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A B S T R A C T

Cosmic shear, i.e. the distortion of images of high-redshift galaxies through the tidal

gravitational field of the large-scale matter distribution in the Universe, offers the opportunity

to measure the power spectrum of the cosmic density fluctuations without any reference to the

relation of dark matter to luminous tracers. We consider here a new statistical measure for

cosmic shear, the aperture mass MapðvÞ, which is defined as a spatially filtered projected

density field and which can be measured directly from the image distortions of high-redshift

galaxies. By selecting an appropriate spatial filter function, the dispersion of the aperture mass

is a convolution of the power spectrum of the projected density field with a narrow kernel, so

that M
2
apðvÞ


 �

provides a well-localized estimate of the power spectrum at wavenumbers

s , 5=v. We calculate M
2
ap


 �

for various cosmological models, using the fully non-linear power

spectrum of the cosmic density fluctuations. The non-linear evolution yields a significant

increase of M
2
ap


 �

relative to the linear growth on scales below ,08: 5.

The third-order moment of Map can be used to define a skewness, which is a measure of the

non-Gaussianity of the density field. We present the first calculation of the skewness of cosmic

shear in the framework of the quasi-linear theory of structure growth. We show that it yields a

sensitive measure of the cosmological model; in particular, it is independent of the normal-

ization of the power spectrum.

Several practical estimates for M
2
ap


 �

are constructed and their dispersions calculated. On

scales below a few arcminutes, the intrinsic ellipticity distribution of galaxies is the

dominant source of noise, whereas on larger scales the cosmic variance becomes the

most important contribution. We show that measurements of Map in two adjacent apertures

are virtually uncorrelated, which implies that an image with side-length L can yield
�

L=ð2vÞ
�2

mutually independent estimates for Map. We show that one square degree of a

high-quality image is sufficient to detect the cosmic shear with the Map-statistic on scales

below ,10 arcmin, and to estimate its amplitude with an accuracy of ,30 per cent on scales

below ,5 arcmin.

Key words: gravitational lensing – large-scale structure of Universe.

1 I N T RO D U C T I O N

Gravitational light deflection caused by an inhomogeneous distribution of matter in the Universe has observable effects on the images of

distant sources. Whereas mass concentrations on scales of galaxies and clusters yield strong lensing effects – multiple images, (radio) rings

and giant luminous arcs – density inhomogeneities on larger scales or with less concentration cause weak lensing effects. In particular, the

shape and observable flux of distant galaxies are affected by the tidal component of the gravitational field and the density fluctuations along

their lines of sight, respectively. Whereas these lensing effects are too weak to be detected in individual galaxy images, they can be investigated

statistically. Assuming that the intrinsic orientations of galaxies are random, cosmic shear – i.e. the line-of-sight integrated tidal gravitational

field – can be detected as a net alignment of galaxy images on a given patch of the sky.

The statistical properties of the cosmic shear are directly linked to the statistical properties of the density inhomogeneities (Gunn 1967;

Blandford & Jaroszy�nski1981). In particular, any two-point statistics, like the two-point correlation function of galaxy image ellipticities or

the mean quadratic image ellipticity, can be expressed as a redshift integral over the power spectrum of the cosmological density fluctuations,

weighted by geometrical factors depending on the source redshift distribution (Blandford et al. 1991; Miralda-Escud�e1991; Kaiser 1992,

1996, hereafter K96; Villumsen 1996). These geometrical factors, as well as the redshift evolution of the power spectrum, depend on the
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cosmological model. Therefore a quantitative analysis of the cosmic shear statistics can provide strong constraints on cosmological parameters

and the shape of the fluctuation power spectrum.

It should be stressed that this approach to determine the density fluctuations in the Universe does not rely on assumptions about the

relation between luminous and dark matter. It is therefore of comparable interest to the investigation of the cosmic microwave background

(CMB) radiation. In fact, these two approaches are complementary. Whereas the CMB measures the fluctuation spectrum at the time of

recombination, when the density perturbations were small, the cosmic shear probes the fluctuation spectrum at relatively small redshifts,

z , 0:5, when it has become non-linear on scales smaller than ,5 Mpc. Secondly, owing to the finite thickness of the recombination shell, the

CMB is expected to show no structure on angular scales below ,5 arcmin, corresponding to comoving scales of ,10 Mpc, whereas cosmic

shear can probe the density fluctuations also on much smaller scales. Finally, a comparison of the results from both techniques can provide a

beautiful confirmation of the gravitational instability theory of structure growth.

The above-mentioned authors have calculated the two-point correlation function of galaxy image ellipticities and the rms image

ellipticity using the linear theory of density instabilities. On angular scales below ,20 arcmin, one starts to probe the density fluctuation

spectrum on scales below ,5 h
¹1 Mpc (where h is the current value of the Hubble constant in units of 100 km s¹1 Mpc) where the density

fluctuations are non-linear. Jain & Seljak (1997, hereafter JS) generalized the previous investigations of cosmic shear to the fully non-linear

evolution of the power spectrum, and found that the expected rms shear increases by about a factor of 2 on small scales, relative to the

predictions from the linear evolution of the power spectrum. Given that the expected rms shear on arcminute scales is of the order of a few per

cent, this enhancement dramatically increases the possibility of detecting cosmic shear with currently existing instruments and data analysis

techniques. In fact, deep observations of fields around radio QSOs have revealed the presence of a coherent shear pattern (Fort et al. 1996;

Bower & Smail 1997) which has been interpreted as cosmic shear (Schneider et al. 1997), although the selection of these fields was based on

the magnification bias hypothesis (Bartelmann & Schneider 1994; Benı́tez & Martı́nez-González 1997, and references therein) for these

luminous radio QSOs. Therefore these measurements should not be interpreted in any statistical sense; none the less, they have shown that a

shear of a few per cent is measurable even on scales as small as 2 arcmin.

An attempt to measure cosmic shear on a single ,9-arcmin field did not yield a significant signal (Mould et al. 1994), although a

reanalysis of the same data with a somewhat less conservative approach found a fairly high significance (Villumsen 1995). The development of

wide-field cameras and sophisticated data analysis methods specifically targeted at weak lensing studies (Bonnet & Mellier 1995; Kaiser,

Squires & Broadhurst 1995; Luppino & Kaiser 1997; van Waerbeke et al. 1997) suggests that the discovery of cosmic shear in random fields,

and its quantitative analysis, is lurking just around the corner.

Higher order than two-point statistics for cosmic shear are difficult to estimate analytically. Bernardeau, van Waerbeke & Mellier (1997,

hereafter BvWM) have calculated the skewness of the projected surface mass density field, using the quasi-linear theory of structure growth.

They pointed out that the skewness is a powerful indicator for the cosmic density parameter; in particular, it is independent of the normalization

of the power spectrum, and fairly independent of the cosmological constant. A practical difficulty related to that measure is that the projected

surface mass density is less directly linked with observables. Whereas it is tightly related to the magnification of sources, this by itself is

difficult to observe. One would therefore like to measure the skewness of a quantity that is directly related to the shear, which is observable

from image ellipticities.

Such a quantity is provided by the Map-statistic, introduced by Kaiser et al. (1994) and Schneider (1996), as a generalization of the z-

statistic introduced by Kaiser (1995). The latter yields an unbiased estimate of the mean surface mass density within a circle, minus the mean

surface mass density within an annulus surrounding this circle, and can be obtained from the shear within the annulus. First applied to the

cluster MS1224 (Fahlman et al. 1994), this ‘aperture densitometry’ has yielded a lower bound on the mass-to-light ratio in the centre of this

cluster which is considerably larger than values typically found in clusters by other means.

The Map-statistic, which measures the projected density field filtered with a compensated filter function, combines the properties that it is

directly related to the projected mass density, and that it is obtainable from the shear, i.e. observable through image ellipticities. Furthermore, in

contrast to the mean shear within a circle, which is a two-component quantity from which no non-trivial third-order moment can be defined, the

Map-statistic is a scalar the skewness of which is well defined. Schneider (1996) has suggested that the Map-statistic can be used to search for

(dark) matter concentrations on high-quality wide-field images.

In this paper we shall investigate the Map-statistic as a measure for cosmic shear. In Section 2 we briefly review the basic equations for the

light propagation in an inhomogeneous Universe, thereby introducing our notation. The two-point Map-statistic is introduced in Section 3. It is

shown that the dispersion of Map on a certain angular scale can be expressed as an integral over the power spectrum of the projected surface

mass density, times a filter function containing this scale. This filter function is shown to be quite narrow, so that M
2
apðvÞ


 �

provides a fairly

localized estimate of the power spectrum. This is contrasted with the rms shear averaged on circles, for which the corresponding filter function

is very broad.

For various cosmological models, the dispersion M
2
ap


 �

is calculated, for both the linear and the fully non-linear growth of density

perturbations, and compared with the rms mean shear. In Section 4, we calculate the skewness of Map, following closely the treatment of

BvWM, i.e. applying the quasi-linear theory of structure growth. Section 5 is devoted to practical estimators of M
2
ap


 �

and the skewness, and

their respective accuracies. A practical advantage of the Map-statistic over the rms shear is that values of Map measured in neighbouring

apertures are virtually independent, whereas the mean shear inside a circle has a very large correlation length. This fact is of particular

relevance for measurements of cosmic shear on small angular scales, using wide-field cameras. For a fixed total solid angle of available data,

the maximum relative accuracy for the measurement of M
2
ap


 �

is obtained for v , 2 arcmin, somewhat dependent on the kurtosis of the density
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field. Depending on cosmology, a measurement of the dispersion of Map with an accuracy of ,20 per cent should be possible from 1 deg
2

of

deep imaging data. We discuss our results in Section 6. In the Appendix, we consider several approximations which are used throughout the

main body of the paper. We focus on the contributions to the skewness that arise even in the case of Gaussian density fluctuations, and find that,

by including these effects, the skewness changes by less than 10 per cent, which justifies the use of our approximations.

2 L I G H T P RO PAG AT I O N I N S L I G H T LY I N H O M O G E N E O U S U N I V E R S E S

We shall use a notation similar to K96 and JS. In particular, w denotes the comoving radial distance, fK ðwÞ is the comoving angular diameter

distance, and Qd and Qv are the current values of the density parameters in dust and vacuum, respectively.

Light propagation in a weakly inhomogeneous universe has been investigated in many papers (e.g. Blandford et al. 1991; Seitz, Schneider

& Ehlers 1994, and references therein). We shall use the results of these papers in the following form. Consider a bundle of light rays

intersecting at the observer. Each of these rays is characterized by the angle v that it encloses with a fiducial ray. Let xðv; wÞ denote the

comoving transverse separation of the ray characterized by v from the fiducial ray; its propagation equation has the form

xðv; wÞ ¼ fKðwÞv ¹
2

c2

�

w

0

dw
0
fKðw ¹ w

0
Þ ='F xv; w0; w0

ÿ �

¹ ='Fð0Þ
ðw

0
Þ

� �

; ð2:1Þ

where F xv; w; wð Þ is the Newtonian gravitational potential at comoving distance w and comoving perpendicular separation x v; wð Þ from the

fiducial ray, Fð0Þ
ðwÞ is the potential along the fiducial ray, and =' ¼ ð∂=∂x1Þ; ð∂=∂x2Þ is the transverse gradient operator in comoving

coordinates. Here we have assumed that the fiducial ray propagates nearly parallel to the local x3-direction, and, since all angles involved are

small, all rays considered propagate nearly parallel to this direction. If the Newtonian potential vanishes, xðv; wÞ ¼ fKðwÞv, in agreement with

the identification of fKðwÞ as comoving angular diameter distance.

A source at w with comoving distance x from the fiducial ray will be seen in the absence of light deflection at an angle b ¼ x=fKðwÞ, which

we shall call the unlensed source position. Defining, as in usual lens theory, the Jacobian matrix A ¼ ∂b=∂v, we obtain from differentiation of

(2.1)

Aijðv; wÞ ¼ dij ¹
2

c2

�

w

0

dw
0 fK ðw ¹ w

0
Þ fK ðw

0
Þ

fKðwÞ
F;ik xv; w0; w0
ÿ �

Akjðv; w0
Þ; ð2:2Þ

where indices i on F preceded by a comma denote partial derivatives w.r.t. xi. In general this is not an explicit equation for A, since, in order to

calculate A, one first has to solve for the ray position xðv; wÞ and then solve the integral equation (2.2) for A. However, for weak gravitational

fields which are of interest to us here, one can expand A in powers of the Newtonian potential F, and keep only the lowest order term; this

results in

Aijðv; wÞ ¼ dij ¹
2

c2

�

w

0

dw
0 fK ðw ¹ w

0
Þ fK ðw

0
Þ

fKðwÞ
F;ij fK ðw

0
Þv; w0

ÿ �

: ð2:3Þ

Hence, to linear order in F, the distortion is obtained by integrating the second derivatives of the potential along the unperturbed ray. This

feature allows for a dramatic simplification of the calculations below. In the Appendix, we shall consider some higher order terms for A

corresponding to lens–lens coupling and to dropping the ‘Born approximation’; i.e. we shall calculate A up to second order in F. Also note

that A given in (2.3) is symmetric. One can therefore define a deflection potential,

wðv; wÞ ¼
2

c2

�

w

0

dw
0 fKðw ¹ w

0
Þ

fKðw0Þ fKðwÞ
F fKðw

0
Þv; w0

ÿ �

; ð2:4Þ

in terms of which one can treat lensing by large-scale structures similarly to the single lens-plane case: e.g. the corresponding ‘surface mass

density’ kðv; wÞ and shear gðvÞ ¼ g1 þ ig2 are given as

kðv; wÞ ¼
1

2
w;11 þ w;22

ÿ �

; gðv; wÞ ¼
1

2
w;11 ¹ w;22

ÿ �

þ iw12; ð2:5Þ

where indices on w separated by a comma denote partial derivatives with respect to vi. In particular, Aij ¼ dij ¹ w;ij. Thus one can consider the

surface mass density k – or its associated deflection potential w – as the fundamental quantity, and in fact it is the only quantity that is probed by

cosmic shear measurements. One obtains from (2.4) and (2.5), by adding a term F;33 to the integrand which cancels out upon w-integration, and

by using Poisson’s equation in the form

=
2F ¼

3H
2
0Qd

2a
d; ð2:6Þ

the following expression for the projected density field:

kðv; wÞ ¼
3

2

H0

c

� �2

Qd

�

w

0

dw
0 fKðw ¹ w

0
Þ fKðw

0
Þ

fKðwÞ

d fK ðw
0
Þv; w0

ÿ �

aðw0Þ
; ð2:7Þ

where dðx; wÞ is the density contrast. The projected density field depends on the source redshift (or distance). We shall assume that one observes

the shear through a population of galaxies for which only the redshift probability distribution pzðzÞ is known, or, equivalently,

A new measure for cosmic shear 875

q 1998 RAS, MNRAS 296, 873–892

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
6
/4

/8
7
3
/1

0
6
4
8
4
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



pwðwÞdw ¼ pzðzÞdz. Then the source distance-averaged projected mass density becomes

kðvÞ :¼

�

dw pwðwÞ kðv; wÞ ¼
3

2

H0

c

� �2

Qd

�

wH

0

dw gðwÞ fKðwÞ
d fKðwÞv; w
ÿ �

aðwÞ
; ð2:8Þ

where

gðwÞ :¼

�

wH

w

dw
0
pwðw

0
Þ

fK ðw
0
¹ wÞ

fKðw0Þ
ð2:9Þ

is the source-averaged distance ratio Dds=Ds for a density fluctuation at distance w, and wH is the comoving distance to the horizon. In this

paper, we shall consider two different redshift distributions of sources. In the first case, all sources are assumed to reside at the same redshift zs,

so that

pzðzÞ ¼ dDðz ¹ zsÞ: ð2:10Þ

More realistically, we consider a redshift distribution of the form (e.g. Smail et al. 1995)

pzðzÞ ~ z
2 exp ¹ðz=z0Þ

b
h i

: ð2:11Þ

The mean redshift of this distribution is proportional to z0 and depends on the parameter b which describes how quickly the distribution falls off

towards higher redshifts. In particular, for b ¼ 1:5 (a value that we shall use throughout), zh i ¼ 1:505z0.

3 T W O - P O I N T Map - S TAT I S T I C

3.1 The power spectrum of the projected density field

Provided the density contrast d is a homogeneous and isotropic random field, so is the projected density k. Consider the Fourier transform of the

projected density field,

k̃ðsÞ :¼

�

d2
v kðvÞ e¹iv·s: ð3:1Þ

We define the power spectrum PkðsÞ of k by

k̃ðsÞk̃¬
ðs0

Þ

 �

¼ ð2pÞ
2dDðs ¹ s0

Þ Pkð sj jÞ; ð3:2Þ

where the Dirac delta ‘function’ dD occurs because kðvÞ is a homogeneous random field, and the dependence of Pk on the modulus of s only

expresses the fact that k is an isotropic random field. Following K96, we can calculate PkðsÞ from the power spectrum of the density

fluctuations, defined accordingly by

d̃ð~kÞd̃¬
ð~k

0
Þ

D E

¼ ð2pÞ
3dDð~k ¹ ~k

0
Þ Pðj~kjÞ: ð3:3Þ

The derivation of the Fourier-space analogue of Limber’s equation in K96 is valid provided that the power spectrum P does not evolve

appreciably on time-scales corresponding to the light travel time across the largest significant fluctuations, and provided that the typical source

distance is much larger than the largest scale fluctuations. With these two assumptions, K96 (see also Kaiser 1992) obtains

PkðsÞ ¼
9

4

H0

c

� �4

Q2
d

�

wH

0

dw
g

2
ðwÞ

a2ðwÞ
P

s

fKðwÞ
; w

� �

: ð3:4Þ

The second argument of P indicates that the power spectrum evolves (slowly) with redshift. We shall later derive an analogous relation for the

three-point function, using the same strategy as in the derivation of (3.4). Since s is the Fourier-conjugate of the angle v, we can relate an

angular scale to it by s ¼ 2p=v ¼ 2:16 × 104
ðv=1 arcminÞ

¹1.

In Fig. 1, we have plotted PkðsÞ for five different cosmological models. For three of them, the power spectrum PðkÞ is approximately

cluster-normalized, which corresponds to j8 < 0:6 for an Einstein–de Sitter universe (EdS, Qd ¼ 1, Qv ¼ 0), j8 ¼ 1 for both an open universe

(OCDM, Qd ¼ 0:3, Qv ¼ 0) and a spatially flat universe with cosmological constant (LCDM, Qd ¼ 0:3, Qv ¼ 0:7). In all these cases, we have

used the cold dark matter (CDM) spectrum as given by Bardeen et al. (1986), but set the shape parameter of the linear power spectrum to

G ¼ 0:25, which yields the best fit to the observed two-point correlation function of galaxies (Efstathiou 1996). The remaining two

cosmological models have EdS geometry, but either a higher normalization (j8 ¼ 1, approximately corresponding to the COBE normal-

ization) or a different shape parameter (G ¼ 0:5, corresponding to the original definition for G if H0 ¼ 50 km s¹1 Mpc). For each model, the

projected power spectrum has been calculated for a linearly evolved cosmological power spectrum (thin curves), and for the fully non-linear

power spectrum, following the prescriptions of Hamilton et al. (1991), Jain, Mo & White (1995) and Peacock & Dodds (1996) – we used the fit

formulae of the latter paper throughout.

3.2 The Map-statistic

Define the aperture mass by

MapðvÞ :¼

�

d2
c U cj jð ÞkðcÞ; ð3:5Þ
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where the integral extends over a circle of angular radius v, and UðcÞ is a continuous weight function which vanishes for c > v. Provided that U

is a compensated filter function, i.e.
�

v

0
dc c UðcÞ ¼ 0; ð3:6Þ

one can express Map in terms of the tangential component gt of the shear inside the circle (Kaiser et al. 1994; Schneider 1996),

MapðvÞ ¼

�

d
2
c Q cj jð Þ gtðcÞ; where QðcÞ ¼

2

c2

�

c

0
dc

0
c

0
Uðc

0
Þ ¹ UðcÞ; ð3:7Þ

and the tangential component of the shear at a position c ¼ ðc cos J; c sin JÞ is

gtðcÞ ¼ ¹Re gðcÞ e¹2iJ
ÿ �

: ð3:8Þ

The useful property of Map is thus that, one the one hand, it yields a spatially filtered version of the projected density field, and that, on the other

hand, it can be expressed simply in terms of the shear. Since, in the weak lensing regime, the observed galaxy ellipticities provide an unbiased

estimate of the local shear, Map is directly related to observables.

Obviously, the ensemble average of Map vanishes, Map


 �

¼ 0. The dispersion of Map can be calculated as follows:

M
2
apðvÞ


 �

¼

�

d2
v

0
Uðv

0
Þ

�

d2
c UðcÞ kðv

0
ÞkðcÞ


 �

¼ 2p

�∞

0

ds s PkðsÞ

�

v

0

dc c UðcÞ J0ðscÞ

� �2

; ð3:9Þ

where we used that the two-point correlation function is the Fourier transform of the power spectrum.

The choice of the weight function UðcÞ is arbitrary at this point. We shall write UðcÞ ¼ uðc=vÞ=v2, with uðxÞ ¼ 0 for x > 1, and

QðcÞ ¼ qðc=vÞ=v2. Furthermore, we choose the normalization such that

2p

�

v

0
dc c QðcÞ ¼ 2p

�1

0
dx x qðxÞ ¼ 1: ð3:10Þ

A set of weight functions that satisfy (3.6) and (3.10) is

uðxÞ ¼
ð, þ 2Þ

2

p
1 ¹ x

2
ÿ �, 1

, þ 2
¹ x

2

� �

; qðxÞ ¼
ð1 þ ,Þð2 þ ,Þ

p
x

2
ð1 ¹ x

2
Þ
, ; ð3:11Þ

uðxÞ peaks at x ¼ 0 and goes to zero with order , as x → 1. Then, defining

I,ðhÞ :¼

�1

0

dx x uðxÞ J0ðxhÞ ¼
2

,Gð, þ 3Þ

p
h¹ð,þ1Þ J3þ,ðhÞ; ð3:12Þ

we can write the dispersion as

M
2
apðvÞ


 �

¼ 2p

�∞

0
ds s PkðsÞ

�

I,ðsvÞ
�2

: ð3:13Þ
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Figure 1. The power spectrum PkðsÞ of the projected density field, as defined in (3.4), for five different cosmological models, as indicated by the line types; the

numbers in parentheses are ðj8; GÞ. For each cosmological model, the thin curves correspond to the linear evolution of the power spectrum Pðk; aÞ, whereas the

thick curves are calculated with the fully non-linear evolution of the power spectrum, as given in Peacock & Dodds (1996). For this plot, the redshift distribution

(2.11) was used, with z0 ¼ 1 and b ¼ 1:5. Note that the large amplitude of the EdS model with g ¼ 0:25 relative to the OCDM and LCDM models is due to the

factor Q2
d in (3.4).
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We have plotted the filter function I
2
, ðhÞ in Fig. 2, for three different values of ,. One can see from (3.12) that I,ðhÞ ~ h2 for small h, and

that, for large h, the function I,ðhÞ oscillates with an amplitude ~h¹ð,þ3=2Þ. Hence the filter function I
2
, behaves like h4 and h¹ð2,þ3Þ in the two

respective limits, and is indeed a very localized filter, with a peak at h , 5 for small ,. Hence M
2
apðvÞ


 �

provides an accurate measure of the

power spectrum of the projected density field at s , 5=v, with little dependence on the local shape of this power spectrum.

We shall compare M
2
apðvÞ


 �

with the rms value of the shear averaged over a circular region of angular radius v: let

ḡðvÞ :¼
1

pv2

�

d2
c gðcÞ; ð3:14Þ

then its dispersion is

ḡ
�

�

�

�

2
ðvÞ

D E

¼ 2p

�∞

0
ds s PkðsÞ

�

ITHðsvÞ
�2

; with ITHðhÞ ¼
J1ðhÞ

ph
ð3:15Þ

(cf. Blandford et al. 1991). The dash–dotted curve in Fig. 2 displays I
2
TH for comparison with I,. One sees that I

2
TH is a much broader function

which tends towards a constant for h → 0, and its amplitude decreases like h¹3
for large h. Therefore the shear dispersion h ḡ

�

�

�

�

2
i is a much

coarser probe of the power spectrum than M
2
apðvÞ


 �

.

3.3 Results

In Fig. 3 we have plotted the rms values of the Map-statistic (left panel), as well as those of the mean shear within circles (right panel). The same

cosmological models as in Fig. 1 were used, and we present results both for the linearly evolved cosmic power spectrum (thin curves) and for

the fully non-linear evolution (thick curves). Whereas h ḡj
2
i
1=2

�

� decreases monotonically with v, the shape of M
2
ap


 �1=2
closely reflects the shape

of the projected power spectrum Pk displayed in Fig. 1; this is of course related to the narrowness of the filter I, shown in Fig. 2. In Fig. 3, and

for the figures in the remainder of the paper, we used , ¼ 1, but have checked that changing to , ¼ 2 or 3 does not yield qualitatively different

results. Compared with the prediction of the linear evolution of the power spectrum, the peak of M
2
ap


 �1=2
is shifted to substantially smaller

angles; at the same time, the non-linear evolution affects M
2
ap


 �1=2
more than h ḡj

2
i
1=2

�

� , as the latter picks up power from larger scales which are

hardly affected by non-linear evolution.

As can be seen from the figure, the values of M
2
ap


 �1=2
are smaller than those of h ḡ

�

�

�

�

2
i
1=2, at least on scales below 18. This is related to the

fact that, at a given angular scale v, the Map-statistic is sensitive to smaller scale structures than the ḡ
�

�

�

�-statistic, as can be seen in Fig. 2, and so

these two rms values should be compared at different ‘effective’ scales. Whereas this difference in magnitude may suggest that the Map-statistic

is observationally disfavoured, we shall show in Section 5 that it has the advantage that measurements in neighbouring fields are nearly

uncorrelated.
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Figure 2. The filter function I
2
, ðhÞ in the dispersion of Map for three different value of ,: , ¼ 1 (dashed curve) , ¼ 2 (dotted curve), and , ¼ 3 (solid curve). For

comparison, the corresponding filter function for top-hat filtering I
2
THðhÞ is also plotted (dashed–dotted curve). For larger values of h, all functions rapidly

oscillate, owing to the Bessel functions. For clarity, we have therefore plotted the amplitude of these oscillations as corresponding thick curves.
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The dependence of the rms of Map on the source redshift distribution is displayed in Fig. 4, for the same five cosmological models, and two

angular scales. The dependence on zs is generally weak, in rough agreement with the power-law dependence z
0:6
s found by JS for the top-hat

filter. The model with a cosmological constant shows a stronger growth with zs, as distances grow faster with redshift in such models, and thus

provide larger path lengths for lensing.

4 T H R E E - P O I N T Map - S TAT I S T I C : S K E W N E S S

If k is a Gaussian random field, so is Map, and, in particular, the expectation value of the third-order moment of Map will vanish.

However, since the non-linear gravitational evolution of density fluctuations transforms an initially Gaussian field into a non-Gaussian

one, this third-order moment is non-zero in general. In fact, M
3
ap


 �

is a measure of the non-Gaussianity of the density fluctuations at

medium redshifts. Since

M
3
apðvÞ


 �

¼

�

d2
v1 Uðv1Þ

�

d2v2 Uðv2Þ

�

d2v3 Uðv3Þ ×
�

d2
s1

ð2pÞ2
eiv1 ·s1

�

d2
s2

ð2pÞ2
eiv2 ·s2

�

d2
s3

ð2pÞ2
eiv3 ·s3 k̃ðs1Þk̃ðs2Þk̃ðs3Þ


 �

; ð4:1Þ

the evaluation of the third moment requires the calculation of the three-point correlation function of k̃.

The skewness of the projected surface mass density has already been discussed by BvWM. They have calculated the skewness of the

projected density field by considering the quasi-linear evolution of the density fluctuations. Below, we shall follow the same procedure to

calculate M
3
ap


 �

. As was also pointed out by BvWM, even for the strictly linear evolution of the power spectrum, when the density field

conserves its initial Gaussian nature, the observable skewness would not vanish identically. We get back to this point at the end of this section.

Readers who are less interested in technical details for deriving the skewness can go immediately to Section 4.3.

4.1 The three-point correlator for k̃

We shall now evaluate this three-point function in terms of the corresponding function of the cosmic density field, i.e. to obtain the analogue of

(3.4) for the three-point function. For abbreviation, we write (2.7) in the form

kðv; wÞ ¼

�

w

0

dw
0
Gðw; w0

Þ d fK ðw
0
Þv; w0

ÿ �

; with Gðw; w0
Þ ¼

3

2

H0

c

� �2

Qd

fKðw ¹ w
0
Þ fKðw

0
Þ

fKðwÞ aðw0Þ
ð4:2Þ
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Figure 3. The rms values of the shear are shown versus filter scale v for the same cosmological models as used in Fig. 1, as labelled; the numbers in parentheses

are ðj8; GÞ. The left panel shows the rms value of Map with the filter I1 defined in (3.12), while the right panel shows the rms shear computed with a top-hat filter

(3.15). Note the different scales in the two panels. The source galaxies are assumed to follow the distribution (2.11), with b ¼ 1:5 and z0 ¼ 1. The thin curves

display the prediction for the rms shear if linear evolution of the density fluctuation spectrum is assumed, whereas the thick curves follow from the fully non-

linear evolution of the power spectrum. The results shown in the right panel are fully equivalent to those of JS, except that they considered a redshift distribution

of the form (2.10), and they considered the ‘polarization’ as a measure of net galaxy ellipticity, which in the weak lensing case equals twice the shear.
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for w
0
# w, and zero otherwise. Then

k̃ðs1; w1Þk̃ðs2; w2Þk̃ðs3; w3Þ

 �

¼

�

d2
v1 e¹is1 ·v1

�

d2
v2 e¹is2 ·v2

�

d2
v3 e¹is3 ·v3

×
�

w1

0

dv1 Gðw1; v1Þ

�

w2

0

dv2 Gðw2; v2Þ

�

w3

0

dv3 Gðw3; v3Þ d fKðv1Þv1; v1

ÿ �

d fKðv2Þv2; v2

ÿ �

d fKðv3Þv3; v3

ÿ �
 �

;

ð4:3Þ

where we have inserted the Fourier transforms of k̃ and used (4.2). Assuming that the largest scale fluctuations are much smaller than the typical

distance to a source, the three-point correlation function of d will vanish except when v1 < v2 < v3. Thus, over the v-range where dddh i does

not vanish, we can set the v-arguments in G to be all the same, and we can also set all fK ðviÞ equal. Since Gðw; vÞ ¼ 0 if v > w, the outer v-

integration only extends to wmin ¼ minðw1; w2; w3Þ. Hence, after replacing d by its Fourier transform, one obtains

k̃ðs1; w1Þk̃ðs2; w2Þk̃ðs3; w3Þ

 �

¼

�

d2
v1 e¹is1 ·v1

�

d2
v2 e¹is2 ·v2

�

d2
v3 e¹is3 ·v3

�

wmin

0

dv Gðw1; vÞGðw2; vÞGðw3; vÞ

×
�

dv
0

�

dv
00

�

d3
k1

ð2pÞ3
eifK ðvÞv1 ·k1 eik13v

�

d3
k2

ð2pÞ3
eifK ðvÞv2 ·k2 eik23v

0

�

d3
k3

ð2pÞ3
eifK ðvÞv3 ·k3 eik33v

00

d̃ð~k1Þd̃ð~k2Þd̃ð~k3Þ

D E

;

ð4:4Þ

where we have written the three-dimensional vector ~k as ðk; k3Þ. The vi-integrations can now be carried out, each yielding

ð2pÞ
2dDðsi ¹ fKðvÞkiÞ. After that, the ki-integrations become trivial. The v

0
and v

00
-integrations can be carried out, yielding delta-functions

in k23 and k33, which are trivially integrated away. One thus finds

k̃ðs1; w1Þk̃ðs2; w2Þk̃ðs3; w3Þ

 �

¼

�

wmin

0

dv Gðw1; vÞGðw2; vÞGðw3; vÞ
1

f 6
KðvÞ

×
�

dk3

ð2pÞ
eik3v d̃

s1

fKðvÞ
; k3

� �

d̃
s2

fKðvÞ
; 0

� �

d̃
s3

fK ðvÞ
; 0

� �� �

ðvÞ:

ð4:5Þ

Next, the average of (4.5) over a source redshift distribution is performed. The only point to notice here is the upper limit of integration for v.

Integrating (4.5) over
Q
�

dwi pwðwiÞ [recall that pwðwÞ dw ¼ pzðzÞ dz is the source redshift distribution] gives an expression of the form
�

wH

0
dw1

�

wH

0
dw2

�

wH

0
dw3

�

wmin

0
dv F ¼

�

wH

0
dv

�

wH

v

dw1

�

wH

v

dw2

�

wH

v

dw3 F;

where we have made use of the fact that the integrand F is symmetric in w1; w2; w3, and that Gðw; vÞ ¼ 0 if v > w. We therefore obtain for the

880 P. Schneider et al.

q 1998 RAS, MNRAS 296, 873–892

Figure 4. The rms value of Map as a function of source redshift, for the same five cosmological models as in Fig. 1, indicated in the figure; the numbers in

parentheses are ðj8; GÞ. The thick curves are for v ¼ 1 arcmin, the thin curves for v ¼ 10 arcmin. The fully non-linear evolution of the power spectrum has been

used. The sources were assumed to be all at the same redshift zs.
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redshift-averaged three-point correlation

k̃ðs1Þk̃ðs2Þk̃ðs3Þ

 �

¼
27

8

H0

c

� �6

Q3
d

�wH

0

dw
g

3
ðwÞ

a3ðwÞf 3
K ðwÞ

�

dk3

ð2pÞ
eik3w d̃

s1

fKðwÞ
; k3

� �

d̃
s2

fK ðwÞ
; 0

� �

d̃
s3

fKðwÞ
; 0

� �� �

ð4:6Þ

with gðwÞ as defined in (2.9).

4.2 Quasi-linear theory of density fluctuations

In order to calculate the triple correlator in (4.6), we shall use quasi-linear perturbation theory, in which the density field d is considered as a

‘small’ quantity and expanded into a perturbation series, d ¼ dð1Þ
þ dð2Þ

þ . . ., where dðnÞ
¼ O

�

dð1Þ
�nÿ �

. Here, dð1Þ is the linearly evolved

density perturbation, d̃ð1Þ
ð~k; wÞ ¼ DþðwÞd̃

ð1Þ
0 ð~kÞ, DþðwÞ is the linear growth factor, normalized to Dþð0Þ ¼ 1, and d̃

ð1Þ
0 ð~kÞ is the density

perturbation linearly extrapolated to the present epoch. The perturbation series can then be inserted into the continuity equation and the Euler

equation, and a closed solution for every order can be obtained in terms of lower order terms (see e.g. Fry 1984; Goroff et al. 1986, and

references therein). In particular, in an EdS universe, for the first non-linear term, one obtains

d̃
ð2Þ

ð~k; wÞ ¼ D
2
þðwÞ

�

d3
k

0

ð2pÞ3
d̃

ð1Þ

0 ð~k
0
Þ d̃

ð1Þ

0 ð~k ¹ ~k
0
Þ

5

7
þ

~k
0
· ~k ¹ ~k

0
� �

~k
0

�

�

�

�

�

�

2
þ

2

7

~k
0
· ~k ¹ ~k

0
� �2

~k
0

�

�

�

�

�

�

2
~k ¹ ~k

0
�

�

�

�

�

�

2

2

6

4

3

7

5
: ð4:7Þ

Bouchet et al. (1992) showed that the ~k-dependence of this term depends weakly on cosmology, and that it is an excellent approximation to

restrict the cosmology dependence solely to the growth factor D
2
þðwÞ. In order to calculate d̃d̃d̃


 �

, we note that the tri-linear correlation of the

linear density field vanishes, owing to its assumed Gaussian nature. Thus, to lowest order, we have

d̃ð~k1Þd̃ð~k2Þd̃ð~k3Þ

D E

ðwÞ ¼ d̃
ð1Þ

ð~k1; wÞd̃
ð1Þ

ð~k2; wÞd̃
ð2Þ

ð~k3; wÞ

D E

þ 2 terms obtained from permutation: ð4:8Þ

Considering only the first term, inserting (4.7), making use of the fact that d̃
ð1Þ

ð~k; wÞ ¼ DþðwÞd̃
ð1Þ

0 ð~kÞ, and using the relation

d̃
ð1Þ

ð~k1Þd̃
ð1Þ

ð~k2Þd̃
ð1Þ

ð~k3Þd̃
ð1Þ

ð~k4Þ

D E

¼ d̃
ð1Þ

ð~k1Þd̃
ð1Þ

ð~k2Þ

D E

d̃
ð1Þ

ð~k3Þd̃
ð1Þ

ð~k4Þ

D E

þ 2 terms obtained from permutation

¼ ð2pÞ
6

P0ðk1ÞP0ðk3ÞdDð~k1 þ ~k2ÞdDð~k3 þ ~k4Þ

� �

þ 2 terms;
ð4:9Þ

valid for Gaussian fields, we find

d̃
ð1Þ

ð~k1Þd̃
ð1Þ

ð~k2Þd̃
ð2Þ

ð~k3Þ

D E

ðwÞ ¼ 2ð2pÞ
3
D

4
þðwÞP0ðk1ÞP0ðk2ÞdDð~k1 þ ~k2 þ ~k3Þ ×

5

7
þ

1

2

1

~k1

�

�

�

�

�

�

2
þ

1

~k2

�

�

�

�

�

�

2

0

B

@

1

C

A

~k1·~k2 þ
2

7

~k1·~k2

2

~k1

�

�

�

�

�

�

2
~k2

�

�

�

�

�

�

2

2

6

4

3

7

5
: ð4:10Þ

Here, P0ðkÞ is the power spectrum of the linearly extrapolated density field. This expression is only one of three terms appearing in (4.8), with

the other two being obtained by permutation of the ~ki. In order to calculate M
3
ap according to (4.1), we have to integrate over all si, and each of

the three terms in (4.8) yields the same contribution. Therefore we can just use (4.10) instead of (4.8), and multiply the result by a factor of 3.

Then, combining (4.1), (4.6) and (4.10), we obtain

M
3
apðvÞ


 �

¼
81

4
ð2pÞ

¹1 H0

c

� �6

Q3
d

�

wH

0

dw
g

3
ðwÞ D

4
þðwÞ

a3ðwÞ fKðwÞ

�

d2
s1 P0

s1

fKðwÞ

� �

I,ðs1vÞ

�

d2
s2 P0

s2

fKðwÞ

� �

I,ðs2vÞ

× I, s1 þ s2

�

�

�

�v
ÿ � 5

7
þ

1

2

1

s1

�

�

�

�

2
þ

1

s2

�

�

�

�

2

 !

s1·s2 þ
2

7

s1·s2
2

s1

�

�

�

�

2
s2

�

�

�

�

2

" #

:

ð4:11Þ

4.3 Skewness

We define the skewness as

SðvÞ :¼
M

3
apðvÞ


 �

M2
apðvÞ


 �2
: ð4:12Þ

We have calculated SðvÞ using the results of the preceding subsection. Quasi-linear theory is expected to underestimate M
3
apðvÞ


 �

, in particular

on scales below ,20 arcmin which roughly demarcates the linear and non-linear regimes. However, it has been shown that the quasi-linear

theory yields a surprisingly accurate estimate of the skewness of the density field, even in the regime ( dj j , 1) where one could not expect the

perturbation series to yield reliable results (e.g. Bouchet et al. 1992; Bernardeau 1994; Lokas et al. 1995; Baugh, Gaztañaga & Efstathiou 1995;

Colombi, Bouchet & Hernquist 1996; Gaztañaga & Bernardeau 1997). Therefore we expect that the results for SðvÞ as calculated here will

provide a good approximation to the true skewness, even on scales down to a few arcminutes. On very small scales with density contrasts much

larger than 1, the skewness of the density measured in N-body simulations is indeed larger than the perturbation theory value, but by no more

than a factor of 2 (Baugh et al. 1995; Colombi et al. 1996).
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In Fig. 5 we have plotted the skewness as a function of angular scale, for various cosmological models. Going from an EdS model to an

open model, the skewness increases by more than a factor of 2, with the spatially flat L model taking intermediate values. The two EdS models

with different power spectra have only slightly different skewness. This result is in full agreement with BvWM, who found that the skewness of

k is a fairly sensitive probe for the cosmological model, to a large degree independent of the exact shape of the power spectrum. The skewness

on an angular scale of 5 arcmin is plotted in Fig. 6, for cosmological models with Qv ¼ 0, and flat cosmologies (Qv ¼ 1 ¹ Qd), and two

different shape parameters G of the power spectrum, as a function of Qd. The two panels are for different source redshift distributions. Again we

see that the variation of S with the cosmological parameters is much stronger than with the shape of the power spectrum. Also, by definition S is

independent of the normalization j8 of the power spectrum, at least in perturbation theory, where it is the ratio of two terms, each of

O
�

dð1Þ
�4

� �

. We therefore conclude that the skewness is a powerful discriminator between different cosmological models.

Since M
3
ap


 �

contains a factor Q3
d, and M

2
ap


 �

has a factor Q2
d, one expects that, to leading order, S ~ Q¹1

d . As can be seen from Fig. 6, S

follows this expectation rather closely for the models with Qv ¼ 0. For flat cosmologies, however, these Qd factors are no longer the dominant

terms in the dependence of S on Qd. The dependence on Qd is weakened owing to the distance factors in the integrands for M
3
ap


 �

and M
2
ap


 �

.

Until now, we have considered the skewness as it arises owing to the quasi-linear evolution of the density field which transforms an

initially Gaussian field into a non-Gaussian one. The linear density field would not cause any skewness in the frame of the approximations used

until now. Nevertheless, even in the case of Gaussian density fluctuations, the observable skewness would not be identically zero, owing to the

following three effects. (i) Light rays do not propagate along ‘straight’ lines, but are deflected. Therefore the separation vector xðv; wÞ deviates

from fKðwÞv. This deviation from the ‘Born approximation’ leads to a non-vanishing skewness. (ii) In the transition from (2.2) to (2.3), in

addition to the Born approximation the matrix A on the right-hand side of (2.2) was approximated by the unit matrix; in that way, the leading-

order term (in F) of the propagation matrix was obtained. The next-order term, which describes the coupling between lens planes, yields a non-

vanishing skewness. These two effects have been quantitatively analysed in BvWB for the skewness of the projected density field, where it was

shown that they are small compared with the expression obtained from quasi-linear density evolution. (iii) The fact that the image ellipticity is

an unbiased estimator not for the shear g, but for the reduced shear g ¼ g=ð1 ¹ kÞ, implies that a Gaussian density field can produce a finite

skewness to the extent that the weak lensing condition k p 1 is no longer valid, and that we have to consider the term gð1Þkð1Þ. We shall consider

all three effects in the Appendix. All three effects yield contributions to M
3
ap


 �

that are proportional to the square of the power spectrum P0ðkÞ,

as is the case for the leading term considered here. Therefore there is no a priori reason to expect that these ‘correction’ terms are much smaller

than (4.11). As it turns out, however, these correction terms amount to ,5 per cent of the leading term (4.11), and may therefore be safely

neglected presently.

A final point concerns the redshift distribution of the sources. Fig. 6 shows that the source redshift dependence of S is rather large, as

pointed out by BvWM. This is a potential problem for two reasons. (1) First, it means that, in order to compare an observed skewness with
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Figure 5. The skewness, as defined in (4.12), as a function of filter scale v, for four cosmological models. Since the skewness as calculated from quasi-linear

theory is independent of the normalization of the power spectrum, the two EdS models with the same G yield the same SðvÞ curves. The sources were distributed

according to (2.11), with z0 ¼ 1 and b ¼ 1:5, and the filter with , ¼ 1 was used.
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theoretical calculations, we have to know the redshift distribution fairly precisely. Since the likely sources are very faint, a complete

spectroscopic survey to the corresponding magnitude limits is not available, but progress in the method of photometric redshifts may yield

sufficiently accurate estimates of the required distribution. (2) Secondly, the magnification bias changes the redshift distribution of the

observed galaxy images in a way which depends on the local value of the magnification. The observed skewness is sensitive to this. It is not the

aim of this paper to discuss these points. A rough estimate of the second point shows that the magnification bias is negligible, but a detailed and

systematic analysis of these effects remains to be carried out.

5 P R AC T I C A L E S T I M AT E S

We shall now consider some practical estimators for the Map-statistic, and their dispersion. The results of this section yield an estimate of the

observations necessary to measure M
2
ap


 �

with given precision.

5.1 Dispersion for a single field

Consider first a single circular field of angular radius v, in which N galaxies are observed at positions vi with complex ellipticity ei. In the case of

weak lensing, k p 1, the transformation from the intrinsic ellipticity eðsÞ to the observed one is simply e ¼ g þ eðsÞ. Since the intrinsic

orientation of galaxies is random, e is an unbiased estimator of the local shear. Defining in analogy to (3.9) the tangential component of the

ellipticity of a galaxy at vi ¼ ðvi cos Ji; vi sin JiÞ by eti ¼ ¹Re ei e¹2iJi
ÿ �

; then eti is an unbiased estimator of gtðviÞ ; gti. In terms of the

observable image ellipticities, we define the estimator

M :¼
ðpv

2
Þ
2

NðN ¹ 1Þ

X

N

i;jÞi

QiQjetietj; ð5:1Þ

where Qi ; QðviÞ, which in turn is defined in (3.7), and the sum is taken only over terms with i Þ j. The expectation value of M is obtained by

three averaging processes: averaging over the intrinsic ellipticity distribution, averaging over the galaxy positions, and the ensemble average.

We denote the first of these processes by the operator A, and the second by P; these two operators commute. Then,

AðetietjÞ ¼ A

�

gti þ e
ðsÞ
ti

� �

gtj þ e
ðsÞ
tj

�

� �

¼ gtigtj þ
j2

e

2
dij; ð5:2Þ

since Aðe
ðsÞ
ti Þ ¼ 0, owing to the random intrinsic orientation; here, je is the dispersion of the intrinsic ellipticity distribution. The term with j2

e is

divided by 2 as we want the dispersion of only one component of the complex ellipticity. In (5.2) we also used the fact that the intrinsic

A new measure for cosmic shear 883
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Figure 6. The skewness, as defined in (4.12), as a function of Qd, for vanishing cosmological constant Qv ¼ 0, and for flat universes, Qv ¼ 1 ¹ Qd. For both cases,

two values of the shape parameter G were considered. The redshift distribution of the sources was assumed to follow (2.11), with b ¼ 1:5, and z0 ¼ 0:65 (left

panel) and z0 ¼ 1:3 (right panel), corresponding to mean redshifts of about 1 and 2, respectively. As can be seen, the dependence of S on the cosmological

parameters is considerably stronger than the dependence on the shape of the power spectrum.
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ellipticity is uncorrelated with the shear. Note that the second term in (5.2) does not appear in the sum of (5.1). The operator Pwhich averages

over galaxy positions is defined as

PðXÞ ¼
Y

N

i¼1

�

d2
vi

pv2

 !

X; ð5:3Þ

so that

P

X

N

i;jÞi

QiQjgtigtj

 !

¼
NðN ¹ 1Þ

ðpv2Þ2

�

d2
v1 Qðv1Þ

�

d2
v2 Qðv2Þ gtðv1Þ gtðv2Þ; ð5:4Þ

because the sum yields NðN ¹ 1Þ equal terms. The expectation value EðMÞ of M then becomes

EðMÞ ; PðAðMÞÞh i ¼

�

d2
v1 Qðv1Þ

�

d2
v2 Qðv2Þ gtðv1Þ gtðv2Þ


 �

¼ M
2
ap


 �

: ð5:5Þ

Hence, M is an unbiased estimator for M
2
ap


 �

.

Next, we consider the dispersion of this estimator,

j2
ðMÞ ¼ EðM

2
Þ ¹

�

EðMÞ
�2

; with M
2

¼
ðpv

2
Þ
4

N2ðN ¹ 1Þ2

X

N

i;jÞi

QiQjetietj

X

N

k;lÞk

QkQletketl: ð5:6Þ

Starting with performing the average over the intrinsic ellipticity distribution, we find

AðetietjetketlÞ ¼ gtigtjgtkgtl þ A e
ðsÞ
ti e

ðsÞ
tj e

ðsÞ
tk e

ðsÞ
tl

� �

þ
j2

e

2
gtigtjdkl þ gtigtkdjl þ gtigtldjk þ gtjgtkdil þ gtjgtldik þ gtkgtldij

ÿ �

: ð5:7Þ

Owing to the restrictions in the sums of (5.6), the first and last term in the second set of parentheses do not contribute.

To evaluate the position average over the first term in (5.7), we have to consider three different cases: (i) all four indices i; j; k; l are

different; (ii) one of the second pair of indices k; l is equal to one of the first pair i; j; (iii) both indices in the second pair are equal to those in the

first. These cases occur in the sum of (5.6) in NðN ¹ 1ÞðN ¹ 2ÞðN ¹ 3Þ, 4NðN ¹ 1ÞðN ¹ 2Þ and 2NðN ¹ 1Þ terms, respectively. Therefore

P

X

N

i;jÞi

X

N

k;lÞk

QiQjQkQlgtigtjgtkgtl

 !

¼
NðN ¹ 1ÞðN ¹ 2ÞðN ¹ 3Þ

ðpv2Þ4
M

4
ap

þ
4NðN ¹ 1ÞðN ¹ 2Þ

ðpv2Þ3
M

2
ap

�

d
2
c Q

2
ðcÞ g2

t ðcÞ þ
2NðN ¹ 1Þ

ðpv2Þ2

�

d
2
c Q

2
ðcÞ g2

t ðcÞ

� �2

:

ð5:8Þ

For the second term in (5.7), we note that, since i Þ j, k Þ l,A e
ðsÞ
ti e

ðsÞ
tj e

ðsÞ
tk e

ðsÞ
tl

� �

contributes to the sum in (5.6) only for k ¼ i and l ¼ j, or k ¼ j and

l ¼ i. There are 2NðN ¹ 1Þ such terms. Hence

P

X

N

i;jÞi

X

N

k;lÞk

QiQjQkQlAe
ðsÞ
ti e

ðsÞ
tj e

ðsÞ
tk e

ðsÞ
tl

 !

¼
2NðN ¹ 1Þ

ðpv2Þ4

j2
e

2

� �2

G
2; with G :¼ pv

2

�

d2
c Q

2
ðcÞ: ð5:9Þ

Finally, each of the four terms in the last term of (5.7) which contribute to the sum in (5.6) yield the same result when averaged over position.

Considering one of these,

P

X

N

i;jÞi

X

N

k;lÞk

QiQjQkQlgtigtkdjl

 !

¼
NðN ¹ 1ÞðN ¹ 2Þ

ðpv2Þ4
M

2
ap G þ

NðN ¹ 1Þ

ðpv2Þ3
G

�

d2
c Q

2
ðcÞ g2

t ðcÞ; ð5:10Þ

where the first term comes from terms with i Þ k, and the second comprises those from i ¼ k. Collecting terms, and taking the ensemble

average, yields for the dispersion

j2
ðMÞ ¼

ðN ¹ 2ÞðN ¹ 3Þ

NðN ¹ 1Þ
M

4
ap


 �

þ
4ðN ¹ 2Þ

NðN ¹ 1Þ
M

2
apM

2
s


 �

þ
2

NðN ¹ 1Þ
M

4
s


 �

þ
2ðN ¹ 2Þ

NðN ¹ 1Þ
j2

e G M
2
ap


 �

þ
2

NðN ¹ 1Þ
j2

e G M
2
s


 �

þ
1

2NðN ¹ 1Þ
j4

e G
2

¹ M
2
ap


 �2
;

ð5:11Þ

with M
2
s :¼ pv

2
�

d2
c Q

2
ðcÞ g2

t ðcÞ: Note that the dispersion contains three different sources of noise: the contribution due to the finite width of

the intrinsic ellipticity distribution, the ‘cosmic variance’, and the noise due to the finite number of randomly located galaxy images. The latter

effect is contained in the terms that include Ms. However, this source of noise is never dominant: since the magnitude of M
2
s will be comparable

to that of M
2
ap, the second term in (5.11) is smaller by a factor of 1=N than the first, and smaller by a factor of 2GM

2
s =j2

e than the fourth term.

Similar estimates are valid for the other two terms containing M
2
s . Thus, by dropping terms containing Ms and taking N q 1, we find

j2
ðMÞ < m4 M

2
ap


 �2
þ

j2
e G
���

2
p

N
þ

���

2
p

M
2
ap


 �

 !2

; ð5:12Þ
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where m4 is the kurtosis of Map, m4 ¼ M
4
ap


 �

= M
2
ap


 �2
¹3, which vanishes if Map is distributed like a Gaussian. We note that G is a factor of order

unity; if we choose the weight function (3.11), we obtain

G ¼
ð1 þ ,Þð2 þ ,Þ

2

ð1 þ 2,Þð3 þ 2,Þ
; ð5:13Þ

which yields G ¼ 6=5, 48=35 and 100=63 for , ¼ 1, 2 and 3. In order to see whether the cosmic variance or the intrinsic ellipticity distribution

dominates the noise, we consider the ratio

r ¼
2 M

2
ap


 �

N

j2
e G

¼
1500p

G
M

2
apðvÞ


 � v

1 arcmin

� �2 je

0:2

� �¹2 n

30 arcmin¹2

� �

; ð5:14Þ

where n ¼ N=ðpv
2
Þ is the mean density of galaxy images. If r p 1, the intrinsic ellipticity distribution contributes mostly to the noise, whereas

in the other case the cosmic variance is the dominating factor. In this discussion the kurtosis term in (5.12) has been ignored.

The coefficient r is plotted in the left panel of Fig. 7, as a function of v, for the same cosmological models as considered before. One sees

that, for filter scales exceeding a few arcminutes, the intrinsic ellipticity distribution of galaxies is no longer the dominant source of noise, but

the ‘cosmic variance’ will start to dominate.

5.2 Dispersion for an ensemble of fields

Obviously, from observing a single field with radius v, no reliable estimate for M
2
apðvÞ


 �

can be obtained. We next consider a sample of Nf

fields, and assume that they are spatially sufficiently well separated so that the shear in one field is statistically independent of that in the others.

In that case, an unbiased estimator of M
2
ap


 �

is provided by

M ¼
X

Nf

n¼1

an

 !¹1
X

Nf

n¼1

an Mn; ð5:15Þ

where Mn is the estimator (5.1) in a single field, and the an are weight factors. It is easy to show that the dispersion of M is minimized if
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Figure 7. The left panel displays the quantity r – see (5.14) – as a function of angle v, which describes the importance of the cosmic variance relative to the

intrinsic galaxy ellipticity dispersion, for the same cosmological models as shown in Fig. 1. In this figure, we have set je ¼ 0:2 and n ¼ 30 arcmin¹2; the

dependence on these two quantities can be seen from (5.14). Also, we have used the filter with , ¼ 1. For all cosmological models considered here, the cosmic

shear dominates for angular scales above a few arcminutes. In the right panel, we plot the relative accuracy (5.17) for the dispersion on angular scale v, for the

case that one has a square field of length L ¼ 18 available, and that this field is densely covered with circles of radius v, so that Nf ¼ ðL=2vÞ
2
. We have assumed

zero kurtosis for this plot. The relative accuracy at fixed v is proportional to L. Parameters were chosen as in the upper panel. For both panels, the redshift

distribution was chosen according to (2.11), with z0 ¼ 1 and b ¼ 1:5, and the fully non-linear power spectrum was used.
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an ~ j¹2
ðMnÞ, in which case it becomes

j2
ðMÞ ¼

X

Nf

n¼1

j¹2
ðMnÞ

" #¹2
X

Nf

n¼1

j¹2
ðMnÞ: ð5:16Þ

If all Nf fields contain the same number of galaxies, then, as expected, jðMÞ ¼ jðMÞ=
�����

Nf

p

. In this case, combining (5.12) with (5.14), we find,

for the relative accuracy for a measurement of M
2
ap


 �

,

D :¼
M

2
ap


 �

jðMÞ
¼

�����

Nf

p

�������������������������������

m4 þ 2 1 þ 1
r

� �2
r : ð5:17Þ

The question of how far two fields have to be separated before they can be considered statistically independent can be investigated by

considering the correlation between the values of Map in two fields of angular radius v1 and v2, separated by Dv. We consider the correlation

coefficient

rcorrðv1; v2; DvÞ :¼
Mapðv1ÞMapðv2Þ

 �

ðDvÞ
���������������������������������������

M2
apðv1Þ


 �

M2
apðv2Þ


 �

q ¼
2p

���������������������������������������

M2
apðv1Þ


 �

M2
apðv2Þ


 �

q

�∞

0

ds s PkðsÞ J0ðs DvÞ I,ðsv1Þ I,ðsv2Þ; ð5:18Þ

where we have used (3.5) and (3.2). This can be compared with the correlation of the mean shear ḡðvÞ as defined in (3.14), for which the

corresponding correlation coefficient is the same as in (5.18) with I,ðsRÞ replaced by ITHðsvÞ. In Fig. 8 we have plotted rcorr for various

values of v1, v2 and Dv, both for the Map-statistic and for ḡ. From the figure it can be easily seen that the Map-statistic decorrelates very

quickly. For example, considering two circles of equal radius, such that they just touch (so that v1 ¼ v2 ¼ Dv=2), we infer from the upper

left panel in Fig. 8 that the correlation between the Map measurements in these two apertures is less than 1 per cent! Therefore, if we had a

large image, we could place apertures densely on that image and consider the Map-values obtained from each aperture as independent.
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Figure 8. The modulus of the correlation coefficient rcorrðv1; v2; DvÞ is plotted as a function of Dv=v1 (heavy curves). Here, v1 is the larger of the two aperture

sizes; the smaller one is 1, 1/2, 1/4 and 1/8 of the larger one in the four different panels. Six curves are drawn in each panel, corresponding to v1=arcmin ¼ 1 (solid

curves), 2 (dotted curves), 4 (short-dashed curves), 8 (long-dashed curves), 16 (short-dashed–dotted curves), and 32 (long-dashed–dotted curves). The light

curves in each panel show the corresponding correlation coefficient for the mean shear inside circles, ḡðvÞ. For this figure, an Qd ¼ 1, Qv ¼ 0 universe has been

assumed, with j8 ¼ 0:6 and G ¼ 0:25, and the sources have been assumed to follow the redshift distribution (2.11) with z0 ¼ 1 and b ¼ 1:5.
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Also, for different values of v1 and v2, the decorrelation is very quick. This property can then be employed for obtaining M
2
apðvÞ


 �

from a

big image for various angular scales.

Thus, for an image with sidelength L, we can place Nf ¼ ðL=2vÞ
2 nearly independent apertures on this field. Using this estimate, we have

plotted D, as defined in (5.17), in the right panel of Fig. 7, assuming L ¼ 18. There we can see that D is larger than 1 for angular scales below 20

arcmin. For different values of L, one uses the scaling D ~ L. The results of Fig. 7 can be compared with fig. 10 of JS which gives the signal-to-

noise ratio of the rms shear with a top-hat window.

In contrast to Map, ḡ decorrelates very slowly, as indicated by the light curves in Fig. 8. This can be traced directly to the shape of the top-

hat filter ITH, displayed in Fig. 2, which picks up long-scale power of the density field. Therefore, if one wants to measure cosmic shear using ḡ,

one has to use data fields that are well separated on the sky.

5.3 Alternative estimators

An apparently unrelated estimator for M
2
ap


 �

can be obtained from the following consideration: define

ĝðvÞ :¼

�

d2
c UðcÞ gðcÞ; ð5:19Þ

where the integral extends over a circle with radius v. This definition is analogous to the one in (3.14), except that a weight function is added.

Then

ĝðvÞĝ¬
ðvÞ


 �

¼

�

d2
v

0
Uðv

0
Þ

�

d2
c UðcÞ gðv

0
Þg¬

ðcÞ

 �

¼ M
2
apðvÞ


 �

; ð5:20Þ

where we used that the two-point correlation function of the shear is the same as the two-point correlation function of k (see e.g. Blandford et

al. 1991), and (3.9). Hence a practical estimator for M
2
ap


 �

is

M̂ ¼
ðpv

2
Þ
2

NðN ¹ 1Þ

X

N

i;jÞi

UðviÞ UðvjÞ e1ie1j þ e2ie2j

ÿ �

: ð5:21Þ

With a calculation similar to those in Section 5.1, one can show that indeed M̂ is an unbiased estimator for M
2
ap


 �

; its dispersion in the same

approximation as in (5.12) is

j2
ðM̂Þ ¼ m̂4 M

2
ap


 �2
þ

j2
e Ĝ

N
þ

���

2
p

M
2
ap


 �

� �2

; where Ĝ :¼ pv
2

�

d2
c U

2
ðcÞ ¼ G; ð5:22Þ

where the final equality is valid if U is chosen as in (3.11), and m̂4 is the kurtosis of the shear ĝ. Thus we see that the dispersion of M̂ is very

similar to that of M, except for a factor
���

2
p

in the term containing je. This difference is due to the fact that, in M̂, two components of e are used,

each of which carries its dispersion. Hence, for measuring M
2
apðvÞ


 �

, one can use the estimators (5.1) and (5.21), where the former should yield

a slightly better accuracy. A comparison between these two estimates can be used to check the integrity of the data and the data analysis

procedure.

Another check on the quality of the data can be obtained by noting that

Mr :¼

�

d2
c Qð cj jÞ grðcÞ ð5:23Þ

should vanish identically, where gr is the radial component of the shear, defined by taking the imaginary part in (3.8) instead of the real part for

the tangential component. The fact that Mr ¼ 0 can be shown easily by introducing the Fourier transform of gr to obtain a result similar to (A3),

with the cosine replaced by a sine; the polar angle integral in (5.23) then yields zero. The estimator

Mr ¼
X

Nf

n¼1

ðpvÞ
2

NðN ¹ 1Þ

X

N

i;jÞi

QiQj eri erj

" #

should therefore yield a value within the dispersion, which is given by jðMrÞ ¼ j2
e G=ð

��������

2Nf

p

NÞ.

5.4 Practical estimator for M3
ap


 �

An obvious estimator for M
3
apðvÞ


 �

for a single field is

M3 :¼
ðpv

2
Þ
3

N3

X

N

i;j;k¼1

QiQjQketietjetk: ð5:24Þ

It is easy to show, using the methods used before, that EðM3Þ ¼ M
3
ap


 �

. An estimator for an ensemble of fields can then be defined immediately

in analogy to (5.15).

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we have introduced the Map-statistic, or mass-aperture statistics, as a new measure for cosmic shear. We have compared this
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statistic with others suggested earlier, namely the shear two-point correlation function, and the rms of the shear averaged over circles. The main

results can be summarized as follows.

(1) Map is defined as a filtered version of the projected density field k, but can be calculated in terms of the tangential shear inside a circular

aperture. Hence Map has a well-defined physical interpretation, and at the same time can be expressed in terms of the observable shear.

(2) The dispersion of Map, M
2
apðvÞ


 �

, can be expressed as a convolution of the power spectrum of the projected density field with a filter

function which is strongly peaked. In contrast, the corresponding filter function for the rms of the shear averaged over circles is considerably

broader and in particular picks up the long-wavelength range of the power spectrum. Therefore the Map-statistic has the nice property of being a

well-localized measure for the projected density field. From measurements on different angular scales, the power spectrum of the projected

density field can be constructed. A different method to obtain a local estimate of the power spectrum of the projected density field has recently

been suggested by Kaiser (1996).

(3) In contrast to the mean shear inside a circle, Map is a scalar quantity. It is therefore possible to define the skewness of Map which is

measurable.

(4) Whereas M
2
apðvÞ


 �

is smaller than ḡðvÞ
�

�

�

�

2
D E

, at least on small scales, the dispersion of the estimator for M
2
ap


 �

contributed by the

intrinsic ellipticity distribution of the sources is smaller by a factor of
���

2
p

than that for ḡðvÞ
�

�

�

�

2
D E

, owing to the fact that, in the former case, only

one component of the shear is needed for the estimate. On scales beyond a few arcminutes, the dispersion of the estimates for both statistics is

dominated by the cosmic variance, so that the fractional accuracy of the estimates is nearly N
¹1=2
f , where Nf is the number of independent

circular apertures.

(5) The values of Map for neighbouring circles decorrelate very rapidly with increasing separation. In particular, we found that the values

of Map calculated on circles that just touch are nearly mutually independent, with a correlation coefficient below 10¹2. This implies that one can

make use of wide-field images by ‘punching’ circles on these images and considering the Map values on these circles as mutually independent.

In contrast to that, the mean shear inside neighbouring circles is very strongly correlated, and these have to be separated by several degrees

before they can be considered independent. Therefore the Map-statistic provides a very valuable tool for measuring cosmic shear on scales of

arcminutes from wide-field images. A single 1 deg2 image of sufficient depth (e.g. corresponding to a few hours of integration time on a 4-m-

class telescope) and high imaging quality can be used to obtain M
2
apðvÞ


 �

on scales below ,5 arcmin with a relative accuracy larger than ,3.

The relative accuracy is proportional to the square root of the solid angle covered by the available data.

(6) The skewness of Map is very sensitive to the cosmological model, but rather independent of the shape of the power spectrum. In

particular, in the quasi-linear regime, the skewness is independent of the normalization of the power spectrum. Whereas the latter property may

not be strictly preserved when considering the skewness in a fully non-linearly evolved density field, the experience from comparing numerical

simulations of the density field with quasi-linear predictions has shown that at least the skewness of the density field is rather well

approximated by quasi-linear theory, even for density contrasts of order unity (Baugh et al. 1995; Colombi et al. 1996; Gaztañaga &

Bernardeau 1997). We therefore expect that the independence of the skewness on the normalization will be roughly preserved in the non-linear

case. This makes the skewness a very valuable probe for cosmological parameters.

(7) The difference between the predictions from linear evolution of the cosmic density fluctuations and the fully non-linear evolution of

the power spectrum is much larger for the Map-statistic than for the mean shear within circles – see Fig. 3. This is related to the fact that the filter

function for M
2
ap


 �

is narrowly peaked, whereas the corresponding filter for ḡðvÞ
�

�

�

�

2
D E

has a long tail towards long wavelengths. Since the long

wavelengths have not become non-linear (see Fig. 1), the non-linear effects for ḡðvÞ
�

�

�

�

2
D E

are necessarily weaker than for M
2
ap


 �

.

The estimates for the relative accuracy given in this paper suffer from the lack of knowledge on the kurtosis of Map, which we have not

attempted to calculate, or more generally, the distribution function of Map. Therefore the estimate presented in Fig. 7 may be slightly optimistic.

A more accurate estimate can be obtained from numerical simulations, by taking high-resolution realizations of the cosmic mass distribution

and studying light propagation through such a universe. Such studies have been undertaken in various ways and with various scientific goals in

the past (e.g. Jaroszyński et al. 1990; Lee & Paczyński 1990; Bartelmann & Schneider 1991; Jaroszyński 1991, 1992; Wambsganss et al. 1995,

1997). In particular, Blandford et al. (1991) have compared their analytical estimates for the rms shear inside circles with results from

numerical ray propagation simulations. Further work in this direction will most useful. In particular, the performance of practical estimators

for the dispersions and skewness can be evaluated, and the accuracy of the approximations used here [i.e. the Born approximation and the

neglect of lens–lens terms in (2.3)] can be checked.

In summary, the Map-statistic appears to be an attractive measure for cosmic shear. We expect that its applications can be expanded

beyond the range considered here. It is a promising method to search for mass concentrations in the Universe, as pointed out by Schneider

(1996). A further application may include the correlation of shear, as measured by Map, with the distribution of foreground galaxies, measured

through the same filter function U. We shall exploit this route as a method for measuring the bias parameter, and its dependence on scale, in a

later publication.
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A P P E N D I X

In this Appendix we calculate the contributions to the (observable) skewness that would be present even in the case of a Gaussian density field.

The three effects that cause a non-zero value for M
3
ap


 �

also for Gaussian fields are the following. (1) Image ellipticities provide an unbiased

estimate of the reduced shear g ¼ g=ð1 ¹ kÞ, rather than the shear g itself. (2) The separation vector xðv; wÞ deviates from fKðwÞv – see (2.1); the

(‘Born’) approximation leading from (2.2) to (2.3) neglects this effect. (3) Also, in the same step, the matrix A on the right-hand side of (2.2)

was approximated by the unit matrix; therefore, (2.3) does not contain the coupling between deflectors at different redshifts. The two latter

terms have already been discussed, in a somewhat different context, by BvWM. We shall consider here these effects in turn. In this Appendix, d

and F are meant to be the linear density field and its corresponding gravitational potential, since we are interested in the contribution to the

skewness coming from the above-mentioned effects in the presence of a Gaussian field.

A1 Aperture mass in terms of g

Let gtðcÞ ¼ gtðcÞ=1 ¹ kðcÞ be the tangential component of the reduced shear. Then, from image ellipticities, one obtains an unbiased estimate
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of

MgðvÞ :¼

�

d2
c Qð cj jÞ gtðcÞ ¼ MapðvÞ þ dMapðvÞ; where dMapðvÞ <

�

d2
c Qð cj jÞ kðcÞ gtðcÞ: ðA1Þ

Hence the observable skewness becomes

M
3
gðvÞ


 �

< M
3
apðvÞ


 �

þ 3 M
2
apðvÞ dMapðvÞ


 �

; M
3
apðvÞ


 �

þ d M
3
apðvÞ


 �

g: ðA2Þ

Using the fact that the Fourier transform of the shear is g̃ðsÞ ¼ k̃ðsÞ e
2iJs , where Js is the polar angle of s, the tangential shear – see (3.8) – can be

Fourier-decomposed as

gtðcÞ ¼ ¹Re

�

d2
s

ð2pÞ2
e

2iJs k̃ðsÞ e
is·c

e
¹2iJ

� �

¼ ¹

�

d2
s

ð2pÞ2
cos 2ðJ ¹ JsÞ e

is·c k̃ðsÞ; ðA3Þ

where in the last step use was made of the fact that kðcÞ is real, and J is the polar angle of c. Then, from the definition in (A2) and by introducing

the expression (3.5) for MapðvÞ, one obtains after replacing kðcÞ by its Fourier representation,

d M
3
apðvÞ


 �

g ¼ ¹3

�

d2
c1 Uð c1

�

�

�

�Þ

�

d
2
s1

ð2pÞ2
eis1 ·c1

�

d2
c2 Uð c2

�

�

�

�Þ

�

d
2
s2

ð2pÞ2
eis2 ·c2

×
�

d2
c Qð cj jÞ

�

d2
s
0

ð2pÞ2
eis0

·c

�

d2
s

ð2pÞ2
cos 2ðJ ¹ JsÞ eis·c k̃ðs1Þk̃ðs2Þk̃ðsÞk̃ðs0

Þ

 �

:

ðA4Þ

We calculate the correction d M
3
ap


 �

g to leading order and thus use the linear evolution of the cosmic density fluctuations. In this approximation

the density field remains Gaussian, and, since k is a linear functional of the density fluctuations, k is Gaussian. Then the correlator in (A4)

becomes

k̃ðs1Þk̃ðs2Þk̃ðsÞk̃ðs
0
Þ


 �

¼ ð2pÞ
4
Pkðs1Þ Pkðs

0
Þ dDðs1 þ s2Þ dDðs

0
þ sÞ þ 2 terms obtained from permutation: ðA5Þ

Inserting (A5) into (A4), one notices that the first term yields zero, whereas the other two terms yield equal contributions. After carrying out the

s1 and s2 integrations, one finds

d M
3
apðvÞ


 �

g ¼ ¹6

�

d2
c1 Uð c1

�

�

�

�Þ

�

d2
c2 Uð c2

�

�

�

�Þ

�

d2
c Qð cj jÞ ×

�

d
2
s

ð2pÞ2
cos 2ðJ ¹ JsÞ eis·ðc¹c1Þ

PkðsÞ

�

d
2
s
0

ð2pÞ2
eis0

·ðc¹c2Þ
Pkðs

0
Þ: ðA6Þ

Next, we perform the polar angle integration of c1 and c2, and use the definition of the filter I,ðhÞ to obtain

d M
3
apðvÞ


 �

g¼ ¹6

�

d2
c Qð cj jÞ

�

d2
s

ð2pÞ2
cos 2ðJ ¹ JsÞ eis·c

PkðsÞ I,ðsvÞ ×
�

d2
s
0eis0

·c
Pkðs

0
Þ I,ðs

0
vÞ: ðA7Þ

Finally, the three integrations over the polar angles can be carried out, leaving the final result

d M
3
apðvÞ


 �

g¼ 12p

�

ds s PkðsÞ I,ðsvÞ

�

ds
0
s
0
Pkðs

0
Þ I,ðs

0
vÞ ×

�

v

0

dc c QðcÞ J0ðcs
0
Þ J2ðcsÞ: ðA8Þ

In Fig. A1 we have plotted the fractional contribution d M
3
apðvÞ


 �

g= M
3
apðvÞ


 �

as a function of angular scale v, for four different

cosmological models. As can be seen, the difference between M
3
g


 �

and M
3
ap


 �

is very small, lower than 6 per cent for all cases considered,

where the largest deviations occur in the EdS models.

A2 Lens–lens coupling, and dropping the Born approximation

The expression (2.3) for the Jacobi matrix A is valid up to first order in the gravitational potential F. The two effects considered here are

obtained by expanding (2.2) up to second order in F.

We write (2.1) as xðv; wÞ ¼ xð0Þ
ðv; wÞ þ xð1Þ

ðv; wÞ þ OðF2
Þ, with xð0Þ

ðv; wÞ ¼ fKðwÞv and xð1Þ
ðv; wÞ given by the second term in (2.1), now

with x in the integrand replaced by xð0Þ. Similarily, we write Aðv; wÞ ¼ A
ð0Þ

ðv; wÞ þ A
ð1Þ

ðv; wÞ þ A
ð2Þ

ðv; wÞ þ OðF3
Þ, with A

ð0Þ
ij ðv; wÞ ¼ dij,

and A
ð1Þ

ðv; wÞ given by the second term of (2.3). Expanding (2.2) in terms of F, one finds that

A
ð2Þ
ij ðv; wÞ ¼ ¹

2

c2

�

w

0

dw
0 fK ðw ¹ w

0
ÞfKðw

0
Þ

fKðwÞ
F;ikl fKðw

0
Þv; w0

ÿ �

x
ð1Þ
l ðv; w0

Þdkj þ F;ik fKðw
0
Þv; w0

ÿ �

A
ð1Þ
kl ðv; w0

Þ
� �

;

which, after inserting the expressions for xð1Þ and A
ð1Þ, yields

A
ð2Þ
ij ðv; wÞ ¼

4

c4

�w

0

dw
0 fKðw ¹ w

0
ÞfK ðw

0
Þ

fK ðwÞ

�w0

0

dw
00

fK ðw
0
¹ w

00
Þ

×
�

F;ijl fKðw
0
Þv; w0

ÿ �

F;l fKðw
00
Þv; w00

ÿ �

þ
fKðw

00
Þ

fKðw0Þ
F;ik fK ðw

0
Þv; w0

ÿ �

F;kj fKðw
00
Þv; w00

ÿ �

�

:

ðA9Þ

We consider 1/2 of the trace of A
ð2Þ as the surface mass density to second order in F. Although A

ð2Þ is in general not symmetric, so that to this

order the lens mapping can no longer be described by an equivalent surface mass density, the asymmetry is expected to be small in realistic

situations, and we shall neglect it henceforth. Then, after averaging over a source redshift distribution, as done in (2.8), and replacing the
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derivatives of F by their Fourier representation, using the Poisson equation (2.6), one finds

kð2Þ
ðvÞ ¼

9

2

H0

c

� �4

Q2
d

�

wH

0

dw
0
gðw

0
Þ

fKðw
0
Þ

aðw0Þ

�

w
0

0

dw
00 fK ðw

0
¹ w

00
Þ

aðw00Þ

×
�

d3
k

0

ð2pÞ3

1

j~k
0
j2

exp i½k0
3w

0
þ fKðw

0
Þk0

·vÿ
� 	

d̃ð~k
0
; w

0
Þ

×
�

d3
k

00

ð2pÞ3

1

j~k
00
j2

expfi½k00
3w

00
þ fKðw

00
Þ~k

00
·vÿgd̃ð~k

00
; w

00
Þ

fK ðw
00
Þ

fK ðw0Þ
k0

·k00
ÿ �2

þ k0
�

�

�

�

2
k0

·k00

� �

; ðA10Þ

where we use the same notation as in the main text, i.e. ~k has k as the first two components.

To calculate the resulting contribution to the skewness according to (4.1), we note that

kðv1Þkðv2Þkðv3Þ

 �

8 3 kð1Þ
ðv1Þkð1Þ

ðv2Þkð2Þ
ðv3Þ


 �

þ OðF5
Þ; ðA11Þ

where the ‘8’-sign means that the two expressions yield the same result after insertion into (4.1), owing to the symmetry of the integration

there. The correlator in (A11) is calculated by inserting (A10) for kð2Þ, and (2.8), with d replaced by its Fourier decomposition, for kð1Þ. The

resulting expression then contains a correlation function of four d̃-terms. Since we consider the lowest, i.e. the linear order of d, the four-point

correlation function is given by (4.9). Using arguments very similar to those that led from (4.3) to (4.5), one finds

3 kð1Þ
ðv1Þkð1Þ

ðv2Þkð2Þ
ðv3Þ


 �

¼
243

4

H0

c

� �8

Q4
d

�

wH

0

dw
gðwÞ fK ðwÞ DþðwÞ

aðwÞ

� �2

×
�

w

0

dw
0 gðw

0
Þ fKðw

0
Þ fK ðw ¹ w

0
Þ D

2
þðw

0
Þ

a2ðw0Þ

�

d
2
k

ð2pÞ2
P0ðkÞ exp ifK ðwÞk·ðv1 ¹ v3Þ

� �

×
�

d2
k

0

ð2pÞ2
P0ðk

0
Þ exp ifK ðw

0
Þk0

·ðv2 ¹ v3Þ
� � fKðw

0
Þ

fK ðwÞ

k·k
0

ÿ �2

kj j2 k0j j2
þ

k·k0

k0j j2

" #

: ðA12Þ

As a final step, we change variables to s ¼ fKðwÞk, s0
¼ fKðw

0
Þk0, and insert the resulting expression into (4.1), using (A11). After applying the

definition of I,, the contribution to the skewness from lens–lens coupling and dropping the Born approximation becomes

d M
3
apðvÞ


 �

BþC ¼
243

8p

H0

c

� �8

Q4
d

�wH

0

dw
gðwÞ DþðwÞ

aðwÞ

� �2�w

0

dw
0 gðw

0
Þ fKðw ¹ w

0
Þ D

2
þðw

0
Þ

a2ðw0Þ fK ðwÞ

×
�

d2
s P0

s

fK ðwÞ

� �
�

d2
s
0
P0

s
0

fK ðw0Þ

� �

s·s0
ÿ �2

sj j2 s0j j2
þ

s·s0

s0j j2

" #

I,ðvsÞ I,ðvs
0
Þ I,ðv s þ s0

�

�

�

�Þ: ðA13Þ

We have plotted this correction term, together with d M
3
ap


 �

g, in Fig. A1. There we can see that this correction term is of the same order as that

considered in the previous subsection, i.e. smaller than ,5 per cent on scales larger than 1 arcmin. These corrections are therefore smaller than

A new measure for cosmic shear 891

q 1998 RAS, MNRAS 296, 873–892

Figure A1. The fractional change of the skewness which occurs by considering M
3
ap


 �

instead of M
3
g


 �

, where the latter is the observable quantity, for four

different cosmological models (thick curves). For comparison, the thin curves show the corrections owing to the Born approximation and the neglect of lens–lens

coupling terms in (2.3). In this figure, the sources were assumed to follow the redshift distribution (2.11), with z0 ¼ 1 and b ¼ 1:5.
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the uncertainties introduced by calculating the skewness with quasi-linear theory. A numerical ray-trace calculation would of course take all

the correction effects mentioned here into account.

It turns out that DS is nearly independent of cosmology; this can be traced back to the fact that d M
3
ap


 �

and M
2
ap


 �2
can be expressed as

bilinear functions of the projected power spectrum Pk. Assume for a moment that, locally, PkðsÞ is a power law; then DS would depend only on

the local slope of this power law, independent of cosmological factors. Hence, if the local slopes of the power spectra in different cosmological

models are similar, one expects DS to be nearly independent of the cosmological model.

This paper has been typeset from a TEX=LATEX file prepared by the author.
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