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Abstract

We present a new mathematical model for the transmission of Zika virus between

humans as well as between humans and mosquitoes. In this way, we use the

fractional-order Caputo derivative. The region of the feasibility of system and

equilibrium points are calculated, and the stability of equilibrium point is investigated.

We prove the existence of a unique solution for the model by using the fixed point

theory. By using the fractional Euler method, we get an approximate solution to the

model. Numerical results are presented to investigate the effect of fractional

derivative on the behavior of functions and also to compare the integer-order

derivative and fractional-order derivative results.
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1 Introduction

Zika virus was first detected in monkeys in 1947, and the first cases of Zika virus infection

were reported in 1952 in Uganda and the Republic of Tanzania. Between 1960 and 1980,

therewere fewhuman infectionswithZika virus inAsia andAfrica, until in 2007 in theYap

Islands, then in 2013 in the France Polynesia and the Pacific Ocean, and in 2015 in Brazil

the widespread outbreak of the virus was reported. Subsequently, it has spread to other

countries around the world, so far Zika virus infection has been recorded in 86 countries.

Fever, rash, conjunctivitis, muscle and joint pain, malaise, or headache are symptoms of

this disease. According to the report of World Health Organization (WHO), Zika virus

infection during pregnancy can cause infants to be born with microcephaly and other

congenital malformations, known as congenital Zika syndrome. Also, at the result of this

disease, other complications of pregnancy including preterm birth and miscarriage may

happen. In adults and children, Zika virus infection is associated with neurologic compli-

cations including Guillain–Barre syndrome, neuropathy, and myelitis.

Zika is a virus that is spread mostly by Aedes mosquitoes. Besides that, this virus can be

transmitted from mother to baby during pregnancy or around the time of birth. Also, it

can spread through blood transfusions and sexual contact.
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The study of diseases dynamics is a dominating theme for many biologists and mathe-

maticians (see, for example, [1–3]). It has been studied bymany researchers that fractional

extensions of mathematical models of integer order represent the natural fact in a very

systematic way such as in the approach of Baleanu et al. [4–17]. Studies on the methods

of solving fractional differential equations and the application of fractional systems have

also been conducted [18–24]. In recent years, fractional-order derivatives have expanded

and have been widely used in modeling real-world phenomena and investigating the pro-

cess of disease transmission and control (see, for example, [25–35]). Also, some studies

in the biological models with fractional-order derivative have been conducted in recent

years [36–39]. During last years researchers have been using some mathematical models

to simulate the transmission of Zika virus [40–43].

In mathematical models of Zika virus transmission it is assumed that the virus is usu-

ally transmitted from mosquitoes to humans, while according to WHO, in addition to

the transmission throughmosquitoes, Zika virus is transmitted through infected blood as

well as through sexual contact with an infected person. In this article, we consider a math-

ematical model based on both ways of transmitting the virus. Also, according to the good

results of fractional-order derivative in the modeling of real-world phenomena in recent

years, we use Caputo fractional-order derivative instead of the integer-order derivative in

this model.

The structure of the paper is as follows. In Sect. 2 some basic definitions and concepts

of fractional calculus are recalled. The transmission model of Zika virus with fractional-

order derivative is presented in Sect. 3, and the equilibrium points and the reproduction

number are calculated. The existence and uniqueness of solution for the system are proved

in Sect. 4. Numerical method and numerical results are presented in Sect. 5.

2 Preliminaries

In this section, we recall some basic concepts of fractional differential calculus.

Definition 2.1 ([44]) For an integrable function g , the Caputo derivative of fractional or-

der ν ∈ (0, 1) is given by

CDνg(t) =
1

Ŵ(m – ν)

∫ t

0

g(m)(υ)

(t – υ)ν–m+1
dυ, m = [ν] + 1.

Also, the corresponding fractional integral of order ν with Re(ν) > 0 is given by

CIνg(t) =
1

Ŵ(ν)

∫ t

0

(t – υ)ν–1g(υ)dυ.

Definition 2.2 ([45, 46]) For g ∈ H1(c,d) and d > c, the Caputo–Fabrizio derivative of

fractional order ν ∈ (0, 1) for g is given by

CFDνg(t) =
M(ν)

(1 – ν)

∫ t

c

exp

(

–ν

1 – ν
(t – υ)

)

g ′(υ)dυ,

where t ≥ 0, M(ν) is a normalization function that depends on ν and M(0) =M(1) = 1. If

g /∈ H1(c,d) and 0 < ν < 1, this derivative for g ∈ L1(–∞,d) is given by

CFDνg(t) =
νM(ν)

(1 – ν)

∫ d

–∞

(

g(t) – g(υ)
)

exp

(

–ν

1 – ν
(t – υ)

)

dυ.
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Also, the corresponding CF fractional integral is presented by

CF Iνg(t) =
2(1 – ν)

(2 – ν)M(ν)
g(t) +

2ν

(2 – ν)M(ν)

∫ t

0

g(υ)dυ.

The Laplace transform is one of the important tools in solving differential equations that

are defined below for two kinds of fractional derivative.

Definition 2.3 ([44]) The Laplace transform of Caputo fractional differential operator of

order ν is given by

L
[

CDνg(t)
]

(s) = sνLg(t) –

m–1
∑

i=0

sν–i–1g(i)(0), m – 1 < ν ≤ m ∈N ,

which can also be obtained in the form

L
[

CDνg(t)
]

=
smL[g(t)] – sm–1g(0) – sm–1g ′(0) – · · · – g(m–1)

sm–ν
.

3 Model formulation

In this section, we provide a mathematical model for the transmission of Zika virus using

the Caputo derivative of fractional order. We divide the human population Nh into two

groups: susceptible people Sh and infected people Ih so that Nh = Sh + Ih. Similarly, we

divide the total number ofmosquitoesNm into two groups: susceptiblemosquitoes Sm and

infected mosquitoes Im so that Nm = Sm + Im. To describe the mechanism of the spread of

Zika virus, we consider the compartmental mathematical model as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dSh
dt

= �h – β1ShIh – β2ShIm – k1Sh,

dIh
dt

= β1ShIh + β2ShIm – k1Ih,

dSm
dt

= �m –μSmIh – k2Sm,

dIm
dt

= μSmIh – k2Im,

(1)

with the initial conditions Sh(0) = S0h, Ih(0) = I0h, Sm(0) = S0m, Im(0) = I0m.

The model parameters are: the recruitment rate of human population �h, the recruit-

ment rate of mosquito population �m, the effective contact rate human to human β1,

the effective contact rate mosquitoes to human β2, the effective contact rate human to

mosquitoes μ, the natural death rate of human k1, the natural death rate of mosquitoes k2.

Model (1) does not include the internal memory effects of the system. To improve the

model, we change the first-order time derivative to the Caputo fractional derivative of or-

der ν . With this change, the right- and left-hand sides will not have the same dimension.

To solve this problem, we use an auxiliary parameter θ , having the dimension of sec., to

change the fractional operator so that the sides have the same dimension ([47, 48]). Ac-

cording to the explanation presented, the transmission model of Zika virus for t ≥ 0 and
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ν ∈ (0, 1) is given as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

θ ν–1CDν
t Sh(t) = �h – β1ShIh – β2ShIm – k1Sh,

θ ν–1CDν
t Ih(t) = β1ShIh + β2ShIm – k1Ih,

θ ν–1CDν
t Sm(t) = �m –μSmIh – k2Sm,

θ ν–1CDν
t Im(t) = μSmIh – k2Im,

(2)

where the initial conditions are Sh(0) = S0h, Ih(0) = I0h, Sm(0) = S0m, Im(0) = I0m.

3.1 Nonnegative solution

Consider � = {(Sh, Ih,Sm, Im) ∈ R+
4 : Nh(t) ≤

�h
k1
,Nm(t) ≤

�m
k2

}, we show that the closed set

� is the region of the feasibility of system (2).

Lemma 3.1 The closed set � is positively invariant with respect to fractional system (2).

Proof To obtain the fractional derivative of the total population, we add the first two re-

lations in system (2). So

θ ν–1CDν
tNh(t) = �h – k1Nh(t),

where Nh(t) = Sh(t) + Ih(t). Using the Laplace transform, we obtain

Nh(t) =Nh(0)Eν

(

–k1θ
1–νtν

)

+

∫ t

0

�hθ
1–νην–1Eν,ν

(

–k1θ
1–ηην

)

dη,

whereNh(0) is the initial human population size, and the terms Eν , Eν,ν in the above equa-

tion are represented by the Mittag-Leffler function and its general form defined by

Eν(z) =

∞
∑

j=0

zj

Ŵ(1 + jν)
, Eν,ν =

∞
∑

j=0

zj

Ŵ(ν + jν)
, ν > 0.

With some calculations, we get

Nh(t) =Nh(0)Eν

(

–k1θ
1–νtν

)

+

∫ t

0

�hθ
1–νην–1

∞
∑

i=0

(–1)iki1θ
i(1–ν)ηiν

Ŵ(iν + ν)
dη

=
�hθ

1–ν

k1θ1–ν
+ Eν

(

–k1θ
1–νtν

)

(

Nh(0) –
�hθ

1–ν

k1θ1–ν

)

,

=
�h

k1
+ Eν

(

–k1θ
1–νtν

)

(

Nh(0) –
�h

k1

)

.

Thus, if Nh(0) ≤
�h
k1
, then for t > 0, Nh(t) ≤

�h
k1
. Similarly, we can prove for Nm that if

Nm(0) ≤
�m
k2

, then for t > 0, Nm(t) ≤
�m
k2

. Consequently, the closed set � is positively in-

variant with respect to fractional model (2). �
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3.2 Equilibrium points and reproduction number

To determine the equilibrium points of fractional order system (2), we solve the following

equations:

CDνSh(t) =
CDνIh(t) =

CDνSm(t) =
CDνIm(t) = 0.

By solving the above algebraic equations, we obtain two equilibrium points of system (2).

The disease-free equilibrium point is obtained as E0 = (
�h
k1
, 0, �m

k2
). In addition, if R0 > 1,

then system (2) has a positive endemic equilibrium point E∗ = (S∗
h, I

∗
h ,S

∗
m, I

∗
m), where

S∗
h =

k2k1

(β2μS∗
m + k2β1)

,

I∗h =
�hβ2μS

∗
m +�hk2β1 – k2k

2
1

k1(β2μS∗
m + k2β1)

,

I∗m =
μ(�hβ2μS

∗
m +�hk2β1 – k2k

2
1)S

∗
m

k1(β2μS∗
m + k2β1)k2

.

Also, R0 is the basic reproduction number and is obtained using the next generation

method [49]. To find R0, we first consider the system as follows:

CDν
(t) = F
(


(t)
)

–V
(


(t)
)

,

where

F
(


(t)
)

= θ1–ν

[

β1ShIh + β2ShIm

μSmIh

]

and

V
(


(t)
)

= θ1–ν

[

k1Ih

k2Im

]

.

At E0, the Jacobian matrix for F and V is obtained as follows:

JF (E0) = θ1–ν

[

β1�h
k1

β2�h
k2

μ�m
k2

0

]

, Jv(E0) = θ1–ν

[

k1 0

0 k2

]

.

FV–1 is the next generation matrix for the system (2), and the basic reproduction number

is obtained from R0 = ρ(FV–1), where ρ(FV–1) is the eigenvalue of matrix FV–1. We get

R0 =
β1k2�h +

√

β2
1�

2
hk

2
2 + 4k21β2μ�h�m

2k2k
2
1

.

This basic reproduction number R0 is an epidemiologic metric used to describe the con-

tagiousness or transmissibility of infectious agents.
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3.3 Stability of equilibrium point

To investigate the stability of the equilibrium point, we first consider the Jacobian matrix

of system (2) as follows:

J = θ1–ν

⎡

⎢

⎢

⎢

⎣

–β1Ih – β2Im – k1 –β1Sh 0 –β2Sh

β1Ih + β2Im β1Sh – k1 0 β2Sh

0 –μSm –μIh – k2 0

0 μSm μIh –k2

⎤

⎥

⎥

⎥

⎦

.

At E0, the Jacobian matrix of system (2) is

J = θ1–ν

⎡

⎢

⎢

⎢

⎢

⎣

–k1 –β1
�h
k1

0 –β2
�h
k1

0 β1
�h
k1

– k1 0 β2
�h
k1

0 –μ�m
k2

–k2 0

0 μ�m
k2

0 –k2

⎤

⎥

⎥

⎥

⎥

⎦

.

Theorem 3.2 If R0 < 1, the equilibrium point E0 of system (2) is locally asymptotically

stable.

Proof At the disease-free equilibrium point E0, the characteristic equation of the Jacobian

matrix is det(λI – J(E0)) = 0. Then we obtain

θ1–ν(λ + k1)(λ + k2)
(

λ2 + Bλ +C
)

= 0,

where B = k1 + k2 –
β1�h
k1

and C = 2k1k2 –
k2β1�h

k1
–

μβ2�m�h
k1k2

. By simplifying the above equa-

tions, the eigenvalues of characteristic equation are obtained as λ1 = –k1, λ2 = –k2 and the

roots of the equation

λ2 + Bλ +C = 0.

If R0 < 1, since all of the parameters are positive, then

β1k2�h +
√

β2
1�

2
hk

2
2

2k2k
2
1

< 1 ⇒
β1�h

k1
< k1 ⇒ B = k1 + k2 –

β1�h

k1
> k2 > 0.

Also, from R0 < 1 we have

√

4k21β2μ�h�m

2k2k
2
1

< 1

⇒
β2μ�m�h

k1k2
< k1k2,

⇒ 2k1k2 –
k2β1�h

k1
–

μβ2�m�h

k1k2
> 2k1k2 – k1k2 – k1k2 ⇒ C > 0.

SinceB > 0,C > 0, applying the Routh–Hurwitz criteria, we obtain that E0 is locally asymp-

totically stable. �
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4 Existence and uniqueness of solution

To show that the system has a unique solution, we write system (2) as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

θ ν–1CDν
t Sh(t) =W1(t,Sh(t)),

θ ν–1CDν
t Ih(t) =W2(t, Ih(t)),

θ ν–1CDν
t Sm(t) =W3(t,Sm(t)),

θ ν–1CDν
t Im(t) =W4(t, Im(t)).

By applying integral on both sides of the above equations, we have

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Sh(t) – Sh(0) =
θ1–ν

Ŵ(ν)

∫ t

0
W1(τ ,Sh)(t – τ )ν–1 dτ ,

Ih(t) – Ih(0) =
θ1–ν

Ŵ(ν)

∫ t

0
W2(τ , Ih)(t – τ )ν–1 dτ ,

Sm(t) – Sm(0) =
θ1–ν

Ŵ(ν)

∫ t

0
W3(τ ,Sm)(t – τ )ν–1 dτ ,

Im(t) – Im(0) =
θ1–ν

Ŵ(ν)

∫ t

0
W4(τ , Im)(t – τ )ν–1 dτ .

(3)

We show that the kernelsWi, i = 1, 2, 3, 4, satisfy the Lipschitz condition and contraction.

Theorem 4.1 The kernel W1 satisfies the Lipschitz condition and contraction if the follow-

ing inequality holds:

0≤ β1u1 + β2u2 + k1 < 1.

Proof For Sh and S1h, we have

∥

∥W1(t,Sh) –W1(t,S1h)
∥

∥ =
∥

∥β1Ih(Sh – S1h) + β2Im(Sh – S1h) + k1(Sh – S1h)
∥

∥,

≤ β1‖Ih‖‖Sh – S1h‖ + β2‖Im‖‖Sh – S1h‖ + k1‖Sh – S1h‖,

≤
(

β1‖Ih‖ + β2‖Im‖ + k1
)

‖Sh – S1h‖,

≤ (β1u1 + β2u2 + k1)‖Sh – S1h‖.

Suppose thatM1 = β1u1 +β2u2 + k1, where ‖Ih(t)‖ ≤ u1, ‖Im‖ ≤ u2 are bounded functions,

then

∥

∥W1(t,Sh) –W1(t,S1h)
∥

∥ ≤ M1

∥

∥Sh(t) – S1h(t)
∥

∥. (4)

Thus, forW1, the Lipschitz condition is obtained, and if 0≤ β1u1 + β2u2 + k1 < 1 thenW1

is a contraction. �

Similarly, we can prove thatWi, i = 2, 3, 4, satisfies the Lipschitz condition as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖W2(t, Ih) –W2(t, I1h)‖ ≤ M2‖Ih(t) – I1h(t)‖,

‖W3(t,Sm) –W3(t,S1m)‖ ≤ M3‖Sm(t) – S1m(t)‖,

‖W4(t, Im) –W4(t, I1m)‖ ≤ M4‖Im(t) – I1m(t)‖,

where ‖Sh(t)‖ ≤ u3, ‖Sm(t)‖ ≤ u4, andM2 = β1u3 +k1,M3 = μu1 +k2,M4 = k2 are bounded

functions, if 0 ≤ Mi < 1, i = 2, 3, 4, thenWi, i = 2, 3, 4, are contraction.
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According to system (3), consider the following recursive forms:

�1n(t) = Snh(t) – S(n–1)h(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

W1(τ ,S(n–1)h) –W1(τ ,S(n–2)h)
)

(t – τ )ν–1 dτ ,

�2n(t) = Inh(t) – I(n–1)h(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

W2(τ , I(n–1)h) –W2(τ , I(n–2)h)
)

(t – τ )ν–1 dτ ,

�3n(t) = Snh(t) – S(n–1)h(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

W3(τ ,S(n–1)h) –W3(τ ,S(n–2)h)
)

(t – τ )ν–1 dτ ,

�4n(t) = Inh(t) – I(n–1)h(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

W4(τ , I(n–1)h) –W4(τ , I(n–2)h)
)

(t – τ )ν–1 dτ ,

with the initial conditions S0h(t) = Sh(0), I0h(t) = Ih(0), S0m(t) = Sm(0), and I0m(t) = Im(0).

We take the norm of the first equation in the above system, then

∥

∥�1n(t)
∥

∥ =
∥

∥Snh(t) – S(n–1)h(t)
∥

∥

=

∥

∥

∥

∥

θ1–ν

Ŵ(ν)

∫ t

0

(

W1(τ ,S(n–1)h) –W1(τ ,S(n–2)h)
)

(t – τ )ν–1 dτ

∥

∥

∥

∥

≤
θ1–ν

Ŵ(ν)

∫ t

0

‖W1(τ ,S(n–1)h) –W1(τ ,S(n–2)h))(t – τ )ν–1‖dτ .

By Lipschitz condition (4), we have

∥

∥�1n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
M1

∫ t

0

∥

∥�1(n–1)(τ )
∥

∥dτ . (5)

In a similar way, we obtained

∥

∥�2n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
M2

∫ t

0

∥

∥�2(n–1)(τ )
∥

∥dτ ,

∥

∥�3n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
M3

∫ t

0

∥

∥�3(n–1)(τ )
∥

∥dτ ,

∥

∥�4n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
M4

∫ t

0

∥

∥�4(n–1)(τ )
∥

∥dτ . (6)

Then we can obtain

Snh(t) =

n
∑

i=1

�1i(t), Inh(t) =

n
∑

i=1

�2i(t),

Snm(t) =

n
∑

i=1

�3i(t), Inm(t) =

n
∑

i=1

�4i(t).

We prove the existence of a solution in the next theorem.

Theorem 4.2 The fractional model of Zika virus (2) has a solution if there exists t1 such

that

θ1–ν

Ŵ(ν)
t1Mi < 1.
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Proof From the recursive technique and Eq. (5) and Eq. (6), we conclude that

∥

∥�1n(t)
∥

∥ ≤
∥

∥Snh(0)
∥

∥

[

θ1–ν

Ŵ(ν)
M1t

]n

,

∥

∥�2n(t)
∥

∥ ≤
∥

∥Inh(0)
∥

∥

[

θ1–ν

Ŵ(ν)
M2t

]n

,

∥

∥�3n(t)
∥

∥ ≤
∥

∥Snm(0)
∥

∥

[

θ1–ν

Ŵ(ν)
M3t

]n

,

∥

∥�4n(t)
∥

∥ ≤
∥

∥Inm(0)
∥

∥

[

θ1–ν

Ŵ(ν)
M4t

]n

.

Then the system has a solution, and also it is continuous. Now we show that the above

functions construct a solution for model (2). We assume that

Sh(t) – Sh(0) = Snh(t) – B1n(t),

Ih(t) – Ih(0) = Inh(t) – B2n(t),

Sm(t) – Sm(0) = Snm(t) – B3n(t),

Im(t) – Im(0) = Inm(t) – B4n(t).

Thus

∥

∥B1n(t)
∥

∥ =

∥

∥

∥

∥

θ1–ν

Ŵ(ν)

∫ t

0

(

W1(τ ,Sh) –W1(τ ,S(n–1)h)
)

dτ

∥

∥

∥

∥

≤
θ1–ν

Ŵ(ν)

∫ t

0

∥

∥W1(τ ,Sh) –W1(τ ,S(n–1)h)
∥

∥dτ

≤
θ1–ν

Ŵ(ν)
M1‖Sh – S(n–1)h‖t.

By repeating the method, we obtain

∥

∥B1n(t)
∥

∥ ≤

[

θ1–ν

Ŵ(ν)
t

]n+1

Mn+1
1 h.

At t1, we get

∥

∥B1n(t)
∥

∥ ≤

[

θ1–ν

Ŵ(ν)
t1

]n+1

Mn+1
1 h.

Taking limit on recent equation as n approaches ∞, we obtain ‖B1n(t)‖ → 0. In the same

way, we can show that ‖Bin(t)‖ → 0, i = 2, 3, 4. This completes the proof. �

In the following, we show that system (2) has a unique solution. We suppose that the

system has another solution such as S1h(t), I1h(t), S1m(t), and I1m(t), then we have

Sh(t) – S1h(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

W1(τ ,Sh) –W1(τ ,S1h)
)

dτ .
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By taking the norm from this equation, we obtain

∥

∥Sh(t) – S1h(t)
∥

∥ =
θ1–ν

Ŵ(ν)

∫ t

0

∥

∥W1(τ ,Sh) –W1(τ ,S1h)
∥

∥dτ .

It follows from Lipschitz condition (4) that

∥

∥Sh(t) – S1h(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
M1t

∥

∥Sh(t) – S1h(t)
∥

∥.

Then

∥

∥Sh(t) – S1h(t)
∥

∥

(

1 –
θ1–ν

Ŵ(ν)
M1t

)

≤ 0. (7)

Theorem4.3 The solution of the transmissionmodel of Zika virus is unique if the following

condition holds:

1 –
θ1–ν

Ŵ(ν)
M1t > 0.

Proof Suppose that condition (7) holds

∥

∥Sh(t) – S1h(t)
∥

∥

(

1 –
θ1–ν

Ŵ(ν)
M1t

)

≤ 0.

Then ‖Sh(t) – S1h(t)‖ = 0. So, we obtain Sh(t) = S1h(t). Similarly, we can show the same

equality for Ih, Sm, Im. �

5 Numerical results

Using the fractional Euler method for Caputo derivative, we present the approximate so-

lutions for the transmission model of Zika virus [50]. We present simulations for investi-

gating the dynamics of the system.

5.1 Numerical method

We consider system (2) in the compact form as follows:

θ ν–1CDν
t u(t) = p

(

t,u(t)
)

, u(0) = u0, 0 ≤ t ≤ T < ∞, (8)

where u = (Sh, Ih,Sm, Im) ∈ R4
+, u0 = (S0h, I0h,S0m, I0m) is the initial vector, and p(t) ∈ R is a

continuous vector function satisfying the Lipschitz condition

∥

∥p
(

u1(t)
)

– p
(

u2(t)
)∥

∥ ≤ r
∥

∥u1(t) – u2(t)
∥

∥, r > 0.

Applying the fractional integral operator corresponding Caputo derivative to equation (8),

we obtain

u(t) = θ1–ν
[

u0 + Iνp
(

u(t)
)]

, 0 ≤ t ≤ T < ∞.
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Set q = T–0
N

and tn = nq, where t ∈ [0,T] and N is a natural number and n = 0, 1, 2, . . . ,N .

Let un be the approximation of u(t) at t = tn. Using the fractional Euler method [50], we

get

un+1 = θ1–ν

[

u0 +
qν

Ŵ(ν + 1)

n
∑

j=0

zn+1,jp(tj,uj)

]

, j = 0, 1, 2, . . . ,N – 1,

where

zn+1,j = (n + 1 – j)ν – (n – j)ν , j = 0, 1, 2, . . . ,n.

The stability analysis of the obtained scheme has been proved in Theorem (3.1) in [50].

Thus, the solution of system (2) is written as follows:

S(n+1)h = θ1–ν

[

S0h +
qν

Ŵ(ν + 1)

n
∑

j=0

zn+1,jg1(tj,uj)

]

,

I(n+1)h = θ1–ν

[

I0h +
qν

Ŵ(ν + 1)

n
∑

j=0

zn+1,jg2(tj,uj)

]

,

S(n+1)m = θ1–ν

[

S0m +
qν

Ŵ(ν + 1)

n
∑

j=0

zn+1,jg3(tj,uj)

]

,

I(n+1)m = θ1–ν

[

I0m +
qν

Ŵ(ν + 1)

n
∑

j=0

zn+1,jg4(tj,uj)

]

,

where zn+1,j = (n+ 1 – j)ν – (n– j)ν , g1(t,u(t)) = �h – β1Sh(t)Ih(t) – β2Im(t)(t)Sh(t) – k1Sh(t),

g2(t,u(t)) = β1Sh(t)Ih(t) + β2Im(t)(t)Sh(t) – k1Ih(t), g3(t,u(t)) = �m – μSm(t)Ih(t) – k2Sm(t),

g4(t,u(t)) = μSm(t)Ih(t) – k2Im(t).

5.2 Simulation

In this section, using numerical results, we investigate the behavior of the answers of

the transmission model of Zika virus obtained from system (2). The numerical values

of the model parameters are considered as �h = 1.2, �m = 0.3, k1 = 0.004, k2 = 0.0014,

β1 = 0.125× 10–4, β2 = 0.4× 10–4, μ = 0.475× 10–5, and we take its modification parame-

ter as θ = 0.99. Also, the initial values are considered as Sh(0) = 800, Ih(0) = 200, Sm = 600,

Im = 300.

Figure 1 shows susceptible people Sh and Fig. 2 shows infected people Ih for the integer-

order derivative ν = 1 and fractional-order derivative ν = 0.98, 0.96, 0.94, 0.92, .09. As Fig. 1

shows, the behavior of Sh in both types of integer-order and fractional-order derivative is

the same and decreasing, that is, over time, all healthy people are exposed to the disease,

but the obtained numerical values are different, and as the derivative order decreases, the

resulting numerical value increases.

In Fig. 2, you can see that the behavior of Ih is the same in both derivatives, and the

resulting numerical values are different. As the derivative order decreases, the resulting

numerical value for Ih increases, and this difference in the obtained value is significant
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Figure 1 Plots of susceptible people Sh(t) for integer-order derivative at ν = 1 and fractional-order derivative

with various values of ν = 0.98, 0.96, 0.94, 0.92, 0.9

Figure 2 Plots of infected people Ih(t) for integer-order derivative at ν = 1 and fractional-order derivative

with various values of ν = 0.98, 0.96, 0.94, 0.92, 0.9

over time. Figure 2 also shows that Ih passes the peak in the first 100 days and the number

of infected people gradually decreases and tends to the equilibrium point.

Figures 3 and 4 show susceptible mosquitoes Sm and infected mosquitoes Im, respec-

tively. In these diagrams, you can see that the behavior of the functions is the same in both

derivatives and the resulting numerical values are different. These figures also show that

over time the population of healthy mosquitoes decreases and they are more exposed to

the disease, while the number of infected mosquitoes increases.

6 Conclusion

In this paper, a mathematical model for the transmission of Zika virus between humans

and mosquitoes is presented using the Caputo fractional-order derivative. The region of

the feasibility of system (2), the equilibrium points, and the reproduction number have

been determined, and the stability of the equilibrium point E0 has been checked. Using

a fixed point theory, the existence of a unique solution for model (2) has been proven. In
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Figure 3 Plots of Sm(t) for integer-order derivative at ν = 1 and fractional-order derivative with various values

of ν = 0.98, 0.96, 0.94, 0.92, 0.9

Figure 4 Plots of Im(t) for integer-order derivative at ν = 1 and fractional-order derivative with various values

of ν = 0.98, 0.96, 0.94, 0.92, 0.9

the numerical section, the answers of system (2) are calculated using the Euler method,

and the results are compared for the integer-order model and the fractional-order model

in numerical results. The results show that the behavior of the obtained functions in both

types of derivatives is the same, but the resulting numerical values are different, especially

the difference in values increases over time.
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