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Abstract

Although only a small percentage of global land cover, urban areas significantly alter climate,

biogeochemistry, and hydrology at local, regional, and global scales. To understand the impact

of urban areas on these processes, high quality, regularly updated information on the urban

environment—including maps that monitor location and extent—is essential. Here we present

results from efforts to map the global distribution of urban land use at 500 m spatial resolution

using remotely sensed data from the Moderate Resolution Imaging Spectroradiometer

(MODIS). Our approach uses a supervised decision tree classification algorithm that we process

using region-specific parameters. An accuracy assessment based on sites from a stratified

random sample of 140 cities shows that the new map has an overall accuracy of 93% (k = 0.65)

at the pixel level and a high level of agreement at the city scale (R2
= 0.90). Our results

(available at http://sage.wisc.edu/urbanenvironment.html) also reveal that the land footprint of

cities occupies less than 0.5% of the Earth’s total land area.

Keywords: urban systems, cities, urbanization, land cover, ecoregions, global monitoring,

remote sensing, decision trees, machine learning, data sets

1. Introduction

For the first time in history, more than 50% of the Earth’s

population now live in cities, towns and settlements (UN 2008).

From an environmental standpoint, cities are viewed as an

efficient way to concentrate intensive human impacts, while on

the other hand, as a nexus of negative environmental impacts

that cross scales and city boundaries (Mills 2007). It is clear

that cities consume enormous amounts of resources, the by-

products of urban activity and land use are numerous (Foley

et al 2005), and recent studies demonstrate that the ecological

footprint of many cities is significant and not sustainable

(Kareiva et al 2007). Cities are also emerging as an important

source of uncertainty in regional to global scale biogeophysical

processes. For example, the impact of urban areas on

atmospheric chemistry and aerosols is both pronounced and

well-documented (Atkinson 2000). Urban land use influences

local to regional climates through urban heat islands (Oke

1982, Quattrochi and Ridd 1994), impervious surfaces alter

sensible and latent heat fluxes (Offerle et al 2006), and recent

evidence has suggested that cities may also significantly affect

precipitation regimes (Shepherd 2005). At larger scales,

the debate continues on whether urban areas significantly

impact global environmental processes; recent studies have

demonstrated that accurate representation of urban land use is

both important and poorly captured in current models (Oleson

et al 2008). Accurate and timely information on the global

distribution and nature of urban areas is therefore critical to a

wide array of research questions related to the effect of humans

on the regional and global environment (Kaye et al 2006).

Despite the growing importance of urban land in regional

to global scale environmental studies, it remains extremely

difficult to map urban areas at coarse scales due to the

heterogeneous mix of land cover types in urban environments,

the small area of urban land relative to the total land surface
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Table 1. Ten global urban or urban-related maps listed in order of increasing global urban extent. (Abbreviations: NOAA, National
Oceanographic and Atmospheric Administration; NASA, National Aeronautics and Space Administration; DOE, Department of Energy;
MODIS, Moderate Resolution Imaging Spectroradiometer.)

Abbreviationa Map (citation) Definition of urban or
urban-related feature

Resolutionb Extent (km2)

VMAP Vector Map Level Zero Populated places 1:1 mil 276 000
(Danko 1992)

GLC2000c Global Land Cover 2000 Artificial surfaces and associated
areas

988 m 308 000

(Bartholome and Belward
2005)

GlobCoverc GlobCover v2.2 Artificial surfaces and associated
areas (urban areas >50%)

309 m 313 000

(ESA 2008)
HYDEc History Database of the

Global Environment v3
Urban area (built-up, cities) 9000 m 532 000

(Goldewijk 2005)
IMPSA Global Impervious Surface

Area
Density of impervious surface
area

927 m 572 000

(Elvidge et al 2007)
MODIS 500 mc MODIS Urban

Land Cover 500 m
(Schneider et al 2009)

Areas dominated by built
environment (>50%), including
non-vegetated,
human-constructed elements,
with minimum mapping unit >

1 km 2

463 m 657 000

MODIS 1 kmc MODIS Urban
Land Cover 1 km

Urban and built-up areas 927 m 727 000

(Schneider et al 2003)

GRUMP Global Rural–Urban
Mapping Project

Urban extent 927 m 3 524 000

(CIESIN 2004)

Lightsd Nighttime Lights v2 Nighttime illumination intensity 927 m NA
(Imhoff et al 1997,
Elvidge et al 2001)

LandScand LandScan 2005 Ambient (average over 24 h)
global population distribution

927 m NA

(Bhaduri et al 2002)

a Bold type indicates the maps assessed in this paper. HYDE was not included due to its coarse spatial resolution.
b For maps in a native geographic projection, the resolution describes pixel size at the equator.
c These maps are multi-class land cover maps with an urban class.
d Maps depicting urban-related features.

area, and the significant differences in how different groups

and disciplines define the term ‘urban’. Each of the datasets

that have emerged during the last decade (table 1) suffers

from limitations related to these scale and definitional issues

(Potere et al 2009). Moreover, the maps differ by an order of

magnitude in how they depict urban areas (0.3 million km2 for

Vector Map, Danko 1992, to 3.5 million km2 for the Global

Rural–Urban Mapping Project, CIESIN 2004). The extreme

variability in these estimates calls into question the accuracy

of each map’s depiction of urban and built-up land, and yet

past efforts to validate the maps have been minimal.

In this letter, we present results from recent efforts to

produce a new global map of urban land based on a new

approach that uses remotely sensed data in association with

a global stratification of ‘urban ecoregions’. This work

builds on our past work using Moderate Resolution Imaging

Spectroradiometer (MODIS) data at 1 km spatial resolution

(Schneider et al 2003, 2005) in coordination with the MODIS

Collection 4 Global Land Cover Product (Friedl et al 2002,

2009). The goal of producing this new map is to address

several key deficiencies in the Collection 4 (C4) map arising

from confusion between built-up areas, bare ground and

shrublands, as well as begin development of a database of

urban land surface characteristics for multiple time periods

(2001–2010). To this end, the new dataset is produced

using newly released Collection 5 (C5) MODIS data circa

2001–2002 with increased spatial resolution (500 m). In the

following sections, we describe our methods and results, and

briefly highlight key findings from our accuracy assessment of

the new global urban map.

2. Defining urban extent

We begin our analysis with a conceptual framework for

characterizing urbanized areas in regional and global mapping

studies. We define urban areas based on the physical attributes

and composition of the Earth’s land cover: urban areas

are places dominated by the built environment. The ‘built

environment’ includes all non-vegetative, human-constructed

elements, such as roads, buildings, runways, etc (i.e. human-

made surfaces), and ‘dominated’ implies coverage greater

than 50% of a given landscape unit (the pixel). When
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vegetation (e.g. a park) dominates a pixel, these areas are

not considered urban, even though in terms of land use, they

may function as urban space. The term ‘impervious surface’

is often used interchangeably with ‘built environment’ (Ridd

1995), but we prefer the more direct term ‘built environment’

because of uncertainty and known scaling issues surrounding

the impervious surface concept (Small and Lu 2006, Stow

et al 2007). Finally, our definition also includes a minimum

mapping unit: urban areas are contiguous patches of built-up

land greater than 1 km2.

In general, global urban mapping efforts have been beset

by the lack of a consistent, unambiguous definition of ‘urban

areas’. Each group in table 1 approaches the task from a

different perspective, employing methodologies that draw on

a combination of satellite imagery, census information, and

other maps. However, the definitions utilized in each map

(table 1) do not necessarily reflect each group’s methodological

approach to mapping urban areas. Rather, previous work

has shown that the representation of urban land is often tied

closely to the input data: maps from census data correspond

to population distribution, those utilizing Nighttime Lights

data correlate with national income levels, while maps from

multispectral data align most closely with ‘built-up areas’

(Potere and Schneider 2007, Potere et al 2009). To provide

context for our accuracy assessment of the new MODIS 500 m

urban map, we therefore include four maps that define urban

areas similar to our approach—GLC2000, GlobCover, Global

Impervious Surface Area dataset (IMPSA), and GRUMP—as

well as the C4 MODIS 1 km map.

3. Methods

3.1. Supervised classification of MODIS data

The classification methodology for this research relies on a

supervised decision tree algorithm (C4.5), a non-parametric

classifier shown to be particularly effective for coarse

resolution datasets with complex, non-linear relationships

between features and classes, and noisy or missing data

(Friedl and Brodley 1997, Friedl et al 2002). Decision tree

construction involves the recursive partitioning of a set of

training data, which is split into increasingly homogeneous

subsets based on statistical tests applied to the feature values

(the satellite data). Once the decision tree has been estimated,

these rules are then applied to the entire image to produce a

classified map.

To improve classification accuracy, the decision tree

algorithm is used in conjunction with boosting, an ensemble

classification technique that improves class discrimination by

estimating multiple classifiers while systematically varying

the training sample (Quinlan 1996). The final classification

is produced by an accuracy-weighted vote across all

classifications. Boosting has been shown to be equivalent

a form of additive logistic regression, and as a result,

probabilities of class membership can be assigned for each

class at every pixel (McIver and Friedl 2001).

Our classification approach employs a one-year time

series of MODIS data to exploit spectral and temporal

properties in land cover types. Specifically, we utilize the

differences in temporal signatures for urban and rural areas that

result from phenological differences between vegetation inside

and outside the city. For example, the spectral signatures of

an urbanized plot and a fallow agricultural plot may appear

similar at any given time in medium-coarse resolution data, and

are therefore easily confused during classification. However,

over the course of one year, the signatures for the urban and

agricultural plots will vary due to differences in bud-burst,

vegetation abundance, etc. Accordingly, the MODIS data

inputs include one year (18 February 2001 to 17 February

2002) of 8 day composites of the seven land bands and the

enhanced vegetation index (EVI) at 463.3 m spatial resolution.

All input data are adjusted to a nadir-viewing angle to reduce

the effect of varying illumination and viewing geometries

(Schaaf et al 2002). The 8 day values are aggregated to

32 day averages to reduce the frequency of missing values

from cloud cover, and monthly and yearly minima, maxima

and means for each band are included as inputs to increase

classification accuracy. Finally, the training data include

1860 sites selected across 17 land cover classes by manual

interpretation of Landsat and Google Earth imagery, as well

as a set of urban training sites chosen from 182 cities located

across the globe.

While the previous approach for C4 MODIS data also

utilized the C4.5 algorithm, the new methods differ in several

key ways. Rather than rely on external datasets to constrain the

classification as in the C4 methodology, the C5 methodology

does not include this step. The increased resolution of

the MODIS data and improvements to the training site

database are typically sufficient to generate the final urban

map for most regions. For areas where class confusion does

result—typically semi-arid/arid regions without significant

settlement—we exploit the ability of the boosted decision

trees to produce class membership probabilities. We run the

classification algorithm twice: classification 1 utilizes the full

set of land cover exemplars that includes urban sites, and

classification 2 excludes the urban training sites. The first

classification classifies both the urban core and mixed urban

spaces correctly, with the caveat that some non-urban areas

are erroneously labeled urban land (e.g. expanses of semi-arid

shrubland). The urban class probabilities are extracted from

classification 1, and areas of confusion are determined based on

low membership to the urban class. For these pixels, we then

take advantage of the information in the second classification

(without urban sites) to modify the urban class probabilities

using Bayes rule. To complete this step we rely on the urban

ecoregion stratification described below.

3.2. Urban ecoregionalization

A key element of the new methodology is a global stratification

of land based on the natural, physical and structural

components of urban areas. While urbanized areas are some of

the most complex landscapes in the world, there is surprising

regularity in city structure, configuration, composition, and

vegetation types within geographic regions and by level

of economic development. Our approach exploits these

similarities to define 16 quasi-homogeneous areas that we term

urban ecoregions (table 2). We base the stratification on: (1) a
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Table 2. The 16 urban ecoregion stratification designed for map processing, analysis and validation.

Ecoregion No Geographic region Example areas

Temperate broadleaf, mixed forest 1 North America, Japan, Australia Eastern US, Canada
2 Europe, Japan Germany, France, Japan
3 Eastern Asia Eastern China

Temperate grassland, shrubland 4 Americas, Central Asia, Australia US, Argentina, Australia
5 Middle East, Central Asia Turkey, Georgia

Tropical broadleaf forest 6 South America Brazil, Colombia, Guatemala
7 Sub-Saharan Africa Dem. Republic of the Congo

Tropical–subtropical mixed forest 8 South-Central Asia, South-East Asia China, India

Tropical–subtropical savannah, grasslands 9 South America Southeastern Brazil, Paraguay
10 Sub-Saharan Africa Ghana, Kenya, Tanzania

Tropical–subtropical grasslands 11 South America, Southern Africa Chile, Peru, South Africa

Mediterranean 12 North America, Southern Europe, North Africa California, Italy, Spain

Arid, semi-arid desert 13 Africa, Middle East, Central Asia, Australia Sahara Desert

Arid, semi-arid steppe, shrubland 14 Central Asia Western China

Boreal forest, tundra 15 North America, Northern Eurasia Canada, Russia

Permanent ice, snow 16 North, south pole Antarctica

biome designation to summarize climate and vegetation trends

(Olson et al 2001), (2) level of economic development defined

by per-capita gross domestic product (GDP) (UN 2008); and

(3) regional differences in city structure, organization and

historic development (Bairoch 1988).

Using this stratification, we identify the regions that

require further refinement to the training sites or input data,

or post-processing. In addition to estimation of posterior

probabilities using prior information from the land cover

probabilities, post-processing includes masking of problem

areas, application of the MODIS 500 m water mask, and hand-

editing.

4. Results

Figure 1 illustrates the results of the new MODIS Collection

5 map of urban extent for two urbanized regions, Washington

DC and Guangzhou, China. For comparison, the same region

is shown for a Landsat-based 30 m classification (figures 1(d)

and (j)) and the previously released MODIS-based map at 1 km

(figures 1(f) and (l)). The pattern of urban land is similar across

the C4 and C5 maps, except the MODIS 500 m map provides

greater detail on the edge of the city as well as within the urban

fabric compared to the 1 km map. To illustrate how these maps

might be utilized at coarsened resolutions, we have included

views of each region where the MODIS 500 m map has been

aggregated to 2 km (figures 1(a) and (g)) and 8 km spatial

resolution (figures 1(b) and (h)). This step effectively converts

the map legends from binary (urban/non-urban) to continuous

(percentage urban). Continental views of the new MODIS map

are included in the appendix (figures A.1(a1)–(a6)).

Regionally, our results reveal that previous estimates of

urban extent (2–3%, CIESIN 2004) drawn from global urban

maps may over-estimate the true extent of built-up areas. The

MODIS 500 m map shows that urban land area varies from

only 0.17% of total continental land area in Africa to 0.67 in

North America, with most regions near the continental average

of 0.5% urbanized (e.g. South America, 0.47%; Asia, 0.53%).

The exception is the European land mass (1.78%), a result that

is to be expected given the extensive urban morphology in this

region (table 3).

To assess the accuracy of the MODIS 500 m map, we

compiled a geographically comprehensive set of Landsat-

based maps for 140 cities (30 m resolution, Angel et al 2005,

Schneider and Woodcock 2008). The cities were selected

using a random-stratified sampling design based on population,

geographic region and income, and are independent of the

training exemplars used during classification of the MODIS

500 m map. We conducted an independent assessment of the

140 Landsat-based maps to ensure that these data provide a

statistically defensible basis for characterizing the accuracy

of the MODIS 500 m map (Potere et al 2009). Using

an independent set of 10 000 random samples labeled from

very high resolution imagery (4 m) in Google Earth, the

pooled confusion matrix results showed that the maps range in

accuracy from 82.8 to 91.0%. While this accuracy assessment

is based on subjective labeling of sites as urban or non-urban

using photo-interpretation of very high resolution data, we

employed multiple analysts in a double-blind procedure to

reduce uncertainty and bias during analysis. Thus, we feel

confident that these data are suitable as reference data in this

study.

The 140 reference maps were resampled to match the

spatial resolution of the MODIS 500 m map and each

global urban map (0.3–1 km2), and binary urban/non-urban

contingency matrices were estimated to calculate the level

of agreement between the reference city map and the global

map of interest. The results reveal that overall accuracy is

generally high across all map sources (figure 2(a)), with mean

accuracy rates ranging from 73% (GRUMP) to over 93%

4
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Figure 1. An illustration of the new MODIS 500 m global urban map for two urbanized regions: the Northeastern United States (a)–(f) and
Southeastern China (g)–(l). In addition to the binary map (c), (i), the map has been aggregated to 2 and 8 km resolution for display (a), (b), (g)
and (h). The inset maps (shown in rows) include a Landsat-based classification (30 m resolution, Schneider and Woodcock 2008), the new
map of urban extent from MODIS 500 m data, and the previous version of the MODIS-based map (1 km resolution).

(MODIS 500 m map). The MODIS 500 m map has the highest

accuracy, the lowest standard deviation (±4.5%, as compared

to >±7.2% in other maps), and the fewest outliers below

75%. Differences among the maps are summarized in the

kappa statistic: the MODIS 500 m map has the highest mean

kappa values (0.65), while IMPSA, GlobCover, GLC2000, and

MODIS 1 km have kappa values ranging from 0.38 to 0.50, and

GRUMP has the lowest mean kappa of 0.28.
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a. Overall Accuracy b. Cohen's Kappa Statistic

c. Producer's Accuracy (1-Omission) d. User's Accuracy (1- Commission)

Figure 2. Box plots of accuracy statistics for the MODIS 500 m map and five additional global urban maps using the 140 city validation
sample. The figure shows four measures to assess the accuracy of the global urban maps at the scale of the city: (a) overall accuracy, (b) the
kappa statistic, (c) producer’s accuracy (or sensitivity, 1-commission error), and (d) user’s accuracy (or specificity, 1-commission error). The
six global urban maps shown along the y-axis are the MODIS-based maps of urban extent at 500 m and 1 km spatial resolution, NOAA’s
Impervious Surface Area map (IMPSA), Global Land Cover 2000 (GLC 2000), the recently released GlobCover map, and CIESIN’s Global
Rural–Urban Mapping Project (GRUMP).

Figure 2(c) shows the distribution of producer’s accuracies

across the 140 city sample for the coarse resolution urban

maps; this measure conveys the error of omission. Two of

the maps (IMPSA, GLC2000) have mean/median values below

50%, which indicates that these datasets are missing urban

land in their classifications. GRUMP, however, has a high

producer’s accuracy, at nearly 90%. Although GRUMP does

not miss many true urban pixels, the map has a large number of

erroneously labeled urban pixels evident from its low user’s

accuracy. User’s accuracy (figure 2(d)) reflects errors of

commission, and the distribution of user’s accuracies mirrors

the results of the overall accuracy measure (figure 2(a)):

the MODIS 500 m map has the highest user’s accuracy

(72.9%), with GLC2000 and IMPSA close behind (65.6

and 64.8%).

In addition to the pixel-based assessment, we also assessed

the MODIS 500 m at the scale of the city. The city

size estimates were derived from the 140 Landsat-based

classifications (native resolution), which range in size from

20 to 8000 km2. Figure 3 illustrates how the estimates of

urban size (x-axis) compare to estimates obtained from the

MODIS 500 m map and the five global urban map sources (y-

axis). The results show that the MODIS 500 m map has good

agreement with the reference data when compared against the

other sources, a low root mean square error (RMSE), 142.6 m,

and a high R2 of 0.90.

5. Conclusions

Urban areas are an increasingly important component of the

global environment, yet they remain one of the most chal-

lenging areas for conducting research. Model parameteriza-

tions (e.g. climate, meteorological, biogeochemical, hydrolog-

ical models) are particularly difficult for urban areas given

the complex three-dimensional structure of cities and the mix-

ture of surface types with contrasting radiative, thermal and

moisture characteristics. It is therefore essential that regional–

global maps of urban land use not only display the point loca-

tion of cities or the spatial distribution of population, but also

provide up-to-date information regarding the extent, growth,

and physical characteristics of urban land.

This letter presents a new, global moderate resolution map

of urban extent circa 2001–2002, with several improvements

over currently available map sources. The increased spatial

resolution and radiometric quality of the MODIS C5 data

(500 m) has allowed a four fold increase in spatial detail.

Our accuracy assessment shows that the MODIS 500 m map

provides the most realistic depiction of global urban land use

6
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Figure 3. Scatter plots of the 140 cities in the validation sample, where each plot shows the city size from the high resolution Landsat-based
reference maps (x-axis, assumed to be ‘truth’) and the global urban maps (y-axis). Note the log scale on both axes.

Table 3. The areal extent of each of the six global urban maps (in square kilometers) for eleven world regions.

Urban land area (km2) and percentage urban land (percentage of total global land area)

Region Global Land
Cover 2000

GlobCover Impervious
Surface Areasa

MODIS 500 m
Urban Extent

MODIS 1 km
Urban Extent

Global
Rural–Urban
Mapping Project

North America 86 536 (0.48) 32 456 (0.18) 86 788 (0.48) 129 904 (0.72) 125 398 (0.70) 888 353 (4.93)
Central America, Caribbean 3 468 (0.13) 5 322 (0.20) 17 581 (0.67) 13 099 (0.50) 10 274 (0.39) 154 951 (5.95)
South America 10 731 (0.06) 10 801 (0.06) 35 382 (0.20) 82 242 (0.47) 42 876 (0.24) 374 942 (2.14)
Western Europe 70 919 (1.75) 55 764 (1.37) 53 262 (1.31) 85 900 (2.11) 125 342 (3.08) 536 770 (13.21)
Eastern Europe 35 937 (0.20) 28 232 (0.16) 34 540 (0.19) 63 494 (0.36) 68 487 (0.38) 301 596 (1.69)
Sub-Saharan Africa 17 937 (0.07) 20 458 (0.09) 49 788 (0.21) 31 052 (0.13) 39 621 (0.17) 144 996 (0.60)
Western Asia, North Africa 16 905 (0.17) 17 285 (0.17) 34 492 (0.34) 37 782 (0.37) 44 039 (0.43) 222 113 (2.17)
South-Central Asia 31 680 (0.30) 29 690 (0.28) 112 296 (1.07) 64 973 (0.62) 86 298 (0.82) 350 383 (3.33)
East Asia 12 630 (0.11) 69 401 (0.61) 103 266 (0.91) 110 514 (0.97) 162 645 (1.43) 402 530 (3.55)
South-East Asia, Pacific Islands 11 819 (0.26) 7 416 (0.16) 40 933 (0.89) 29 197 (0.63) 12 597 (0.27) 102 290 (2.22)
Australia, New Zealand 9 446 (0.12) 35 954 (0.46) 3 161 (0.04) 10 602 (0.14) 9 366 (0.12) 45 027 (0.58)

Total urban land area (km2)b 308 007 (0.24) 312 779 (0.24) 571 504 (0.44) 658 760 (0.51) 726 943 (0.57) 3524 109 (2.74)

a Impervious Surface Area Map is thresholded at 20% to produce estimates of urban land.
b Total land area excludes Antarctica and Greenland.

among the available datasets. This analysis also presents the

first global validation effort performed for any of the global

urban maps, and provides important information to the user

community on the quality and suitability of this map for a range

of applications.

Moving forward, the MODIS 500 m urban map provides

a foundation for refined representations of global urban land

use. It is clear from recent research efforts that an extended

database of land surface characteristics for urban areas is

greatly needed. With these needs in mind, our ongoing efforts

are focused on: (1) creating maps of urban extent circa 2005

and 2009; (2) providing sub-pixel estimates of urban land use

and vegetation; and (3) differentiating core downtown areas

from low density residential areas.

Acknowledgments

The authors wish to thank Solly Angel and Dan Civco for

generous use of their datasets, Scott Macomber and Damien

Sulla-Menashe for technical support, and Mutlu Ozdogan for

comments on an earlier draft of this paper. This work was

supported by NASA grant NNX08AE61A.

7



Environ. Res. Lett. 4 (2009) 044003 A Schneider et al

Appendix

a1

a2

Figure A.1. (a1)–(a6) Continental views of the new MODIS 500 m global urban map. For viewing purposes, the 463.3 m resolution has been
aggregated to 2 km resolution; this step yields a continuous value map where each 2 km pixel depicts the percentage of cells labeled as ‘urban’
in the native resolution map.
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a3

a4

Figure A.1. (Continued.)
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a5

a6

Figure A.1. (Continued.)
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