules are formed, which then can 

be exploited for decision-making by users in the autism screening application. 

 

The RML algorithm guarantees that the search space of items is constantly reduced during the training 

phase and thus results in more efficient data processing. In addition to that, data instances that might 

overlap among items are removed, ensuring that rules extracted are not similar. Recall that RML keeps 

appending items in the rule’s body until it processes with zero error so that the rule can be derived. 

However, in scenarios when rules are associated with some errors, RML allows the generation of such 

rules if they have computed strengths larger than or equal to the R_S threshold set by the end-user. 

This mechanism offers rules with slightly acceptable margins of error but minimizes the chance of 

models’ overfitting.  

 

The RML assumes that the variables in the training dataset are categorical (they are associated with a 

finite set of possible values). Continuous variables (integers and decimals) should be discretized before 

data processing. Lastly, missing values are dealt with as any other values in the training dataset. 

To evaluate the rules sets generated by the learning algorithm, a test procedure that assigns test data 

the appropriate class, is utilized. Whenever a test case is present, the test method allocates the class 

label linked with the best ranked rule that matches the test case. This method necessitates that all 

items of the selected rule’s body are presented in the test case in for the rule to be used for prediction. 
In cases when there are no rules in the classifier fulfilling this condition, the test method then allocates 

the class label of the first partially matching rule to the test case. When no rules are partially or fully 

matching the test case then a default class is allocated. The default class is basically a rule that 

represents the class with the largest frequency in the training dataset.   

 Hereunder are the key features of the ASD rule-based model:   

1) The learning method produces non-redundant rules in the format ‘If-then’ that are easy 

to understand by different users such as clinicians, physicians, family members, 

caregivers, teachers, and others   

2) Efficient procedure for learning the rules that requires one data scan and keeps reducing 

the search space of items during the training process  

3) Straightforward metrics are utilized to derive the rules   

4) Classifiers derived have fewer rules which make them more manageable by the different 

users. 



5) Better sensitivity, specificity, and classification accuracy than the classical process-based 

scoring functions in current screening methods (See Section 4 for further details on the 

results). 

4. Data Features and Empirical Results  

4.1 Data Description  

The data has been collected using a recently developed mobile application called ASDTests 

(Thabtah, 2017c). ASDTests implements four screening methods for toddlers, children, adolescents, 

and adults based on Q-CHAT-10, AQ-10-child, AQ-10-Adolescent and AQ-10 adult respectively (Allison, 

et al., 2012). Figures 2A and 2B depict the landing page and one question page related to toddler test 

of the ASDTests app. During the data collection, there was no direct access to participants; the 

ASDTests mobile application provides clear information to the users about their participation and the 

use of their data in a disclaimer. In addition, the webpage also clearly states the use of the data is for  

research purposes only and informs the users about the use of data. The participants read this before 

submitting their answers. Anonymity has been imposed in the mobile app used to collect the data. 

Participants’ identities are anonymous since no names or sensitive information are involved (See 

variables in Table 1.  

While using the ASDtests application, the user can choose the age category test, which includes ten 

questions presented in a simple graphical user interface. Each question is associated with multiple 

answers that are easily selected in a mobile environment using a smart phone (IOS and Android) or a 

tablet. Once all the questions have been answered by the user, a review screen appears so the user 

can review and verify their answers before a data submission page with a disclaimer is invoked. The 

datasets used have been recently published by the authors at the University of California Irvine Data 

Repository (Lichman, 2013). 

 

Input: dataset with cases and controls T, R_S, Min_Freq thresholds    // Rule Strength = R_S. Minimum Frequency = Min_Freq. 

Output: A Model with rules ( RS ) 

 

1. 𝐸_𝑆_𝑅 ← {}        

2. 𝑟1 ← {}          

3. 𝑇𝑒𝑚𝑝 ← 𝑇        

4. Do {        

5. If [(p(Ai, vi) | ci = I ) /| 𝑇𝑒𝑚𝑝 |] >=  min_freq {    

6. If [(p(Ai, vi) | ci = I ) /|(p(Ai, vi)] >=  R_S      {   

7. 𝑟𝑖 ← (𝐴𝑖, 𝑣𝑖)                  

8. Repeat steps 5-7 until 𝑟𝑖  accuracy cannot improve        

           }}          

9. 𝐸_𝑆_𝑅 ← 𝑟𝑖             

10. 𝑇𝑒𝑚𝑝 ← (𝑇𝑒𝑚𝑝 −  𝐿𝑜𝑐𝑎𝑡𝑒 (𝑟𝑖  , 𝑇𝑒𝑚𝑝))      

                                                                                                                                   

11. 𝑇𝑟𝑎𝑖𝑛 ← (𝑇𝑟𝑎𝑖𝑛 − 𝑇𝑒𝑚𝑝)       

12. Repeat steps 2-11 

13. Exit when T has no more instances OR all p(Ai, vi) have been tested  

14. }           

15. Generate 𝐸_𝑆_𝑅 

16. Classify Test (Test, 𝐸_𝑆_𝑅)           
 

 

Algorithm 1. The RML Classification Method  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2A: Age Selection Screen (Thabtah, 2017b)          Figure 2B: A Sample Question: Toddler’s (Thabtah, 2017b) 

 

Table 1 shows the key features in the dataset used plus the type of screening, i.e. class label. The class 

label was assigned in an automatic manner during the process of data collection by the AQ-10 scoring 

method based on the final score obtained by the individual after taking the screening. There are two 

possible values of the class, i.e. ‘0’ indicates that the individual has no ASD traits, and ‘1’ indicates that 

the individual does have ASD traits. The ‘0’ label is assigned when the final score based on the AQ-10 

methods’ scoring function is more than 6. More details on the score calculation can be found in Alison, 

et al., 2012. Overall, there are 20 features in Table 1 including the class label.  



The ten questions: A1-A10, have been transformed into binary attributes based on the values assigned 

to them by individuals during the screening process. To be exact, values in the A1-A10 variables in the 

dataset have been mapped to ‘0’ or ‘1’ depending on the actual values given during the screening 

process by the participants. In other words, during the screening using the AQ-10 screening method, 

‘1’ was  given for ‘Definitely’ or ‘Slightly Agree’ answers for questions 1, 7, 8, and 10.  For the rest of 

the questions in this method ‘1’ was allocated when ‘Definitely’ or ‘Slightly Disagree’ was chosen for 

questions 2, 3, 4, 5, 6, or 9. The binary representation for features allows more efficient data 

processing when adopting learning algorithms in addition to making interpretation easier. 

Table 2 displays 10 sample cases of individuals who experienced the AQ-10 adult screening, for 

presentation purposes. The dataset size is 704 cases collected over a period of four months. The 

dataset is imbalanced with respect to class labels, with 515 cases belong to ‘No ASD Traits’ and 189 

cases with ‘ASD’. This can be attributed to the fact that most people being screened through the app 

have no autistic traits. There are missing values in some cases, especially in two features, i.e. ethnicity, 

and who_is_taking_the_test. Slightly more male than female individuals have taken the ASD screening 

using the app. The three most popular ethnicities in the dataset belong to white, Asian and Middle 

Eastern. The computed mean for age was 29.2 with the youngest person to have taken the screening 

being 17-years-old, and the oldest 64-years-old. Lastly, more adults in the dataset have taken the test 

independently. The adolescent and child datasets contain 104 and 292 instances respectively. 

 

Table 1: Features Collected, their Descriptions and Mapping to the Actual AQ-10 Questionnaire 

Feature  Type Description  

Age  Number  Adults (year), i.e. 17 years +. 

Gender  String  Male or Female  

Ethnicity String List of common ethnicities in text format  

Born with jaundice Boolean  (yes or no) Whether the case was born with jaundice 

Family member with PDD Boolean  (yes or no) Whether any immediate family member has a PDD  

Who is completing the test String  Parent, self, caregiver, medical staff, clinician, etc. 

Country of residence  String List of countries in text format 

Used the screening app before  Boolean  (yes or no) Whether the user has used a screening app 

Screening Method Type  Integer (0,1,2,3) The type of screening methods chosen based on age category 

(0=Toddler, 1=Child, 2=Adolescent, 3=Adult). In our case only Adult data 

has been used 

A1  Binary (0, 1) The answer code of: I often notice small sounds when others do not   

A2  Binary (0, 1) The answer code of: I usually concentrate more on the whole picture 

rather than the small details 

A3  Binary (0, 1) The answer code of: I find it easy to do more than one thing at 

once 

A4  Binary (0, 1)  If there is an interruption, I can switch back to what I was doing very 

quickly 

A5  Binary (0, 1) The answer code of: I find it easy to ‘read between the lines’ when 
someone is talking to me   

A6 Binary (0, 1) The answer code of: I know how to tell if someone listening to me is 

getting bored 

A7 Binary (0, 1)  When I’m reading a story I find it difficult to work out the characters’ 
intentions 

A8  Binary (0, 1)  I like to collect information about categories of things (e.g. types of car, 

types of bird, types of train, types of plant, etc) 

A9 Binary (0, 1)  I find it easy to work out what someone is thinking or feeling just by 

looking at their face 

A10 Binary (0, 1) The answer code of: I find it difficult to work out people’s intentions   

ASD Score  Integer  The final score obtained based on the scoring function of on AQ-10-Adult. 

This was computed in an automated manner. 

Class label Boolean The decision of the screening based on the scoring score of AQ-10-Adult 

method. Possible values ‘0’ (no ASD traits or ‘1’ (ASD traits) 

 

 



4.2 Experimental Settings  

This section presents the experimental settings of the proposed rule-based model and other common 

ML algorithms based on rule induction, Bagging, Boosting, and decision tree approaches on the child, 

adolescent, and adult datasets. We used six different algorithms in addition to RML to reveal the 

performance of the rule-based model. RIPPER, RIDOR, Nnge, Bagging, CART, C4.5, and PRISM 

algorithms have been adopted in the experimental results (Cohen, 1995; Gaines, 1995; Martin, 1995; 

Breiman, 1996; Breiman et al., 1984; Quinlan, 1993; Cendrowska, 1987). The main reason for choosing 

these algorithms, aside from them all producing rule-based classification models (classifiers,) is the 

fact that they employ different learning schemes in processing the dataset. 

C4.5 and CART construct decision tree classifiers that get converted into rules sets; PRISM is a greedy 

algorithm that seeks for rules that have 100% expected accuracy. C4.5 uses pessimistic error 

estimation for pruning the trees before converting these trees into rules sets, whereas PRISM uses 

expected accuracy to measure the usefulness of adding an item into the rule’s body while constructing 

a rule. On the other hand, RIPPER and RIDOR implement optimization and pruning procedures to test 

rules. For instance, RIPPER uses growing and pruning datasets to evaluate the worthiness of attributes’ 
values prior to appending them into the rule’s body. So, if adding an attribute value decreases the 

rule’s predictive power, RIPPER ignores adding the attribute value and generates the rule. Lastly, 

Bagging and Boosting employ weak classifiers that in turn are merged to derive rules. This has been 

accomplished by deriving N classifiers and then utilizing them in predicting the class label of test 

instances using a voting mechanism, i.e. the class that belongs to the majority classifiers gets allocated 

to the test instance. 

The considered algorithms are well investigated on different real-world applications and have proved 

their merits in terms of performance, such as predictive power and efficiency. Different evaluation 

metrics have been adopted to reveal the ML algorithm’s true performance in detecting ASD traits from 

the datasets. To be exact, classification accuracy, specificity, and sensitivity among others (see 

Equations 1-5) were used (Witten & Frank, 2005).  

The proposed rule-based model has been developed in the Java programming language and integrated 

within the WEKA platform version 3.9.1 (Hall, et al., 2011). WEKA is a known environment for 

implementing methods related to learning, classification, prediction, variable analysis, visualization, 

and dimensionality reduction. WEKA consists of packages that contain large numbers of ML and data 

mining techniques. Hence, all empirical runs have been conducted in WEKA for fair comparison. In 

testing the classifiers generated by the learning algorithm considered, a ten-fold cross validation 

method has been adopted (Abdelhamid & Thabtah, 2014; Witten & Frank, 2005).  

Table 2: Sample of 10 Data Cases Collected for Adults Using ASDTests App based on AQ-10 Adult Screening Method   

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q19 age sex ethnicity jundice

family 

austim

contry_of

_res

used_app

_before

ASD 

Score

Who is 

taken the 

test

Class/

ASD

1 1 1 1 0 0 1 1 0 0 26 f White no no USA no 6 Self NO

1 1 0 1 0 0 0 1 0 1 24 m Latino no yes Brazil no 5 Self NO

1 1 0 1 1 0 1 1 1 1 27 m Latino yes yes Spain no 8 Parent YES

1 1 0 1 0 0 1 1 0 1 35 f White no yes USA no 6 Self NO

1 0 0 0 0 0 0 1 0 0 40 f

Middle 

Eastern no no Palestine no 2 Self NO

1 1 1 1 1 0 1 1 1 1 36 m Others yes no USA no 9 Self YES

0 1 0 0 0 0 0 1 0 0 17 f Black no no USA no 2 Parent NO

1 1 1 1 0 0 0 0 1 0 64 m White no no New Zealandno 5 Self NO

1 1 0 0 1 0 0 1 1 1 29 m White no no UK no 6 Self NO

1 1 1 1 0 1 1 1 1 0 17 m Asian yes yes China no 8

Health care 

professional YES



In using ten-fold cross validation, the training dataset is partitioned into ten subsets. The classification 

algorithm randomly utilizes nine data subsets to learn the classifier and then tests the classifier on the 

remaining data subset. The same process is repeated ten times to generate an average error rate 

(Thabtah, 2006). The cross-validation procedure is embedded in WEKA platform and can be selected 

prior the learning phase. Lastly, all experimental runs have been conducted on a personal computer 

that has a 2.0 GHz processor and 8 RAM of memory.  

The ASD screening process is a binary classification problem since individuals are classified to either 

having ASD traits or No ASD traits using characterized quantifiable variables. Therefore, performance 

evaluation methods that align with the binary classification problem in ML have been used. The 

confusion matrix (Table 3) can be used to derive different evaluation metrics including classification 

accuracy, error rate, sensitivity, and specificity to report the performance of the learning algorithms. 

Using the confusion matrix, a test case will be assigned a predicted class in the classification step of 

the screening.  

Based on Table 3, classification accuracy (Equation 2) is a common metric in classification that 

computes the number of test data that was correctly classified from the total number of test data. 

Opposite to accuracy is the error rate (Equation 1). On the other hand, sensitivity (Equation 3) 

computes the percentage of the test cases that are truly positive (with ASD class) and specificity 

(Equation 4) denotes the percentage of the test cases that are negative (cases with no ASD). 
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4.3 Results Analysis 

Multiple experimental runs have been performed using different ML algorithms on Child, Adolescent 

and Adult datasets ASD screening datasets to reveal the true performance of the proposed model. 

Table 3: Confusion Matrix for ASD Screening Problem 

 Predicted Class Value 

 

Actual Class Value 

ASD No-ASD 

ASD True Positive 

(TP) 

False Negative 

(FN) 

No-ASD False Positive 

(FP) 

True Negative 

(TN) 

 



Figure 3 depicts the error rate results in % of the considered algorithms on the Child, Adolescent and 

Adult datasets. The figures show that Bagging, Boosting, rule induction and decision tree classifiers 

were able to accurately classify most of the cases and controls as their error rates for the Adult dataset 

were between 5.68 – 8.23%. However, the enhanced Covering algorithms such as our model (RML) 

outperformed the remaining algorithm in terms of error rate, i.e. an error rate less than 5.6%.  

For the Adult dataset, RML derived a classifier with lower errors rates of 4.41%, 2.7%, 0.15%, 2.14%, 

3.7%, 3.27%. 1.57% and 1.83% respectively than PRISM, CART, AdaBoost, Bagging, Nnge, RIDOR, C4.5 

and RIPPER algorithms. For the smaller datasets (Adolescent, Child), RML maintained higher predictive 

rates than most of the considered algorithms. For instance, for the Child dataset, RML achieved 5.82%, 

4.11%, 0.69%, 2.4%, 1.03%, 5.82% and 2.4% less error rate than PRISM, CART, AdaBoost, Bagging, 

Nnge, RIDOR, and RIPPER algorithms. Only C4.5 slightly achieved 0.34% higher than RML on this 

dataset. Nevertheless, RML, outperformed C4.5 on the Adolescent dataset by 7.69%. This, if limited, 

shows that RML not only performs well on datasets with enough data instances, such as the Adult 

dataset, but also with datasets with a limited number of instances, such as the Adolescent dataset. In 

addition, the superiority of the proposed algorithm is clear in the case of small datasets, whereas the 

considered ML algorithms suffered from low predictive rates due to not having enough instances. For 

example, rule induction algorithms such as RIPPER and tree-based algorithms such as C4.5 and CART, 

derived classifiers with 20%, 7.69% and 13.46% less error rates respectively than that of the RML 

model on the Adolescent dataset. 

 The reduction in the error rate can be attributed to the procedure employed by RML in the rule 

generation phase in which only non-redundant rules are produced and redundant rules that have no 

data coverage are discarded. Our model ensures that each rule has data coverage and eliminates any 

overlapping among rules on training instances, hence deriving an accurate classifier. In building the 

classification systems for detecting ASD, the RML algorithm ensures that whenever a rule is generated 

all its data instances are removed before learning the next rule from the training dataset. Additionally, 

it amends candidate item frequencies during the learning phase whenever training instances 

associated with the generated rules are erased. These amendments may result in potential rules 

becoming weak and thus discarded at the preliminary phase, which reduces the search space and 

improves the efficiency of the training phase.  

 Figure 4A displays the specificity and sensitivity rates derived by the RIPPER, RIDOR, Nnge, Bagging, 

AdaBoost, CART, RML, C4.5 and PRISM algorithms on the Child, Adolescent and Adult datasets. 

Usually, acceptable specificity and sensitivity rates in autism research should be at least 80% (Towle 

 

Figure. 3: Error Rates Derived by the Considered ML Algorithms on the Child, Adolescent and Adult Datasets 
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& Patrick, 2016). The results of the specificity and sensitivity rates generated by the considered 

algorithms on the two datasets (Adult, Child) have shown acceptable levels. Moreover, the Covering 

approach represented by RML produced classification systems with higher sensitivity and specificity 

rates than most of the remaining algorithms on these datasets. For example, for the Adult dataset, 

RML derived 1.9%, 3.3%, 2.0%, 2.8%, 3.2%, 1.7%, 0.2% and 1.7% higher sensitivity rates than RIPPER, 

RIDOR, Nnge, Bagging, CART, PRISM, AdaBoost, and C4.5 algorithms respectively. On the other hand, 

and for the same dataset, RML achieved 2.52%, 3.49%, 1.55%, 2.72%, 2.72%, 1.94%, 5.02% and 2.72% 

higher specificity rates than RIPPER, RIDOR, Nnge, Bagging, CART, PRISM, AdaBoost, and C4.5 

algorithms respectively.  

For the Child dataset, RML achieved 2.4%, 5.9%, 1.1%, 2.4%, 4.2%, 0.78% and 0.7% higher 

sensitivity rates than RIPPER, RIDOR, Nnge, Bagging, CART, PRISM and AdaBoost algorithms 

respectively. The rates get larger for the Adolescent dataset since most of the ML algorithms are 

unable to perform well on small datasets with lesser number of instances as RML. To be exact, the 

sensitivity rate of RML is 20.2%, 2.9%, 5.8%, 13.5%, 0.6% and 7.7% higher than RIPPER, Nnge, Bagging, 

CART, AdaBoost and C4.5 algorithms respectively. C4.5 slightly outperformed RML with respect to 

sensitivity rate on the Child dataset and by 0.3%. For the Child dataset, the specificity rate of RML was 

higher than most of the considered ML algorithms. To be exact, RML derived 19.8%, 2.7%, 6.0%, 

13.2%, 0.4%, 7.5% higher specificity rate than RIPPER, Nnge, Bagging, CART, PRISM, and C4.5 

algorithms respectively. Only RIDOR and AdaBoost slightly outperform RML in terms of specificity rate 

on the Adolescent dataset, and by just 0.2% and 0.8% respectively. Overall, the results reported higher 

sensitivity and specificity rates for RML on the three datasets when compared with the considered ML 

algorithms; these results are consistent with the error rates produced earlier and can be attributed to 

the non-redundant rules sets generated by RML.  

The researchers investigated the confusion matrix results produced by the classifiers to understand 

the sensitivity, accuracy, and specificity results. For the Adult dataset, it was observed that the PRISM 

algorithm had the largest number of false negatives, followed by the CART and Bagging algorithms. 

Specifically, PRISM predicted 38 instances of individuals with No ASD traits that should have been 

classified on the spectrum. As a result, the sensitivity rate for class ‘ASD’ for this algorithm was low, at 

least on this dataset. On the other hand, PRISM had a high specificity rate having only 12 false 

positives. In other words, PRISM only predicted 38 adults without ASD traits that potentially supposed 

 

 

Figure 4A: Specificity and Sensitivity Rates of the ML Algorithms on the Adult, Adolescent and Child datasets 
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to be on the spectrum, and 12 individuals with ASD that are supposed to be classified as ‘No ASD’.  The 

‘No ASD’ class has much higher data representation in the training dataset than the ASD class, which 

means that the PRISM algorithm is sensitive to the number of data items linked to class labels; for RML 

there were 15. 

Figure 4B depicts the predictive accuracy of the considered ML algorithms including RML derived 

from the Child, Adolescent, and Adult datasets. The figure clearly shows that the RML algorithm 

generated classifiers with higher accuracy than the considered algorithms on the Adult and Child 

datasets. The AdaBoost algorithm slightly outperformed RML on the Adolescent dataset, yet RML has 

derived a competitive classifier on the same dataset. 

The RIDOR algorithm has the largest number of false positives, wrongly predicting 33 instances 

having ASD who are supposed to be without ASD traits. Overall, there were higher classification rates 

for class ‘No ASD’ than ‘ASD’ with most of the considered algorithms. A probable reason for that 

fluctuation is that more instances representing class ‘No ASD’ are present in the training dataset. 

When the learning algorithm starts the training process more rules are then derived for class ‘No ASD’ 
in the classifier and therefore test instances that are supposed to be ‘No ASD’ will have less 

misclassifications.  

Since the adult autism dataset is imbalanced with respect to class variable, researchers here 

included a metric called the harmonic mean (F1) that considers both recall (sensitivity) and precision 

(Equation 6). The F1 rates produced by the classifiers and shown in Figure 5 are high for the Covering 

(RML) and Boosting algorithms. This indicates that RML and AdaBoost perform well in datasets with 

imbalanced class labels and higher than the decision trees, Bagging, and rule induction algorithms 

represented by Nnge, RIDOR, RIPPER, CART, C4.5 and Bagging. For instance, on the Adult dataset, RML 

outperformed RIPPER, RIDOR, Bagging, CART, PRISM and C4.5 with respect to F1 rate by 1.7%, 3.1%, 

3.6%, 2.2%, 2.6%, 1.8% and 1.6% respectively.  

The results produced by the ML algorithms with respect to error rate, sensitivity, specificity, and 

F1 reveal a promising direction for autism screening. The results also pinpointed that Covering 

algorithms, such as RML, work well in ASD detection for at least the adults. Furthermore, the 

performance of ML may be impacted when the number of instances for a class label is low, i.e. class 

ASD. However, when a class is representative, such as ‘No ASD’, then the performance improves.  

Overall, most algorithms generated acceptable sensitivity, specificity, and F1 results with more 

superiority to the Covering and Boosting classification approaches. These algorithms are more tolerant 

 

Figure 4B: Predictive Accuracy Rates in % Derived by the Considered ML Algorithms 
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toward data with noise, i.e. imbalanced datasets. A possible direction to boost the performance is to 

have more data for the low frequency class. 

The researchers investigated the classifier content generated by the Covering, decision tree, 

Bagging, and rule induction algorithms to seek important knowledge that could help in detecting ASD. 

Figure 6 shows the number of rules generated by the considered algorithms on the adult dataset. The 

figures clearly show that the PRISM and Nnge algorithms generate the highest number of rules. The 

reason for extracting too many rules by PRISM is the fact that this algorithm has no rule pruning 

strategy, so it keeps building up rules, whereas Nnge is an algorithm that adopts the nearest neighbor 

search using non-nested generalized exemplars.  

The number of rules results pinpointed that decision tree-like algorithms, such as CART and C4.5, 

derive classifiers larger in size than the rule induction and Covering approaches. The rule induction 

approach, represented by RIPPER and RIDOR, generate slightly smaller classifiers than the Covering 

approach. This can be attributed to the rigorous pruning procedures adopted by RIPPER and RIDOR in 

evaluating the rules. 

Table 4 contains the common rules related to ASD detection that have been extracted by the 

Covering and rule induction approaches respectively (RML, RIPPER). It seems that items in the AQ-

Adult-10 screening methods have high influence on the class labels, particularly items 5, 9, 8, and 4. 

Additionally, items 7 and 2 appeared in multiple rules in RIPPER and RML classifiers. It seems that the 

 

Figure 5: F1 Rates in % Derived by the Considered ML Algorithms on the Adult, Adolescent and Child Datasets 
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Figure 6: Number of Rules Derived by the Considered ML Algorithms on the Adult Dataset 
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items that have frequently appeared within the rules cover certain autistic behaviors within the DSM-

5 manual. For instance, item 8 covers repetitive behavior, item 4 is aligned with communication and 

lastly items 5 and 9 are aligned with social behavior (Table  5).  

Table 5: Common Features Mapping with AQ-adult-10 Screening Method  

Item Description  

5 I find it easy to ‘read between the lines’ when someone is talking 
to me 

9 I find it easy to work out what someone is thinking or feeling just 

by looking at their face 

8 I like to collect information about categories of things (e.g. types 

of car, types of bird, types of train, types of plant, etc.) 

4 If there is an interruption, I can switch back to what I was doing 

very quickly 

 

Table 4: Common Rules Derived by RML and RIPPER Algorithms on the Autism Datasets 

RML rules  

(Freq, R_S) 

RIPPER rules 

1. (238, 1.00) Label = NO when A5_Score = 0, A3_Score = 0 

2. (054, 1.00) Label = NO when A5_Score = 0, A8_Score = 0 

3. (037, 1.00) Label = NO when A1_Score = 0, A10_Score = 0 

4. (019, 1.00) Label = NO when A4_Score = 0, A5_Score = 0 

5. (023, 1.00) Label = YES when A6_Score = 1, A7_Score = 1, 

family_with_autism = yes 

6. 07 - (056, 1.00) Label = YES when A6_Score = 1, A7_Score = 1, 

A9_Score = 1, A1_Score = 1 

7. (039, 1.00) Label = NO when A4_Score = 0, A2_Score = 0, 

A9_Score = 0 

8. (030, 1.00) Label = YES when A6_Score = 1, A3_Score = 1, 

A1_Score = 1, A2_Score = 1 

9. (026, 1.00) Label = NO when A8_Score = 0, A9_Score = 0, 

born_with_jaundice = no 

10. 14 - (023, 1.00) Label = YES when A9_Score = 1, A2_Score = 1, 

A8_Score = 1 

11. (018, 0.86) Label = YES when A7_Score = 1, A4_Score = 1, 

A5_Score  

 

Adult Dataset 

1. If (A9_Score = 1) and (A5_Score = 1) and (A6_Score = 1) and 

(A10_Score = 1) => Class/ASD=YES (102.0/3.0) 

2. If (A9_Score = 1) and (A3_Score = 1) and (A1_Score = 1) and 

(A5_Score = 1) => Class/ASD=YES (40.0/4.0) 

3. If (A4_Score = 1) and (A6_Score = 1) and (A7_Score = 1) and 

(A8_Score = 1) => Class/ASD=YES (18.0/1.0) 

4. If (A5_Score = 1) and (A2_Score = 1) and (A10_Score = 1) and 

(A8_Score = 1) and (A3_Score = 1) => Class/ASD=YES (16.0/2.0) 

5. If (A9_Score = 1) and (A4_Score = 1) and (A1_Score = 1) and 

(A8_Score = 1) and (A2_Score = 1) => Class/ASD=YES (8.0/0.0) 

6. If (A7_Score = 1) and (A5_Score = 1) and (A4_Score = 1) and 

(A8_Score = 1) and (A10_Score = 1) => Class/ASD=YES (11.0/2.0) 

 

 

Adolescent Dataset 

1. (A4_Score = 0) and (A10_Score = 0) => Class/ASD=NO  

2. (A5_Score = 0) and (A7_Score = 0) => Class/ASD=NO  

3. (A3_Score = 0) and (A2_Score = 0) => Class/ASD=NO  

 

        Child Dataset 

1. (A4_Score = 1) and (A7_Score = 1) and (A10_Score = 1) => 

Class/ASD=YES (79.0/1.0) 

2. (A8_Score = 1) and (A1_Score = 1) and (A10_Score = 1) => 

Class/ASD=YES (35.0/6.0) 

3. (A9_Score = 1) and (A5_Score = 1) and (A2_Score = 1) => 

Class/ASD=YES (17.0/1.0) 

4. (A9_Score = 1) and (A5_Score = 1) and (A8_Score = 1) and 

(A3_Score = 1) => Class/ASD=YES (9.0/2.0) 

5. (A4_Score = 1) and (A5_Score = 1) and (A1_Score = 1) and 

(A3_Score = 1) and (A2_Score = 1) => Class/ASD=YES (5.0/0.0) 

6. (A9_Score = 1) and (A4_Score = 1) and (A10_Score = 1) and 

(A3_Score = 1) => Class/ASD=YES (4.0/0.0) Class/ASD=NO 

(143.0/2.0) 

 

 

Table 6: Time to Build the Models in Milliseconds (ms)  

  RIPPER RIDOR Nnge Bagging AdaBoost CART RML  C4.5  PRISM 

Child 2 2 3 2 3 4 0 0 1 

Adolescent 5 3 5 4 5 5 0 1 2 

Adult 7 4 8 4 6 7 1 3 3 

 



Finally, Table 6 depicts the runtime in milliseconds (ms) for the considered ML algorithms in 

processing the three autism datasets. It is obvious from the table that RML is more efficient than the 

remaining ML algorithms in building the models and for all datasets considered. Overall, ML 

techniques showed good efficiency in deriving the screening models from the child, adolescent and 

adults datasets respectively. 

 5. Conclusions  

Autism screening is a fundamental step toward understanding autistic traits and for speeding up 

referrals to further evaluation in a clinical setting. However, existing screening tools such as AQ, Q-

CHAT and many others rely on simple calculation, using scoring functions that tally the scores of 

answers given by individuals. During the screening process these scoring functions have been 

developed based on hand-crafted rules and thus can be criticized for being subjective.  Therefore, one 

of the crucial issues in ASD screening research is improving the screening process so that individuals 

and their families can have a faster and more accurate service. This can be accomplished by utilizing 

automated methods based on ML that build accurate classification systems from historical cases and 

controls. This paper proposes a new ML method called RML that not only boosts the sensitivity, 

specificity, and predictive accuracy of the ASD screening process, but also offers automatic 

classification beside rich rules sets for clinicians, caregivers, patients and their families and teachers.  

The proposed method generated non-redundant rules in a straightforward manner utilizing Covering 

learning. Empirical evaluation on different autism datasets using rule induction, Bagging, Boosting and 

decision trees algorithms reported the superiority of the RML model with respect to different 

evaluation metrics including specificity, sensitivity, harmonic mean, and error rate. The results also 

showed that the RML derived classifiers  contain useful rules for understanding the reasons behind 

the ASD classification. Lastly, the classifier’s content revealed some influential items in the autism 

screening that are aligned with social and communication behaviors yet not fully fulfilling the 

Statistical Manual of Mental Disorders (DSM-5) criteria for ASD diagnosis. 

In conclusion, this paper clearly revealed that ML approaches, especially Covering, showed promising 

results in detecting ASD cases especially for adults. In future, the researchers intend to design and 

implement a new autism screening tool based on rules sets derived by our model for toddlers, 

children, and adolescents.   

One of the limitations of this paper is not including instances related to toddlers as these are rare and 

difficult to obtain. In addition, RML possibly needs a method to deal with datasets that are imbalanced 

with respect to class labels, to further improve its predictive performance.  Soon, we are going to build 

a new screening mobile application that will embed the rule based classifiers to help diagnosticians 

access a rich knowledge base for improving screening and diagnostic decisions related to autism. 
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