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Abstract

Recent developments in network theory have allowed for the study of the structure and function of the human brain in
terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role
and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree,
betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected
nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers
nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality
metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its
neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely
on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage
centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared
using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify
neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the
local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield
information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying
neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the
network.
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Introduction

Network theory has recently gained recognition as a useful

framework in which to consider the brain in terms of its structure

and function. In network analyses of functional magnetic

resonance images (fMRI), each voxel can be treated as a node

in a network with connections between nodes defined by

functional activity [1,2,3]. Although two foci in the brain may

not have a direct neuronal connection, a functional connection

may be inferred based on fMRI time signal correlations [4]. The

focus of the outcomes from such an analysis is on the

interconnections between areas rather than on the areas themselves.

An advantage of using network theory methodologies over

traditional fMRI analyses is that the brain is treated as an integrated

system rather than a collection of individual components [5]. In

addition, network analyses can simultaneously characterize prop-

erties of the network as a whole as well as the role each node plays in

the network.

Among the many nodes that form a network, some play a

crucial role in mediating a vast number of network connections.

Such nodes are central in network organization, and are often

identified by quantities known as centrality metrics [6,7,8,9,10,

11,12,13,14]. These centrality metrics identify nodes that are likely

to be highly influential over the behavior of the network and are in

the mainstream of information flow. One such metric defines

central nodes to be those having the highest number of

connections, or degree, and is known as degree centrality [7].

This centrality metric assumes that the importance of a node in the

network is dictated by the number of other nodes with which it

directly interacts. While node degree often proves to identify

critical network elements [15], a highly essential node in the brain

network may not necessarily have ubiquitous connections to other

nodes in the network as assumed by degree centrality.

An increasingly popular centrality metric, eigenvector centrality

[12], is unique in that it considers the centrality of immediate

neighbors when computing the centrality of a node. Mathematically,

eigenvector centrality is a positive multiple of the sum of adjacent

centralities [13], and is based on the philosophy that a node is more

central if its neighbors are also highly central. However, eigenvector

centrality does not account for the disparity in the degree of a node

with respect to its neighbors, which has different implications

depending on the network’s assortativity, or the tendency for nodes

to be connected to similar degree nodes. Furthermore it is

computationally intensive as compared to other centrality metrics.

Betweenness centrality [11] considers nodes along the shortest

geodesic paths to be the most central in the network. In the
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context of a social network, a person has high betweenness

centrality if they are strategically located as middlemen between

several pairs of people and, therefore, control the flow and

integrity of information between those people. Betweenness

centrality assumes that information travels through a network

along the shortest path in a serial fashion (see however [16]).

Despite the potential utility of this measure of centrality, it is not

ideal for a system that processes information via unrestricted

walks. For example, in distributed processing systems without a

central controller, such as the brain, information typically does not

follow shortest paths as they are not predetermined. In the

terminology introduced by Stephen Borgatti [17], flow in a

network occurs through transference, serial transmission, or

parallel duplication. In addition, the flow can utilize a walk, a

trail, a path, or a geodesic (shortest path). Parallel duplication

following a walk occurs when a single node (such as a neuron or

pool of highly correlated neurons) passes information to multiple

other nodes simultaneously. Such a system not only utilizes the

shortest path but sends information along all possible paths. While

not the most efficient method of information transfer, such a

process increases the probability that a signal reaches the intended

destination. This is particularly true for dynamic systems, like the

brain, where existing connections can become impassable or

where new connections may become active. Much like the spread

of a disease in a social network, we propose that brain networks

most likely process information via parallel duplication along

unrestricted walks. In other words, information can be passed to

multiple neighbors (parallel routes), is not lost by the sender

(duplication), and is not restricted along geodesics or paths

(unrestricted walks).

Although degree, betweenness, and eigenvector centrality are

three of the most widely used measures, there are many others.

Closeness centrality [11] is the mean distance between a node and

all other nodes in a graph. Subgraph centrality [18] rates the

importance of a node based on the number of closed walks

beginning and ending at a particular node. These closed walks are

weighted based on length, such that the shortest walks contribute

the greatest towards the centrality value. The concept of local

leaders [19], while not introduced as a centrality metric, captures

information similar to centrality. Local leaders are nodes having a

degree equal to or greater than all neighbors, and strict local

leaders are nodes having a degree strictly greater than all

neighbors. Although a myriad of centrality measures exist, the

focus of this study has been directed to the analysis of degree,

betweenness, and eigenvector centrality as they are the most

commonly used centrality metrics in brain networks.

This work proposes a new centrality metric called leverage

centrality that is designed to identify critical network nodes.

Leverage centrality considers the degree of a node relative to its

neighbors and operates under the principle that a node in a

network is central if its immediate neighbors rely on that node for

information. As a social network example, the most popular

teenager in a clique can easily shape current fashion trends if her

friends do not receive fashion opinions from many other people.

Leverage centrality captures nodes in the network which are

connected to more nodes than their neighbors and, therefore,

control the content and quality of the information received by

their neighbors. Leverage is designed to capture the local

assortative or disassortative behavior of the network, as node

degree is evaluated with respect to degrees of immediate

neighbors. It is key to note here that although leverage is derived

from degree centrality, there is a distinct difference between the

two. A high degree node is not highly central according to leverage

if all of its neighbors are also high degree. Furthermore, leverage

centrality does not assume information flows along the shortest

path or in a serial fashion, but rather focuses on the disparity in

node degrees in a small neighborhood to quantify consolidation

and dissemination of information locally. Leverage is defined on

the interval (21, 1), making inter- and intra-network comparisons

straightforward. Furthermore, calculating leverage centrality is not

computationally burdensome, and as such can easily be computed

for networks containing on the order of 104 nodes or more.

Nodes identified through leverage centrality are critical for the

function of the global network as well as local communities of

network nodes known as modules [20,21,22,23]. Many networks,

and in particular brain networks, have demonstrated hierarchical

structure and may be decomposed into modules or neighborhoods

of nodes which perform similar processes [20,22,23,24]. Each

module consists of several nodes having a relatively high number

of connections within the module compared to the number of

connections to nodes in other modules. Leverage centrality may be

of particular use in such hierarchical networks as an aid in

identifying hubs, nodes that are important to maintaining local

topological structure. A hub is the best connected node within the

module and, therefore, is likely to have high leverage centrality

since its degree is high with respect to other nodes in the

neighborhood.

To investigate the utility of leverage centrality in the brain

network, we analyzed healthy human brain networks generated

from fMRI data using leverage, degree, betweenness, and

eigenvector centrality, and we characterized the relationship

between these centrality metrics. The spatial distribution of high

leverage nodes throughout the brain was examined to gain further

insight into the role of high leverage nodes in information

distribution. Finally, leverage was evaluated in terms of its ability

to detect hubs in the brain network using functional cartography

methods [21].

Methods

Ethics Statement
This study included 10 volunteers (average age 27.7 years,

standard deviation 4.7 years) representing a subset of a previous

study [25]. The study protocol, including all analyses performed

here, was approved by the Wake Forest University School of

Medicine Institutional Review Board. All subjects gave written

informed consent in accordance with the Declaration of Helsinki.

Network Generation
Networks were generated using fMRI time series data from each

subject. Gradient echo EPI images (TR/TE=2500/40 ms) were

acquired over a period of 5 minutes at rest (120 images) on a 1.5 T

GE twin-speed LX scanner with a birdcage head coil (GE Medical

Systems, Milwaukee, WI). Images were corrected for motion,

normalized to the MNI (Montreal Neurological Institute) space,

and re-sliced to 46465 mm voxel size using SPM99 (Wellcome

Trust Centre for Neuroimaging, London, UK).

Network generation is depicted in Figure 1. Time courses were

extracted from each of approximately 16,000 voxels correspond-

ing to gray matter areas in normalized brain space and corrected

for physiological noise by band-pass filtering to eliminate signal

outside of the range of 0.009–0.08 Hz [2,4]. Mean time courses

from the entire brain (the average of voxel values within the brain

parenchyma mask including gray and white matter), the deep

white matter (average time course in an 8 mm radius sphere

within the anterior portion of the right centrum semiovale

composed entirely of white matter), and the ventricles (average

of time courses within the ventricle mask created by the WFU

Centrality for Brain Nets
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PickAtlas Tool [26]) were regressed from the filtered time series.

The six rigid-body motion parameters from the motion correction

process were also regressed out from the time series.

A correlation matrix was populated by computing the Pearson

correlation between all possible pairs of the 16,000 voxels. A

threshold was applied to the correlation matrix, above which

individual voxels were said to be connected, thereby discretizing

the correlation matrix into a binary adjacency matrix with values

of 1 indicating the presence and values of 0 indicating the absence

of a connection between two voxels. The threshold was defined

such that the relationship between the number of nodes and

average number of connections between nodes was consistent

across subjects. Specifically, the relationship S~log Nð Þ=log kð Þ
was the same across subjects, where N was the number of nodes in

the entire network, k was the average degree of the network, and S

represented the average path length of an Erdõs-Rényi network

[27]. In this work, we chose S= 3.0 as the threshold to define

networks, but network properties have been demonstrated to be

robust for different S values [3].

Equivalent synthetic random networks were generated by

randomly rewiring networks in a fashion similar to that described

in [28]. Specifically, nodes were rewired so that the degree

distribution remained unchanged but network connectivity

became randomized. The three centrality metrics were compared

between the original networks and their equivalent synthetic

networks. This allowed for the comparison of each brain network

to a null condition, where the degree distribution of the network

was held constant but any assortative behavior or other topological

properties particular to the organization of the brain network were

removed.

Centrality Computations
Leverage (li), degree (ki), betweenness (bi), and eigenvector

centrality (ei) were calculated for each node of the 10 brain

networks and their equivalent synthetic networks. Degree was

determined by the number of neighbors connected to node i.

Betweenness was defined by the equation below, where gxy is the

number of shortest geodesic paths between any two nodes x and y,

and gxiy is the number of those geodesics passing through node i.

bi~
1

(N{1)(N{2)

X

x

X

y

gxiy

gxy
, x=y=i

Eigenvector centrality was calculated according to the equation

below, where l denotes the largest eigenvalue and e denotes the

corresponding principal eigenvector.

ei~
1

l

X

N

j~1

aijej

From the above equation, the eigenvector centrality ei of a node i is

given by the sum of the values within the principal eigenvector e

corresponding to direct neighbors, as defined by the adjacency

matrix (i.e. where aij ? 0). Eigenvector centrality is then scaled by

the proportionality factor
1

l
. In a discussion on normalization of

eigenvector centrality, Ruhnau [13] has shown that Euclidean

normalization produces an eigenvector centrality that can attain a

maximal value of

ffiffiffi

1

2

r

regardless of network size. By multiplying

the resulting eigenvector centrality values by
ffiffiffi

2
p

, the maximum

achievable value becomes 1, and can be attained only by a node at

the center of a star. Additionally, since only the largest eigenvalue

and corresponding eigenvector must be obtained, a power

iteration algorithm was implemented to increase computational

efficiency as recommended by Lohmann et al. [29].

Leverage centrality is a measure of the relationship between the

degree of a given node (ki) and the degree of each of its neighbors (kj),

averaged over all neighbors (Ni), and is defined as shown below.

li~
1

ki

X

Ni

ki{kj

kizkj

A critical aspect of this computation is that the degree of node i

is not simply compared to the average degree of its neighbors.

Because the degree distributions of brain networks have been

shown to be either exponentially truncated power laws

[3,5,30,31,32] or scale-free distributions [1,2], highly connected

nodes can significantly skew the average. A node with negative

leverage centrality is influenced by its neighbors, as the neighbors

connect and interact with far more nodes. A node with positive

leverage centrality, on the other hand, influences its neighbors

since the neighbors tend to have far fewer connections.

Correlation Analyses
Correlation analyses were used to explore the relationships

between the four centrality metrics. The examination of different

centrality metrics for each node in the brain network allowed for a

Figure 1. The process of generating functional networks. Resting state fMRI data are collected from a subject. Voxel time series are extracted
from the set of images, and a Pearson correlation analysis is performed between all possible pairs of voxels. The correlations are represented in the
form of a correlation matrix, which is binarized at a given threshold to yield an adjacency matrix. The functional network is thereby defined, where
each voxel is represented by a node and connections are determined by the adjacency matrix.
doi:10.1371/journal.pone.0012200.g001
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comparison of the similarity or dissimilarity of each method.

Scatter plots of the degree, leverage, betweenness, and eigenvector

centrality were created for the brain networks of all subjects. The

correlations among the node-wise centrality metrics were calcu-

lated for each subject. Resulting brain overlap images were

visualized using MRIcro (http://cnl.web.arizona.edu/mricro.

htm).

Modularity Analyses
Modularity analyses were run on each subject, utilizing the

QCUT algorithm developed by Ruan and Zhang [33]. This

modularity algorithm parcellates each functional network into

modules or communities of nodes that are more interconnected

among themselves than they are connected to the rest of the

network. The presence of these highly interconnected communi-

ties has been termed ‘‘community structure’’ [14,24,33,34,35].

Modularity is an NP hard computational problem [34] and thus

requires algorithms that approximate the solution. Various

methods for identifying network substructure have previously

been reviewed [36]. Most methods use Modularity (quantified by

the parameter Q) [35] to identify the optimal network subdivision.

This variable compares the number of intermodular edges in the

divided network to the number of intermodular edges in a random

network with the same subdivisions. Q ranges from 0 to 1 with

higher values indicating greater modular organization. In real

networks, values of Q typically do not greatly exceed 0.7.

Since all functional networks are unique, the network parcella-

tion for each subject is unique. The Jaccard index was used as a

measure of similarity between subjects to identify the most

representative subject in the study [33]. For two subjects x and y

with modular divisions Mx and My, the comparison between

modularity results were computed as

J(Mx,My)~
DMx\MyD

DMx|MyD

The Jaccard index is the ratio of the intersection of the

classification of the two modular structures divided by the union

[37]. The Jaccard index between two subjects is high if the

community structures are very similar. A similarity matrix was

generated to compare all subjects, and a total similarity index was

generated for each subject by summing all Jaccard indices

computed for a given subject. The most representative subject

was that with the highest total similarity index [24].

The QCUT algorithm was chosen to identify network

modularity as we have found QCUT to be very robust and

highly reproducible for identifying an optimal network division

based on Q. In an analysis of this algorithm (see Text S1, Figure

S1, and Table S1) a particular brain network was divided into the

modular organization in 15 independent runs. The resulting

parcellations were highly reproducible with a mean Jaccard index

of 0.93 (SD 0.018). This indicates highly reproducible subdivisions

that exhibited trivial differences. In particular, the 9 runs that

generated the highest Q value (0.673) all had Jaccard indices of

0.945.

Network Hubs
A method of identifying and classifying hubs in networks that

considers neighborhood structure, introduced as functional

cartography, was established by Guimera and Amaral [21] and

adopted by others [24,38]. This method compares the participa-

tion coefficient pci to the normalized within-module degree zi. The

participation coefficient captures the distribution of the links of a

node. If a node has equal links to all of the modules of a network,

its participation coefficient approaches 1. However, if all links

belonging to the node lie within its own module its participation

coefficient is 0. The participation coefficient for a node i belonging

to a module m in a network with M total modules is computed as

pci~1{
X

M

m~1

ki,m

ki

� �2

:

The term ki,m denotes the within module degree, or the number

of connections between node i and other nodes within module m,

and ki,m/ki indicates the ratio of connections a node has within its

own module. Often a normalized z-score with the mean and

standard deviation of the within module degrees is used to describe

within module connectivity, assuming the node degrees have a

normal distribution [21]. However, the degree distribution in

brain networks is more closely approximated by an exponentially

truncated power law distribution [3,5,30,31,32]. (It is noteworthy

that others have shown that brain networks may approximate a

scale-free distribution [1,2], but networks analyzed in our

laboratory have been in support of the exponentially truncated

power law [3].) This is true even for within module degree

distributions as demonstrated in Figure 2 for one representative

subject from the study (subject 5). Therefore, we chose to represent

the within module degree by the degree p-value pki determined by

1 minus the cumulative distribution function (CDF) of within

module degrees. The within module degree p-value is given by

dividing the number of nodes in a given module with a degree

greater than or equal to ki by the total number of nodes in the

module.

Nodes with high degree ki have a low p-value pki since there are

relatively few hubs in networks with an exponentially truncated

Figure 2. Functional brain networks follow an exponentially
truncated power law degree distribution. Degree distributions of
the whole network (solid line) and individual modules for a
representative subject (subject 5). All modules as well as the whole
network follow an exponentially truncated power law distribution.
doi:10.1371/journal.pone.0012200.g002
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power law distribution, where the highest degree nodes, or hubs,

are far less likely to occur than non-hubs. For this reason, hubs

were classified as being those nodes having a within module degree

probability less than 0.01. This criterion is analogous to having a z-

score above 2.5 as suggested by Guimera and Amaral [21],

corresponding to p,0.01 in a Gaussian distribution. Hub nodes

(pki#0.01) were further delineated into provincial, connector, or

kinless hubs by the participation coefficient in accordance with

[21]. Hubs having pci#0.3 were said to be provincial hubs, as their

low participation coefficient reveals that they are extremely well

connected within their own module. Connecter hubs were those

hubs having 0.3,pci#0.75, indicating that they served to connect

nodes in other modules to their own module. Kinless hubs had

participation coefficient values pci.0.75, indicating that almost all

of their neighbors are distributed in other modules. No kinless

hubs were found in any of the 10 networks analyzed and are not

discussed further. Figure 3 illustrates the similarity between pc-z

space versus pc-pk space. The advantage of using the pk form of

within module degree is that a degree distribution is not assumed.

However, for small networks it may be difficult to find a node with

sufficiently small pk. In such cases pc-z space is the more

appropriate method.

Degree, leverage, betweenness, and eigenvector centrality

were examined as an additional axis to a functional cartography

plot to compare the metrics’ abilities to identify hubs in brain

networks. Nodes were classified as hubs based on varying a cut-

off criterion for each centrality metric. If the node centrality was

greater than a given criterion, the node was classified as a hub.

By changing the criteria for degree, betweenness, eigenvector,

or leverage centrality over a range of thresholds, the metrics

were compared in terms of accuracy in identifying network hubs

with results determined by functional cartography described

above. Centrality criteria were equally spaced in 10000

increments along the range of the respective metric. As an

example, Table 1 provides threshold criteria used for each

method for subject 5.

Since the true hub classification is not known for brain

networks, functional cartography was utilized as an alternate to

centrality measures. While functional cartography does not

provide a definitive or ‘‘gold standard’’ hub classification, it is a

well-studied method [21,24,38] that does not rely solely on the

number of connections (degree) to identify hubs. This method also

allows for the identification of hub structure within and between

network neighborhoods. Although the cartography method is

dependent on the modularity analysis used, the QCUT algorithm

used to define the modular structure is highly reproducible, as

discussed previously. However, to be thorough, we acknowledge

that the high precision of the QCUT algorithm does not ensure

the accuracy of the functional cartography results. A full

evaluation of the accuracy of neighborhood hub detection using

cartography and leverage centrality based on known networks is

beyond the scope of this paper.

The true positive and false positive rates were calculated to

yield receiver operating characteristic (ROC) curves for each

subject. True positives were classified as nodes that were defined

as hubs using functional cartography (pki#0.01), which were

also classified as hubs based on the centrality criterion. False

positives were those nodes which were not defined as hubs using

functional cartography (pki.0.01) but classified as hubs based on

the centrality criterion. The area under the curve (AUC) for

each ROC was computed for each centrality metric and

compared in all subjects using multiple pairwise t-tests with

Bonferoni correction to test for differences between the

centrality metrics.

Figure 3. Comparison of pc-z space versus pc-pk space. (A) Within-module degree z-score zi and participation coefficient pci are used to
designate nodes into seven regions as described in [21,24,38]. Nodes are designated as hubs if zi$2.5 and non-hubs otherwise. Regions are defined
as: R1 – ultra-peripheral nodes; R2 – peripheral nodes; R3 – non-hub connector nodes; R4 – non-hub kinless nodes; R5 – provincial hubs; R6 –
connector hubs; R7 – kinless hubs. (B) Within-module degree probability pki and participation coefficient pci are used to designate nodes into the
seven regions defined above. Participation coefficient classifications are identical to (A), but the cutoff pki#0.01 is used to define hubs versus non-
hubs, corresponding to zi$2.5 when approximating with a normal distribution.
doi:10.1371/journal.pone.0012200.g003
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Results

Correlation Analyses
Correlation plots of the centrality metrics for a representative

subject are shown in the scatter plot matrix in Figure 4. Within the

scatter plot matrix each centrality metric is indicated along the

diagonal such that, for any given plot, the abscissa is specified by

the label in the lowest row, and the ordinate is specified by the

label in the left-most column. These plots reveal the relationships

between leverage, degree, betweenness, and eigenvector centrality.

However, while all centrality metrics are positively correlated,

there is not a strict linear relationship in any of the cases.

Table 1. Example of threshold values used in generation of
ROC curves.

Minimum Interval Maximum

Leverage 20.9873 1.5509 e-04 0.5634

Degree 1 0.0381 382

Betweenness 0 4.6419 e-07 0.0046

Eigenvector 0 1.0306 e-05 0.1030

doi:10.1371/journal.pone.0012200.t001

Figure 4. Scatterplot matrix of leverage, degree, betweenness and eigenvector centrality for the brain network of a representative
subject. Labels to the left of plots indicate the ordinate centrality, where labels beneath plots indicate the abscissa centrality. Synthetic network
nodes (red) overlaid over the original network (blue) separate nodes from the original network into distinct groups, most notably in plots involving
leverage or eigenvector centrality.
doi:10.1371/journal.pone.0012200.g004

Centrality for Brain Nets
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Correlations between eigenvector centrality and either leverage or

betweenness centrality are noticeably lower than the correlation

between eigenvector centrality and degree centrality. Although

leverage and eigenvector centrality are both derivatives of degree

centrality, clearly these metrics do not convey the same

information.

One of the more intriguing qualities of the centrality metrics is

the apparent grouping of nodes in the scatter plots, particularly in

those including leverage and eigenvector centralities. Two clearly

distinct groups of data are most evident in the 3-dimensional plot

of leverage, degree, and betweenness, separated by points from the

synthetic network (Figure 5). The same occurrence is seen in all

subjects. Interestingly, the synthetic network data overlaid over the

original network data have much stronger linear relationships.

Correlation values between centrality metrics in the original and

synthetic networks are displayed in Table 2.

To further investigate this phenomenon, nodes above and below

the synthetic network distribution were identified in brain space in

each subject. A single overlap image was created (Figure 5)

indicating consistent spatial patterns of nodes above or below the

synthetic network distribution for all subjects. This image was

created by summing the number of subjects that had a particular

voxel above (warm colors) or below (cool colors) the synthetic data.

The network nodes with the highest degree centrality typically

fell below the synthetic network nodes in Figure 5. The loss of such

individual nodes from this group would not greatly impact the

Figure 5. Overlap image compiled from all subjects. Intensity values correspond to the number of subjects having a particular network node,
i.e. image voxel, above (warm colors) or below (cool colors) the synthetic network degree-leverage centrality scatter plot. Nodes below the synthetic
distribution, primarily concentrated in the areas of the precuneus and posterior cingulate, are highly interconnected high degree nodes with many
redundant connections. Nodes above the synthetic distribution have higher leverage than synthetic network nodes with the same degree and can be
found scattered throughout the gray matter. Color bar represents the number of subjects that exhibited a node in any particular location.
doi:10.1371/journal.pone.0012200.g005
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topology of the network since they are highly interconnected with

redundant connections. These nodes were largely centered in the

posterior cingulate and precuneus, regions of the brain previously

shown to be the core of the anatomical brain network [39] and

known to be highly interconnected [3]. This high level of local

interconnectedness caused this region to be classified as low

leverage with respect to the synthetic network. Therefore, nodes in

this population are less influential than would be predicted for

nodes of similar degree centrality in a randomly connected

network.

Nodes above the synthetic network nodes in Figure 5 are

connected to lower degree nodes and have higher leverage than

synthetic network nodes with the same degree. Interestingly, these

nodes appeared to be dispersed throughout the cortex. Such a

dispersion of high leverage nodes may contribute to efficient

information diffusion throughout the brain network.

A 3-dimensional plot of eigenvector, leverage, and degree

centrality revealed that the group of nodes below the synthetic

network data in Figure 5 in fact consisted of two subgroups

(Figure 6A). In this figure, the synthetic network data have been

omitted for simplicity, but the divisions originally noted in Figure 5

are still clearly distinguishable. Two subgroups of the nodes below

the synthetic network were separated by high or low values of

eigenvector centrality. The first subgroup (highlighted in orange)

was concentrated at low values of eigenvector centrality, while the

second subgroup (highlighted in green) was concentrated at higher

values of eigenvector centrality. Interestingly, the inset of leverage

vs. degree shows that the subgroup with lower eigenvector

centrality (green) in fact had slightly higher leverage centrality.

Nodes belonging to the green subgroup are connected to lower

degree nodes than themselves, and therefore eigenvector centrality

is slightly reduced while leverage is slightly elevated. Conversely,

the subgroup with higher eigenvector centrality (orange) consists of

nodes where the disparity between the degree of a given node and

of the neighbors is less pronounced than in the green subgroup.

Therefore, in this subgroup the leverage centrality is slightly

reduced, while the eigenvector centrality is slightly elevated.

The spatial distributions of subgroups are shown in Figure 6B

(orange subgroup) and Figure 6C (green subgroup). Nodes from

the orange subgroup, having slightly elevated eigenvector

centrality and slightly reduced leverage centrality were found

largely in the region of the precuneus and posterior cingulate.

Nodes from the green subgroup, with slightly elevated leverage but

slightly reduced eigenvector centrality, were distributed in the

prefrontal cortex, anterior cingulate, and thalamus. Although

results are presented for a single subject, these patterns are

representative of results from all subjects as demonstrated in the

supplemental materials (see Text S1 and Figure S2).

Leverage as a Detector of Module Hubs
Module parcellation was performed using the QCUT algorithm

and resulted in a unique definition of community structure for

each subject. Similarity between subjects, measured via the

Jaccard index, revealed subject 5 to be the most representative

(Figure 7). Modularity results for the most representative subject

are shown in brain space, where each module is represented by a

different color (Figure 8). As can be seen from Figure 8, although

modules were not necessarily spatially contiguous, they tend to

spatially cluster in different regions of the brain.

Functional cartography plots were generated to identify

provincial and connector hubs (Figure 9A). Nodes that had

within-module degree probabilities (pki) less than 0.01 were

delineated as hubs. All hubs were then defined to be either

provincial hubs that are key to the structure within their native

module, or connector hubs that serve to link multiple modules. The

assignment to either provincial or connector hubs was based on

the participation coefficient (pci) thresholds defined in the methods.

Each plot was extended to include leverage centrality (Figure 9B),

degree (Figure 9C), betweenness (Figure 9D), or eigenvector

(Figure 9E) centrality on a 3rd axis. Interestingly, connector and

provincial hubs were distributed throughout the ranges of degree,

betweenness, and eigenvector centrality, but were concentrated at

higher values of leverage. In other words, leverage centrality was

capable of providing a reasonable cutoff, above which nodes may

be classified as either hubs or non-hubs. In contrast, since the hubs

spanned the entire range of the other three centrality metrics,

there was no clear threshold in either case above which solely hubs

existed.

ROC analyses (Figure 10) are presented to better show the

greater potential for classification of hubs using leverage over the

other metrics. As discussed in greater detail in the Methods

section, ROC analyses were used to evaluate the accuracy of each

centrality metric in identifying and classifying hubs as compared to

the results of the functional cartography analyses. These ROC

analyses revealed leverage to be the most accurate hub detector in

all but one subject. On average, leverage ROC curves had the

highest average AUC (0.99+/20.01) as compared to degree

(0.97+/20.02), betweenness (0.96+/20.02), or eigenvector cen-

trality (0.75+/20.08). In a subject that did not fit this pattern,

degree had the greatest AUC (0.97346) over leverage (0.97026),

betweenness (0.91549), or eigenvector centrality (0.69819).

Multiple pairwise t-tests with Bonferoni correction revealed

significant differences in AUCs between leverage and betweenness

(p = 0.005), between leverage and eigenvector (p,0.001), between

degree and eigenvector (p,0.001), and between betweenness and

eigenvector (p,0.001), marginal significance between leverage

and degree (p = 0.06), but no significant differences between

degree and betweenness (p.0.999). Leverage, having significantly

higher mean AUC than the other metrics, was shown to be the

most effective at identifying hubs, i.e. nodes which play a critical

role in community structure (Figure 11).

In addition to the concentration of hubs at higher values of

leverage centrality seen on the functional cartography plots

(Figure 9B), a distinct clustering of connector hubs versus

provincial hubs can be observed. On cartography plots with

leverage plotted on the 3rd axis, connector hubs were found at less

extreme values of leverage (lconnector=0.2318+/20.1228) than

provincial hubs (lprovincial=0.3479+/20.0688) for all subjects. In

the cases of degree, betweenness, and eigenvector centrality, both

hub types appeared to span the range of the respective centrality

metric. The ability of the metrics to distinguish between

provincial and connector nodes was evaluated using ROC curve

analysis considering only the provincial and connector hubs. The

Table 2. Correlation between centrality metrics averaged
across 10 subjects, +/2 standard deviation.

Original Network Synthetic Network

Leverage vs. Degree 0.518+/20.072 0.842+/20.020

Leverage vs. Betweenness 0.590+/20.066 0.646+/20.035

Leverage vs. Eigenvector 0.170+/20.032 0.720+/20.089

Betweenness vs. Degree 0.621+/20.119 0.931+/20.008

Betweenness vs. Eigenvector 0.204+/20.075 0.917+/20.006

Degree vs. Eigenvector 0.643+/20.101 0.994+/20.001

doi:10.1371/journal.pone.0012200.t002
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same criteria for degree, betweenness, and leverage were

employed as in the previous analysis. The AUC of ROC curves

corresponding to leverage had the highest mean (0.81+/20.10)

as compared to degree (0.77+/20.14), betweenness (0.59+/

20.16), and eigenvector centrality (0.58+/20.13) (Figure 12).

Similar to the previous analysis, multiple pairwise t-tests with

Bonferoni correction were performed to test for differences in the

ability of leverage, degree, betweenness, and eigenvector central-

ity to distinguish between connector and provincial hubs. The

analysis revealed a significant difference between leverage and

eigenvector centrality (p = 0.021), while the difference between

degree and eigenvector centrality was only marginally significant

(p = 0.06). The differences in AUC were not significant between

leverage and degree (p.0.999), leverage and betweenness

(p = 0.10), degree and betweenness (p = 0.30), or betweenness

and eigenvector centrality (p.0.999).

Figure 6. Eigenvector centrality reveals additional network subgroups. (A) Scatter plot of leverage, degree, and eigenvector centrality,
where the lower group of nodes observed previously is shown to consist of two subgroups with different eigenvector centralities. Inset shows that
the subgroup with higher eigenvector centrality (orange) has slightly lower leverage centrality than the subgroup with lower eigenvector centrality
(green). (B) Spatial distribution of subgroup with higher eigenvector centrality but slightly lower leverage centrality (orange subgroup). (C) Spatial
distribution of subgroup with lower eigenvector centrality but slightly higher leverage centrality (green subgroup).
doi:10.1371/journal.pone.0012200.g006
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Discussion

In this work leverage has been introduced as a new metric of

network centrality to evaluate the role of individual nodes in brain

networks. Leverage is unique from existing centrality methods in

that it does not assume serial transportation of information, but

rather allows for parallel processing such as that occurring in the

brain. Leverage accounts not only for the degree of a given node,

but also for the degree of its neighbors, thereby capturing local

assortative or disassortative behavior. This has important impli-

cations for information transfer and the influence one brain region

may have over another. Individual brain cells accumulate

information from all active synapses and integrate this information

over space and time, and if the total signal surpasses a set threshold

the neuron will fire. Since any given input to a neuron is combined

with all other active inputs, its influence is dependent on the

number of other active connections. A neuron (X) that synapses

with many other neurons that each only has a few inputs will be

highly influential over that population of cells. In other words

neuron X will have high leverage. On the other hand, if a different

neuron (Y) synapses with many neurons that all have many inputs,

neuron Y will not be very influential; neuron Y is a low leverage

neuron. Of course it is important to note that this discussion is on

the level of the neuron but the data presented here was from

networks generated at the level of the voxel – many orders of

magnitude larger than the neuron. While it can be argued that

behavior at the neuronal level may propagate to the voxel level,

the most appropriate scale has been difficult to ascertain [40,41].

Development of new measures of centrality must consider the

computational burden of the metric. Some measures can have

computational costs that are too high to be useful for large

networks. Importantly, the computation for leverage is inexpensive

in terms of CPU load. As an example, it took 9.6 seconds to

compute the leverage centrality for a network with N=14,323

nodes and average degree k=27 on a RedHat Linux workstation

with a 3.0 GHz Intel Core2 Quad processor with 8.0 GB RAM

using MATLAB R2008b (MathWorks, Natick, MA). This is

compared to the 227.7 seconds required to perform the between-

ness calculation and 11.8 minutes to perform the eigenvector

centrality calculation on the same network. Since leverage is of

O(N) (i.e. scales linearly with network size), increasing the network

size has little effect on the computational load. Betweenness and

eigenvector centrality, on the other hand, are both far more

computationally expensive, resulting in sizeable increases in

computation time as the network size increases.

We have examined the relationships between leverage centrality

and three other well-characterized centrality metrics. Although all

centrality metrics were positively correlated, leverage and

eigenvector both provided additional information not evident

from degree or betweenness alone. This was particularly true when

examining networks against synthetic random networks with

identical degree distributions. 3-dimensional plots of leverage,

degree, and betweenness have revealed the separation of network

nodes into two easily recognizable groups divided by synthetic

network data. This separation arises as a result of the assortative

nature of brain networks. In assortative networks, high degree

nodes preferentially connect to other high degree nodes, and

likewise low degree nodes tend to connect to other low degree

nodes. Since leverage is designed to capture the similarity or

dissimilarity in degree between a node and its neighbors,

examining leverage made this assortative behavior apparent.

Upon examining the spatial distribution throughout the brain of

high and low leverage nodes relative to the random networks, it

was shown that nodes falling above the synthetic network (having

higher leverage than expected for a node with comparable degree

in a random network) were interspersed throughout the brain.

However, those nodes below the synthetic network were

concentrated in the region of the posterior cingulate and

precuneus, a location known to be a core of the brain network

[39]. It is interesting to note here that a region considered to be a

hub of the brain network in terms of anatomical structure, and one

which is a hub in terms of its degree, is not necessarily a hub when

considering leverage centrality. Leverage centrality identifies those

regions that are not necessarily the most connected ones, but the

must influential over immediate neighbors. The posterior

cingulate and precuneus regions do not have leverage over the

other high degree regions to which they are connected.

A deeper examination of the relationship between leverage and

eigenvector centrality allowed for the distinction of two subgroups

of data comprising the group of nodes having lower leverage

centrality. One subgroup, concentrated at higher values of

eigenvector centrality, had slightly lower leverage centrality. On

the other hand, the other subgroup, concentrated at lower values

of eigenvector centrality, had slightly higher leverage.

Functional cartography was extended to include leverage,

degree, betweenness, or eigenvector centrality information as the

Figure 7. Results of similarity analysis. (A) Jaccard indices between
all possible subject pairs, where the diagonal has been constrained to
zero. (B) Sum of Jaccard indices for each subject, revealing subject 5 to
have the highest similarity across subjects.
doi:10.1371/journal.pone.0012200.g007

Figure 8. Modules of the brain of a representative subject. Each
color corresponds to a particular functional module, with 7 total
modules present, in a representative subject (subject 5).
doi:10.1371/journal.pone.0012200.g008
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3rd axis. The roles of hubs were identified as provincial or

connector based on participation coefficients and within module

degree probabilities. Leverage was tested for its ability to both

classify nodes as hubs or non-hubs and distinguish between

connector and provincial hubs using ROC analyses. Leverage

proved to be statistically significantly more accurate at detecting

hubs versus non-hubs than betweenness or eigenvector centrality,

and performed as well as degree in the same task. Leverage also

showed promising results in distinguishing between connector and

provincial hubs particularly compared to eigenvector centrality.

However, the sample size N= 10 subjects used in this study did not

provide sufficient evidence to achieve statistical significance in

other comparisons. These functional cartography results have

shown that high leverage nodes tend to be hubs, and furthermore,

the highest leverage nodes tend to be provincial hubs, possibly

holding together the modular structure of brain networks.

Leverage has therefore been demonstrated to be a viable tool for

the identification of hubs in brain networks.

A limitation intrinsic to the study of brain networks is the

uniqueness of each subject’s functional network. Although

preprocessing of the original fMRI time series data attempts to

transform the imaging data into a common space across subjects,

formation of the brain connectivity network is likely influenced by

subject variability. For example, node locations may not perfectly

overlap across subjects, and connections defined by correlation

coefficients may vary across subjects. Such subtle discrepancies

likely result in a network structure that is similar in overall

structure [2,3,39] but with large local inter-subject variability.

Thus, appropriately characterizing properties of centrality metrics

in a group can be challenging. Although averaging of the

correlation matrices [30] or of centrality metrics across subjects

[2,30] has been considered previously, in our laboratory we have

observed a smoothing effect that results in drastic changes in the

degree distribution and in modularity (results to be reported

elsewhere). As an alternative to averaging, the Jaccard index was

used to determine the most representative subject, as the Jaccard

index is capable of handling networks of varying sizes. Analyses

performed on all other subjects as well as group analyses support

the findings in that subject. Processing code for the Jaccard index

has been made readily available [42] and is explained in detail in

supplementary material [43] from a previous article [33].

However, an analysis method that can capture the overall

characteristics of the brain network from a group of subjects is

desired in the future.

An additional limitation arises from the alternate hub

classification scheme using pc-pk space, which does not assume a

normal distribution as in the p-z space classification method. The

disadvantage of pc-pk space is that there is a bias towards detecting

hubs even where none exist. Take as an example a module

consisting of just 10 nodes, where the average degree is 4. If there

is only a single node with a degree of 5 it will have a low p-value

(p = 0.01), and pass the criteria for classification as a hub, even

Figure 9. Extension of functional cartography. (A) Functional cartography plot of brain network from subject 5. Within module degree
probability pki is shown versus participation coefficient pci. Hubs are delineated as provincial (yellow) or connector (pink) based on thresholds defined
in the text. The functional cartography plot has been extended to include leverage (B), degree (C), betweenness (D), and eigenvector centrality (E) of
the same network.
doi:10.1371/journal.pone.0012200.g009

Centrality for Brain Nets

PLoS ONE | www.plosone.org 11 August 2010 | Volume 5 | Issue 8 | e12200



though its degree is not such that we would qualitatively classify it as

a hub. For large enough modules, given a within-module degree

distribution following an exponentially truncated or scale-free

power law, such a situation is unlikely to occur. However, in

smaller modules this is certainly plausible. In such cases, the

advantage of the p-z space classification scheme is that it takes into

account whether a node is a sufficient number of standard

deviations from the mean.

Leverage was investigated here in the undirected graphs

produced by fMRI data. However, an extension of leverage could

easily be applied to directed graphs by computing in-leverage and

out-leverage using in-degree and out-degree. Leverage centrality

may then be applied to such directed networks as the C. elegans

neural network [27,44,45,46], marine [45,46,47] or freshwater

food webs [45,46,48], the world wide web [45,46,49], and a

multitude of other networks across various disciplines. In such

networks, high out-degree nodes may actually have very low out-

leverage and, therefore, may not be highly influential over the

local behavior of the network. Alternatively, low out-degree nodes

may have high-out leverage and be very influential over local

network behavior. Detection of high in-leverage and out-leverage

nodes may allow identification of components of these networks

which are highly important to network structure and stability. For

example, high in-leverage nodes in the World Wide Web may be

information hubs, sources of information utilized by many

locations throughout the network. High out-leverage species in

food web networks likely provide nutrition for a large component

of the food web, and extinction of these species would significantly

undermine the stability of the ecosystem. In such networks as

these, leverage could potentially give insight into appropriate

preventative measures to protect against network collapse.

In addition to directed networks, leverage may be applied to

weighted graphs. In this work, unweighted networks were

produced by thresholding the correlation matrix such that the

relationship between the number of nodes and number of edges in

each network was preserved across subjects. Alternatively, a

threshold may be applied across the correlation matrix in order to

eliminate spurius connections suggested by low correlations

resulting in links that are unlikely to occur in the true network.

These low correlations would be replaced by zeros in the

adjacency matrix, but sufficiently high correlations would be

preserved in order to create the weighted network. Using the

weighted equivalent of degree, a weighted counterpart to leverage

centrality can then be calculated at each node.

A further possible extension of leverage is to consider the

influence of indirect neighbors. In this study, the degrees of 1-hop

neighbors were considered in the formulation of leverage

centrality. However, the inclusion and appropriate weighting of

2-, 3-, or n-hop neighbors in the leverage formulation would

enable consideration of input signal from further upstream, as well

as the propagation of signal further downstream in the network.

Such an extension would provide further insight into the

interdependence of nodes and may indeed be a more accurate

model of a system such as the brain.

Figure 11. AUCs for ROC curves for identifying hubs in all
subjects. AUC values demonstrate the accuracy of detecting hubs
using leverage, degree, betweenness, or eigenvector centrality. Trend
(average - diamonds) shows that the highest average AUC is for
leverage centrality ROC curves. Asterisks indicate statistical significance
(p,0.05).
doi:10.1371/journal.pone.0012200.g011

Figure 12. AUCs for ROC curves for classifying hubs in all
subjects. AUC values compare the accuracy of distinguishing between
provincial and connector hubs using leverage, degree, betweenness, or
eigenvector centrality. Trend (average - diamonds) shows highest AUC
is for leverage centrality ROC curves. Asterisk indicates statistical
significance (p,0.05).
doi:10.1371/journal.pone.0012200.g012

Figure 10. Receiver Operating Characteristic curves for a
representative subject. ROC curves reflect the higher accuracy of
hub detection using leverage, degree, betweenness, or eigenvector
centrality. In this case the representative subject (subject 10) had AUCs
closest to the mean. Results are typical of all but one subject, where
degree was found to be the most accurate method.
doi:10.1371/journal.pone.0012200.g010
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Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0012200.s001 (0.02 MB

DOCX)

Figure S1 Jaccard index matrix comparing modularity results

from 15 different QCUT runs. Note that runs 4, 6, and 7 have the

lowest overall Jaccard index. The remaining runs have average

Jaccard indices greater than 0.92. The diagonal is arbitrarily set to

zero.

Found at: doi:10.1371/journal.pone.0012200.s002 (0.33 MB TIF)

Figure S2 Three-dimensional scatter plots of degree, leverage,

and eigenvector centrality. In all subjects, several groupings of

nodes emerge.

Found at: doi:10.1371/journal.pone.0012200.s003 (1.33 MB TIF)

Table S1 Summary of results from multiple realizations of

QCUT run on a single complex brain network.

Found at: doi:10.1371/journal.pone.0012200.s004 (0.03 MB

DOC)
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